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EXCEPTIONALLY RAMIFIED MEROMORPHIC FUNCTIONS
WITH A NON-ENUMERABLE SET OF
ESSENTIAL SINGULARITIES

TOSHIKO KUROKAWA

§1. Introduction

In the complex function theory, Picard’s Great Theorem plays an es-
sential and important role. It is well-known as generalizations of this
theorem that in a neighborhood of an isolated essential singularity, a
meromorphic function cannot be exceptionally ramified (see W. Gross [2])
and that even it cannot be normal (see O. Lehto and K. I. Virtanen [7]).
We are therefore interested in the behaviour of meromorphic functions
with non-isolated essential singularities as well as in generalizations of
the Gross’ result. Several approaches in this direction have been made
by G. af Hallstrom [3], S. Kametani [4], K. Noshiro [13], K. Matsumoto
[8], [9], [10], [11], [12], S. Toppila [15], etc..

As for the functions with “more than two Picard exceptional values”,
K. Matsumoto ([10], [11]) has given sufficient conditions on Cantor sets E
whose complements do not admit such functions. One of his basic results

1S

THEOREM A. Let E be a Cantor set with successive ratios &, satisfying
the condition

En-r! = O(E?L) 2

then the domain complementary to E does not admit meromorphic functions
with “‘more than two Picard exceptional values” at each singularities.

Having been inspired by this theorem, we are led to ask whether there
is a Cantor set admitting no meromorphic functions with weaker conditions,
such as “exceptionally ramified” (or “normal”). An exceptionally ramified
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meromorphic function is defined as follows: A meromorphic function f on
the extended complex plane C is said to be exceptionally ramified, if there
exist w,, 1 £ k < q, in C such that the multiplicities ¢, ; of the roots z,,
of the equation f(2) = w, satisfy

by = v, except finite j’s ,

for a sequence of integers v, = 2 with the property

(L1) i(l—i)>2.

k=1 Vi
Our main theorem is stated as follows:

THEOREM. Let E be a Cantor set with successive ratios &, satisfying
the condition

(1.2) €1 = 0(£2)

then the domain complementary to E admits no exceptionally ramified mero-
morphic functions with E as the set of essential singularities.

The author wishes to express her deep gratitude to Professor Kikuji
Matsumoto who made many valuable suggestions during the course of this
work, and she thanks Professor Masayuki It6 for his help in preparing the

manuscript.

§2. Preliminaries

2.1. Introducing the chordal distance y(w,{) on é’, we denote by |S|
the diameter of a subset S in €. Let 4 be a 7-ply connected domain
bounded by positively oriented analytic curves {I"}icis....., L1t 2 = 2(t)
(@ <t < b) and let f be meromorphic on the closure 4 of 4. For ¢, &, ¢
(), O;; &, &) denotes the variation of (1/2x) arg (f(2) — £)/(f(2) — &,) as
2 describes the curve I'; positively once.

We shall deal with an exceptionally ramified meromorphic function f
on 4 with q totally ramified values {w,};-i.,..., satisfying the following
three conditions: ‘

(1) There exist mutually disjoint simply connected sectionally analytic
domains {D};_y,.....r 1 £ ¢ < 7, with

@D |D;| < § min y(w,, w,)
k#m

and the images {f(I")}:-,...... are covered with {D,},_, ... ., each D; containing
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f(I") for at least one i.

(2) The number v(w,f, 4) of roots of the equation f(2) = w in 4 is
=1, for we o Ui D,

(3) f has no ramified values on each boundary aD,=C,.

Here the multiplicity is always taken into account.

For each C,, the inverse image f~'(C;) of C, consists of a finite number
of simple closed analytic curves {I'{’};, in 4. Then &% denote the family
of all subdomains of 4 which are bounded by some of {I"{"}, ;. By intro-
ducing a partial order into & by inclusion, we choose a maximal element
4 of #. The boundary 04’ consists of a subfamily {I'}},....(z" < 7) of
{1, We may assume that ['; is positively oriented with respect to 4.
Denoting by j() the number j with C; D f(I"}), we assume that C,,, i =
1, -, 7, form a subset {C}},,..... f {C}},—s...... For &eC — 2D, Cr
€ D;,, we set

s, = O & i) -
Since 4’ is maximal in %, we see that
sz>0 (i:1727"'97/)

and
WGf, ) =1 forteC—)D,.
i1

Since the Riemannian image S of 4’ under f may be viewed as a covering
surface of C — | i, D,, the exact value of the Euler characteristic o(4')

of 4':
o) = o(S)
= 53 D £, )+ 0(C = U D ol f ) + v,
for ¢, e ¢ — .. D, ¢;€ Dy, where v denotes the ramification index of S,
that is,
F 2= = S f, 4) (= Do, 4 H v
Hence

a’

2@, 4) — 2= [, &) — v, [, N} — < +v.

j=1
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The argument principle proves

22 Wi £, 4) = G ) = 35 Oi5 60 8

so that

AL f, 4) = 2= 3 (5 0T € €) — 1) + 0

i=

= 30 6 Co) = D + 0
= ; G;—D+v.
Putting n = v, f, 4’), we have
LEmma 1.
2.3) M —2=3(s,—1) +v.

i=1

2.2, Using Lemma 1 and (1.1) we shall show that 4 and 4’ are at
least triply connected.

Let m, denote the number of roots z, ; of the equation f(2) = w, re-
stricted to 4’ and let [, ; be the multiplicities of 2, ;, j=1,2, ..., m,. For

a totally ramified value w, (1 < k < ¢q), we write
{ij@) =j)}, if w,e D, for some j,,
N, = o
’ g , if w,elJD;
=1

and

g, = the number of N, .
Obviously, by (2.1)
N,NN,=0, ifk+m
and
2.4) 0Za+0+- -+, =7.
Since O(I'}; &, ;) = 0 for i with j(@i) # ji, i.e. i € N,, the equality

2.5) n= Z’z Yo+ 208
=

1ENK

comes from (2.2), whence we have
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(2.6) nzym; + o, k=1,2.--,9),
because [, ; = v, and s, > 1 for i e N,.
Hence
@.7) nyt=Sm,.
=1y, k=1
From (2.3) and (2.5), it follows that
(2.8) o0 —2=3 (s, — 1)+ v

i=1

k=1 k=1

so that

2.9/ S+ 30— 2= (g — .
k=1 k=1

Using (1.1), (2.7) and (2.8)’, we obtain

W

q
@2.9) Mo+ Slo—22(q—n>nd L
k=1 k=1 k=1 %

q
= 2 my
) F=1

and hence, by (2.4),

(2.10) T

v

3.

T,

v
1%

q
&
Thus we have the following

LEmma 2. A simply, or doubly, connected domain 4 does not admit

any exceptionally ramified meromorphic functions satisfying the conditions
(1), (2) and (3).

§3. Classification of covering surfaces generated by exceptionally
ramified meromorphic functions

3.1. For approach it is essential to determine all covering surfaces
generating by an exceptionally ramified meromorphic function f with three
totally ramified values on a triply connected domain 4(q = 38 and ¢ = 3).
With this choice of ¢ and 7, the inequalities (2.9) and (2.10) imply
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3.1) n=m+m+m+1
and
(3.2 t=1tv=¢,+0,+ 0, =3.

The inequality in (2.8) should be equality, so that f cannot have any
ramified value other than {w,},-,.: By (3.2), each D, (1 £ j < &') contains
one of the {w.};.,.s Since both 4 and 4’ are triply connected, each com-
ponent of 4 — 4’ is a ring domain. The image of a component under f
is contained in one of the {D};.,,..... Consequently « = «'.

Combining (3.1) with (2.6), we have

3.3) m+m,+my+1=vm + o k=1223.

There are four possibilities:

(i) m=1, m=1, m=1.
(ii) m=1, m=1, m=0.
(ii1) m=1l, m=m=0.
(iv) m=m,=my=0.

Case (). By (3.2) and (3.3), we have
(3.4) 0= (@, — m, + @, — 3)m, + (v, — 3)m; .
From (1.1) and (3.4), follow
vw=2, v,=3 and y,=14.
From (3.3) and (3.4) follows
(3.5) 1> @, —4m, + (v, — m, .
By (1.1), the following two possibilities occur

() v, =4, v, =5
(5) vu=3, »u=T.

Case (i,). From (3.5), m, =1 and y, = 5 follow. Hence by (3.3), there
are the following possibilities:

(a) m1=2, m2=1.
(b) m, =3, m,=1.
(c) m, =4, m,=2.
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In each case, the numbers n, ¢, ;, g,, s; are determined by (2.5), (3.1) and
(3.2). Since > 5.;s; = 3, the case (a) does not occur.

Case (b). Since n = 6, we have

3
lel,j"i’Zsizgz,1+.zsi:£3,1+Zsi:6-
J= 2

1EN1 €Ng T1EN3
This implies

n=26, ¢, ,=2forj=1,23, 4, =4, 4,,=5,
g, =0, g, = 2, g, =1, {Si}ieNa = {1’ 1} s
{shiens = {1} .
This covering surface is said to be of class 1.
Case (c). Similarly as above, we have

{n=8, b, =2forj=1to 4, 4,,=46,, =4,
by, =5,0,=0,=0, 6, =3, {s;}ien, = {1, 1,1} .

This covering surface is said to be of class 2.
Case (i;). The inequality (3.3) with (3.2) gives
(3.6). m, = 4m, .
From (3.3), it follows that
(3.7 2Amy + 1) =z m,,
so that by (3.3), (3.6) and (3.7), we have
m,=1, 2 or 3.

Hence, using the inequalities (3.3) and (3.6) again, we have sevenipos-

sibilities:

(d) m=4, m=2, m=1,
(e) m=4, m=3, my=1.
(f) m=5, m=3, m=1.
(2 m=6, m=4, my=1.
) m=8, m=5, m=2.
i) m=9, m=6, m=2.
() m =12, m,=8, m,=3.
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In each case, the numbers n, 4, , o, and s; are determined as follows:
Case (d). (n=28, ¢,,=2forj=1t%to 4,
by =4y,=23, 3, =T,
0,=00,=2,0,=1,
{sihiews = {1, 1}, {Si}hiew, = {1} .
This covering surface is said to be of class 3.
Case (). (n=29, 4,,=2forj=1to 4,
4(62,,=3f0rj=1t0 3, U,,=1T,
o=110,=0,0,=2,
{shiew, = {1} {si}ien, = {1, 1} .
This covering surface is said to be of class 4.

Case (f).

n=10, {,;,=2forj=1to 5,
b,;=38forj=11t03, 4,,=17,
g.=0,0,=1, 0,=2,

{8}iews = {1}, {8ihien, = {1, 2},
n=10, ¢4 ;=2forj=1to 5,
4,,=3forj=1t03, 4,=8,
g,=0,0,=10,=2,

{shiews = {1}, {8ihiew, = {1, 1},

n=10, 4,;=2for j=1to 5,
({&M, by Lo 5} = {3,3,4}, 4,, =17,

6, =0,=0, 0, =3, {8;}ier, =1{1,1,1}.

These covering surfaces are said to be of classes 5, 6 and 7, respectively.

Case (g). (n=12, 4,;,=2for j=1to 6,
{62,,-=3f0rj=1t0 4, 4,, =17,
0, =0,=0, 0, =38, {8}ien, ={1,1, 3},
n=12, ¢,;,=2for j=11to 6,
|ZZ,,=3forj=1to 4, 4, =1,
g =0,=0, 0, =3, {S;}ier, =1{1,2,2},
n=12, 4,,=2forj=1to 6,
{Zz,j=3forj=1to 4, 4,, =8,
g, =0,=0, 0, =3, {s}ien, =1{1, 1,2},
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n=12, ¢, ;=2 for j=11to 6,
by;=8forj=1to 4, 4,,=9,
0, =0,=0, g, =3, {si}ieNs = {17 1, 1} .
These covering surfaces are said to be of classes 8, 9, 10 and 11, respec-
tively.
Case (h). (n=16, ¢{,,=2for j=1to 8,
b, =3forj=14t05, by, =10y, =17,
0,=0,0,=1,0,=2,
{shiews = {1}, {8ihiew, = {1, 1} .
This covering surface is said to be of class 12.
Case (i). n=18 4, ,=2forj=1t0 9,
b,y =8forj=1t06, 4, =4,,=1,
g) = 0 = 0, 03 = 39 {si}ieNa = {17 19 2} )
n=18 4, ,=2forj=1to 9,
4, =38 for j=1to 6, {4,,, 4.} = {7, 8},
oo=0,=0, g, =3, {si}ieNs = {1, 1, 1} .
These covering surfaces are said to be of classes 13 and 14, respectively.
Last case (j).
n=24 ¢,;,=2for j=1to 12,
by, =3forj=1to 8, ¢,,=7forj=1to 3,
0, =0,=0, 0, =3, {Si}ieNs = {1’ 1,1}.
This covering surface is said to be of class 15.
3.2. Case (ii). The inequality (3.3) yields
(3.8) m +m,+1=vm + o, k=1, 2.
From (1.1), the following possibilities occur:
(ii,) v =2,v,>3.
(iip) v, =3, v,>3.
Case (ii,). The inequality (3.8) implies the following five possibilities:
k) m=1, m=1, o,=0,=0.

¢)) m=2, m=1, o =0,=0.
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(m) m=2, m=1, =0, o¢,=1.
(n) m=1, m=1, o,=1, ¢,=0.
(0) m=3, m=2, o6,=0,=0.

Using (2.5), (3.1) and (3.2) in each case, we have:

Case (k). {n =3, b, =14,,=38,0,=3,
{sdiews = {1, 1,1}

Case (1). (n=4,46,=4,,=2, 4,,=4,0,=3,
{{si}ieNa ={1,1,2}.
n=4,4,=46,=2,46,,=38,0,=2,
{{si}ieNz = {1}, {shiew, = {1, 3},
n=4,46,,=46,,=2,4,,=38,0,=2,
{{si}ieNz = {1}, {sihier, = {2, 2}.
Case (n). {n =38 6,=24,,=38,0,=2,

Case (m).

{s}icnw = {1}, {8}iew, = {1, 2} .

n=26, 4,,=2forj=1to 3,
byy = byy =8, a, =38, {S;}en, = {1, 1, 4},
n==6 ¢ ,=2forj=1to 3,
by =4y, =38, a;=3, {S;}er, ={1,2, 3},
n=286, ¢4 ;=2forj=1to 3,
by =4y, =38, 05 =3, {8}ien, = {2,2,2}.

Case (o).

These covering surfaces are said to be of classes 16 to 23, respectively.

Case (ii;). The inequality (3.8) yields ¢, = 0, = 0 and m, = m, = 1, that
is, the case (k).

Case (iii). The inequality (3.3) yields m, = 1. Hence we have
n=246,=20=006=1,0,=2,
{{si}ieNz = {2}, {sien, = {1, 1}.
This covering surface is said to be of class 24.

Case (iv). We have easily
n=1, {8}y = {1} for k=1,2,3.

This surface covers univalently the base domain € — (3-1 Dy and is said
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to be of class 25.
Summing up the above discussion, we state the following

LeEMMA 3. Let 4 be a triply connected domain bounded by analytic
curves {I'},., .. and let f be exceptionally ramified meromorphic on 4 with
three totally ramified values {w.}.-. . and satisfy the conditions (1), (2) and
3).

Then, for the above domain 4 mentioned, we have:

1°) 4’ is a triply connected subdomain of 4, and the covering surface
generated by f restricted to 4 belongs to one of the 25 classes (see Table 1).

2°) f has no ramified values other than {w.};-,.,, in 4.

3°) Each component of 4 — 4 is doubly connected and its image is
contained in one of the {D},;,.... (a < 3).

4°) Each D; contains one of the {w.}i-1.4.

Table 1

N Yiogv2 Vs ZLI ; th P ng " {Si}?ezvl {Si}(:im {Si}?ezva
1 12415 zl,j3=z faaet m=s | 6] 0 'y @
2 21475 zl,f=2 zg,f=4 za,,l=5 —8_ 0 ) 0 {l,il}
3028 T ie| hi=s | et B0 {1,21}» i
s 203 7,00l Lis | g ? L i
528|700 Lis | g |10 0 o |y
6 | 2 _i 7 zl,fzz 323:3 fore8 i 0 B o | oy
5 3 1 3

7 28| T) g g ln s tad| g |10] 0 o qiy
8 2| 3| 7 61,f=2 szzg 53’11:7 2 0 0 {1,:;”3}
9 2) 3,17 e,,f:z Zz,f=3 43,11=7 12 0 B ;(1” {1,3,2}
0 |z 87,0, 4 g (12| 0 o lniy
1 2| 3| 7 41,53:2 42’;1:3 43,11:9 12| o 0 {1,?,1}
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M SRR oy fs | ™ |k | | (sdiems
2|2 87T %, L0 | gl 18] 0 o | ay
B o287 ,% 0 0. | B, s o P

9 6 2 3
142|870l agmg |l |18 0 o lady
o2 2| tag=8 | tag=t | 2| O ° |1y
16 | 2|3 =8| a3 0 3 0 o iy
17 2| 3 41,?=2 52'11:4 0 4, 0 0 la, ? 2)
18 i 3 gl,fzz fo=3 ¢ 41 0 O |y
19 | 2|3 PR 0 4 0 o | el
20 | 2|3 Y B 0 CH I R P
2203 L0 Ll A R
S it B =2 | i3 o el o]0 Jazy
23 | 2|3 sl s 0 6] 0 0 |3
2% | 2 e 0 o 1z 0 | g |k
25 0 0 0 - S

§4. Key Lemma

4,1. We form a Cantor set in the usual manner. Let {£,} be a sequence
of positive numbers satisfying 0 < ¢, <2/3, n=1,2,3,---. We remove
first an open interval of length (1 — ¢&,) from the interval I, ,: [— 1/2, 1/2],
so that on both sides there remains a closed interval of length £,/2 = y,.
The remained intervals are denoted by I,, and I, ,. Inductively we remove
an open interval of length (1 — 2,) [[%219,, with 5, =(1/2)¢, (p=1,2, ---),
from each I,_,;, R =1,2, ---,2""", so that on both sides there remains a
closed interval of length []7.,%,. The remained intervals are denoted by
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I, ,..,and I, .. By repeating this procedure endlessly, we obtain an infi-
nite sequence of closed intervals {I, ;}.-1,s,..., k=1,5,..... The set given by

w om
E= ﬂ gl I‘n,lo

n=1

is said to be the Cantor set in the interval I,, with successive ratios &,.
Set

n 1 n—-1
Sn,k = {Zlﬂ 7 < |z — zn,kl < = n 7711}
p=1 3 »=1

and

n-1 —77_
R e I ENL
p=1 3

where z, , is the midpoint of I, ,. Denoting by g, = u(S,,,) the harmonic
modulus of S, ,, we have

1 =log2 .

4.1 L=1
(4.1) 2 og 3 3.

We give Lemma 4 which will be a key of our proof of Theorem.
LEmMMA 4. Let E be the Cantor set with successive ratios &, satisfying
the condition

limé, =0.

n-—>o

Let f be an exceptionally ramified meromorphic function in the complement
E¢. Then, for a sufficiently large n(= L,), we have with a positive constant
M depending only on E and f,

If()] < Mexp (— p,/2) .

In order to prove Lemma 4, we use Lemma 5 due to L. Carleson and
K. Matsumoto.

LeMMA 5. Let f be meromorphic in an annulus R: 1< |z| < expp
(0 < ¢ < ). If the image f(R) is contained in the open disc D((,, d) with
center §, and radius d (0 < d < 1/2), then by putting L = {|z| = exp p/2} we
have with some positive constant A depending only on d
[f(D)] < Aexp(—p/2),

whenever u is sufficiently large (¢ = ).
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Moreover, we can choose A with
A = 0() as d—0
(cf. L. Sario and K. Noshiro [14], 128-129).

4.2. Proof of Lemma 4. Since [ is exceptionally ramified in E°, f is
normal. Hence, denoting by do(2) (resp. dos,,) the element of hyperbolic
length of E° (resp. S, .), we have

{If @I + 1/(2[)}dz| < Cdoy(2) < Cdos, (2) ,

in E° with some constant C depending only on f and E (cf. O. Lehto and
K. 1. Virtanen [7]). Denote by { = ¢ (2) the conformal mapping of S, ,
onto G’: 1< |¢| < expp, and put g@) = f(¢'(¢)). Both of dos, (2) and
{If' @1 + |f(2)M}|dz| are conformally invariant, so that

(£OU + QML < Cdog(©) = {Ca/2u,[¢] sin (=~ loglel) }dz]

n

Denoting by L, and L%, the inverse images of L] :|{| = expy, and of
L :|¢] = exp(n, — v)) under ¢, respectively, we have

[ o Ur@ia +1f@mds|

B I won lgQUA + [2@P}ALL

v0

<[ . {Crlzuicisin (-2 1og ci) az

n

_ I : {CE/Z/J“ sin ( : »0)}d0

n

= Crly, sin( il u0> .

n

Similarly,

J;eL(z; {FfF@IQ + |feD}dz] < Cr*lp, sin( T vo) .

n

We take a fixed vy, with v, > 32C and a sufficiently large n with g, >
£ = max (g, v) (n = L;). From

cz,,'(” ) Cr  « o«
7%/, Sin #nvo < ” +32<16
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follow
IfL2)l < and [f(LE)] < -

Hence there are discs D, with |D,| < 1/8 such that D, D f(L®) (@ = 1, 2).
Lemma 2 implies therefore that, with the ring domain T, , bounded by
L, and LY,

ww,f, T,) =0 forweC — (D, U D),

because if v(w,f, T,,) =1 for we ¢ — (D, U D,), f is not exceptionally
ramified.

Consequently,
D,ND,+¢ and f(T,.) <D, UD,.
Applying Lemma 5 to f in T, ,, we obtain the desired inequality
A1 < A exp (= oz, — 20)
= Ae” exp (— #,/2) = Mexp (— 1,/2),
where M = Ae™.

§5. Proof of Theorem

5.1. Assuming that, for a Cantor set E satisfying our condition (1.2),
there is an exceptionally ramified meromorphic function f in E° with an
essential singularity at each point of E, we shall arrive at a contradiction.
By our previous result [5], f must have just three totally ramified values

{witizsze
Set
(GRY) § = 7z min y(wy, wy)
and
(5.2) 0, = Mexp (— 1,/2) .
By our condition (1.2), there exists a positive integer L, such that, for n
= L,
(%6.3) 90, <o
and
(6.4 0 < 30, .
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Further, by Lemma 4, we can choose, for any n = L, = max (L, L,, L,),
discs D, , with |D, .| < 25, containing f(I",.). The union D= D, , U
D, 101 UD, . consists of at most three, say ¢ (1 < a < 3), components,
which are covered by discs {D{}},;,...,. with D&, D D, ,, |D&| = 125, and
|D,| = 128,,, for j +1. Here we may assume that there are no ramified
values of f on dD{,. Denote by 4, , the triply connected domain bounded
by Iy I'psrex-r and I'yy . When the restriction of f to 4,,, takes no
values outside D, then « = 1 and the image of 4, is contained in D).
In this case, we say that 4, , is degenerate (f).

Suppose that the restriction of f to 4, , takes values outside D. Then
we see from 4°) of Lemma 3 that each component of D contains just one
of the {w};-1.5 so that the center of D{’; can be taken at the point w,,
€ {w}i=1,2,5 the totally ramified value contained in the corresponding com-
ponent of D. This show that {D®},-1....,« are mutually disjoint. We choose
a triply connected subdomain 4, , of 4, , corresponding to 4’ of Lemma 3.
It is always known that the covering surface generated by f on 4, , belongs
to one of the 25 classes. Each component of 4, , — 4, ;. is doubly connected
and its image is contained in one of the {D{}},., ...... If the covering sur-
face is of class m, 4,, and 4,, are said to be of class m. Generically
these 4, , are said to be non-degenerate (f).

Let 4,, be non-degenerate (f). The boundary curves of 4, are
denoted by 7..i, Fnit0e-1 @nd 741,00, homotopic to Iy 4, I'piyopy and Iy g0,
respectively. Each of them is a component of the inverse image of some
D), under f and said to be of w,-type (f). Assuming that 7, 7..10-1
and 7,.,. are positively oriented, we set for ¢, e ¢ — Uj-1 D%, &€ DY,
(=1to a),

So = Zi O(fn,k; o Cj) 5
=
Snitot = Z}:\ O +1,06-45 Cos C3) E=0,1).
iz

5.2. The centers of D/, are totally ramified values w,, € {w;};_, ., for
any 4,, being non-degenerate (f), while D, might contain no values
{w;}i=1,0,s for 4, , being degenerate (f). However D, stay always con-
siderably near one of the {w.};.1,2s

ProrosiTiON. Let 4, , be degenerate (f). Then DS, the disc covering
f(4.,..), is contained in one of the {D(w,, 240,)}i=1,2,3
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Proof of Proposition. Suppose that D&, & Ui, D(w,, 245,). Since
| D3| = 126,
3 ¢
Dy, < { Dlw, 123},
i=1
so that

c

fdo) < {U Dw,, 120}

By (5.4) and this inclusion
3 [
Disy  {UDw, 120,.0}  (1=0,1).
i=1

This shows that D$,;.._; (j =0,1) contain no totally ramified values
{w;}iz105 and 4,,,,,_; must be degenerate (f). Therefore

f(A—n,k U Zn+l,2k—1 U Zn+l,2k) c D;Lli)»l U Di(Llll,Zk—l U DV(LI—)FI,Zk ’
which imply
‘f(Zn,k U Zn+1,2k—1 U Zn+1,2k)l < 12511 + 24571,4»1 .

By repeating this procedure, we have

]f((rn,k) - E)l é 1261; + 24(57L+l + 5n+2 + o ')
< 368, < ¥ min y(w,, w,) < V2,
kE¥m

where (I", ) denotes the domain bounded by I, , (see (5.1), (5.3), (5.4)).

We may assume that f is bounded in (I, ), because if necessary, we
take a certain linear transformation of f in place of f. Since E is of linear
measure zero, (I, ,) N E must be removable for any bounded analytic func-
tion (cf. A. S. Besicovitch [1]). This contradicts our assumption that each
point of E is an essential singularity of f.

5.3. Now assume that infinitely many of 4, , are non-degenerate (f).
Then there are 4, ,’s being non-degenerate (f) with n > L,. We take such a
fixed 4, .. Letthe boundary curves #,.,.. and #,.;.-, of 4, be of w,type
(f) and of w,-type (f), respectively. Here we may assume that §,., .-
> 8,.12 and that 2> 2 if §,,,.-, = 8., From Table 1 we see that

§pi1,00 = 1 Or 2

The adjacent domain 4,,,,, will be either
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(A) degenerate (f)
or
(B) non-degenerate (f).

Case (A). Let 4,.,.,. be the triply connected domain bounded by P o120
I'yisuey and Iy, 4. By virtue of the maximum principle, Proposition
implies

f(jn+l,2k) c D(wb 657L+p) s

where p =0 or p =1 according to f(7,.1,:) C 0D, or f(7,.1,:) C DY)
(j #1). We choose the component J,,,,, of the inverse image f~'(R(w,,
246, .5, 60,.,) in ﬁmmk having 7,.,.. as a boundary curve, where R(w,
246, .5, 66,,.,) = {£]246,., < (¢, w;) < 63,.,}. From Lemma 2, it is easy to
see that the boundary of o, ., ., outside #,,, .. is mapped onto C(w,, 245,.,)
under f. We shall show that the boundary of J,,, .. outside #,.,,. consists
of

(A,) one boundary curve «k,,,, separating I',,, .., U [',,. from

A

Tn+1,2k
or
(A, two boundary curves k,.,._; and k,,,. separating I',,,,. ., and
I'yisu from I'y o 5 U Prvae and I,z 0-1 U Frvs o
respectively.
In fact, we assume contrary that J,,,,. has boundary curves g,
(i=1, .-, h) other than the above, then each f, is homotopic to zero.
Set

85,5 = O(k;,5; Cor w; and ¢, = O;; L, w)

for ¢, e ¢ - D(w,, 246, ,,), where «,, and B, are positively oriented. Apply-
ing the argument principle to f in o, ,; ., We have

n
$nsioe = Spam + 2% in the case (A
iz
or
A h .
Snit,o = Snaoan-1 T Snezu T Z.; L in the case (Ae) .
i=

Since §,,1.x =1 or 2, s;,; =1 and

ti = O('— ﬁi; wz, CO) = y(way ('_ ﬁj)) g Y ——Z 2 ’
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which is a contradiction.

Case (A)). The domain J,,,,, is doubly connected. By the Hurwitz
formula, f have no ramified values on J,,,,. Hence oJ,,, . is conformally

equivalent to

246 Gr+1,28)~1 60 Gns1,0m—1
R*:{H_?’Hzf:} < <{_—_ML_:} }
¢ V1 — 24%3 , 1 V1 — 3662, ;

We have
(55) ﬂ(Jn +1,2k) = P(R*) .

As well-known, (J,,,.,) is dominated by the harmonic modulus of the
extremal domain of Teichmiiller, i.e.

(5.6) U s10) < log 16( A 1) — log 16( 2 _ 1),
r

1 n+1

where r, = [[3tly, and r, = [[%..9,(1 — 27,,,) (cf. O. Lehto and K. L
Virtanen [6] 55-62).
Hence, by (4.1), (6.2), (56.5) and (5.6), we have

log 16( 2 . 1) g log {jﬁ}(sm—n,%)‘ ,

n+2

n+1

o2, =

5
n+1

BV 1.1 R
Srae 2 292 — &, .1)°

SO

This inequality contradicts our assumption (1.2), for a sufficiently large n,
which imply that (A,) cannot occur.

Case (A;). The domain J,,,,, is triply connected. In this case, §,,;
= 2. From Table 1 we see that 4, , is of classes 9, 19, 22 or 23 and 2 = 3.
The domain 4,,,,, is degenerate (f). In fact, assume that 4,,,,, is non-
degenerate (f). Then f takes the value w, in the ring domain R, ., ,, bounded

by £,.24 and ¥,...4, and by virtue of the argument principle
712y, S vw, f, R:t+2,4k) = Spiouk + Sniox =D,

which is a contradiction. Let f be restricted to the domain 2,”2,4,‘ bounded
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by kni2k L nisex- and Iy 54 and let ., be the component of the in-
verse image of R(w,, 249, .,, 249, .,), one of whose boundary curves is «, ., .
Since s,,;4 = 1, (A,) is only possible for J,,, ., that is, o,,,. is doubly
connected. In the same way as above, we conclude that (A,) cannot occur.

In conclusion, 4,,,,, must be non-degenerate (f), i.e., of the case (B).

5.4. Case (B). Suppose that both of 4, , and 4,,,, ,, are non-degenerate
(f) and #,,,.. is of w;type (f). By the argument principle

(57) Y2 é u(wb f’ Rm+l,2n) = §1n.+1,2n + §m+1,2n ’

where R, ,,., denotes the domain bounded by 7,.1.. and ¥,,1.,. The
inequality (5.7) will be useful in this paragraph.

The (B) is divided into the following four cases.

(B, d4,is of classes 1 or 2.

B, 4, is of classes 3, 4, ---,22 or 23.

B, 4, is of class 24.

®B,) 4, is of class 25.

Case (B,). The adjacent domain 4,,,,, must be of classes 1, 2, 24 or
25. From Table 1 we see

Spia =1, Spi1 =1 o0r 2 .
These equalities and (5.7) give
(5.8) v, < 3.

On the other hand, since 2 = 2 or 3, we have vy, = 4 or 5. This contradicts
(5.8).

Case (B,). By (5.7), we have
v, <2+4=6,
so that
A=1lor 2.

This implies that 4, , cannot be of classes 4, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 21, 22 and 23.

In the case 2 =1, 4, is of class 20 and §,,,., = 1. Hence 4,,, is
of classes 4, 20 or 25.

In the case 2 =2, 4,, is of classes 3, 5, 18 or 19 and §,,,., = 1.
Hence 4,,, . is of classes 3, 5, 6, 12, 18, 19, 24 or 25. We see that 4,.,
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is of class 24 in the following way. Assume that 4,,,,, is of classes 3,
5, 6, 12, 18, 19 or 25, then (5.7) gives 3 < v, and v, < 2, which is impossible.

In either case, at least one of {7,.;.4x-1, Frszur}s SAY Friour, 18 Of wytype
and §,,,, = 1. Assuming that 4,.,,, is non-degenerate (f), we are led
to a contradiction 7<v; <1+ 4 =5. However 4,,,,, is not degenerate
(f). Both cases cannot occur.

Case (B,). In this case, §,,,, =1 and 2 =3. By (5.7), we have 7 <
v, and y; < 5, which is impossible.

Case (B,). We have shown that no 4, s of other classes than 25
class appear. It follows that 4,,,,, and 4,,,. are also of class 25. By
(5.7 we have

2=y, Sv(wyfyRu) =1+ 1=2

and
2 é Yy é y(wz’rfy Rn+2,4k) =1 + 1=2 ’

which contradict (1.1), because ¥ = A.

Thus the case (B) also cannot occur. Consequently, there exists a
positive integer N (= L,) such that every 4,, (n =N, k=1,2,--.,27) is
degenerate (f).

5.5. Finally, we take a fixed n(= N). Since 4,,,, is degenerate (f),
we have f(4,,,, < D%,,. For any ze(I',,) — E, there is a chain of
{4,,,., connecting 4,, to z. The diameter of the chain <12 (5, + d,,,
+ oo 4+ 8pumt+ ) < 246, because | D), | = 125,,, and §,,,,, < (1/2)d,,,
(see (5.4)). Hence

f((Fn,k) - E) c D(wO’ 2457:) ’
where w, e f(4,,), that is,
If(I",.) — E)| < 485, < 485 < /2 .

We may assume that f is bounded in (I", ), because if necessary, we
take a certain linear transformation of f in place of f. The Cantor set
E is of linear measure zero, so that (I",,) N E is removable for f. This
contradicts our assumption that each point of E is an essential singularity
of f.

The proof of Theorem is thus complete.
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