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Dedicated to George Szekeres on the occasion of his 90th b i r thday

Necessary and sufficient conditions for equality over the pseudovariety CR of all finite
completely regular semigroups are obtained. They are inspired by the solution of
the word problem for free completely regular semigroups and clarify the role played
by groups in the structure of such semigroups. A strengthened version of Ash's
inevitability theorem (/c-reducibility of the pseudovariety G of all finite groups) is
proposed as an open problem and it is shown that, if this stronger version holds, then
CR is also /c-reducible and, therefore, hyperdecidable.

1. INTRODUCTION

Word problems (or rather the decidability thereof) have long played an important
role in various branches of Mathematics. In some contexts a property can be associated
with a decision problem by which the problem can be reduced in the sense that if it has a
solution in an enlarged universe then it has a solution in the restricted universe. The first
author and Steinberg [7] (see also [8]) have shown that two such properties on recursively
enumerable pseudovarieties V i , . . . , V n of finite semigroups (which are then said to be
tame) together are strong enough to guarantee decidability of their semidirect product
Vj * • • • * Vn, whereas in general such a semidirect product is not decidable if the factors
are only assumed to be decidable [17]. Although examples of tame pseudovarieties do not
abound in the literature, and it may be quite to hard to establish tameness, it appears
natural to conjecture that they are quite common [3, 17]. The most famous example of
a tame pseudovariety is the pseudovariety G of all finite groups, a result due to Ash [12].

Specifically, the properties in question involve an enlarged algebraic signature (made
up of implicit operations) which have a natural interpretation on (pro)finite semigroups
and concern the solution of the word problem for relatively free objects with respect to
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this signature, as well as a reduction property for inevitability of graph labellings. A
generalised version of such word problems is the pseudoidentity problem, that is to say,
to obtain criteria for equality over the given pseudovariety of two arbitrary implicit op-
erations. While there are too many implicit operations to even consider this question
from an algorithmic point of view, when attention is restricted to specific implicit signa-
tures, a measure of the effectiveness of such criteria is whether they yield true algorithmic
solutions of the corresponding word problems.

In this paper, we consider a specific example, namely the pseudovariety CR of
all finite completely regular semigroups. Completely regular semigroups are unions of
groups. Such semigroups have received considerable attention in recent years in the
realm of the algebraic theory of semigroups. They are in a sense close enough to groups
to allow the development of a theory in which many problems are reduced to problems in
group theory, although often in rather nontrivial ways. This is the case in particular, for
the word problem for the free completely regular semigroup (as a unary semigroup) which
was obtained by Kadourek and Polak [14]. It is one of the ingredients in establishing
the criterion for equality in the free profinite completely regular semigroup presented in
Section 4. The other ingredients are basically the study of combinatorial properties of
the characteristic sequence introduced by Kadourek and Polak.

Rather than showing that CR is a tame pseudovariety, we show that this property
would follow from a strengthened version of Ash's inevitability theorem [12, Theorem 2.1]
in which collapse of generators is admitted. In view of the interest Ash's theorem has
attracted over the past decade and its connections with other areas of Mathematics (see
[5, 6, 18]), it appears to be worthwhile proposing this as an open problem.

2. PRELIMINARIES

The reader is referred to [1] for general background and motivation on the theory of
finite semigroups. See also [10] for an emphasis on the profinite aspects of the theory.

In the three subsections of this section, we either recall results from other papers or
introduce preliminary results and notation which will play a role in the development of
the main results.

We denote by SI the pseudovariety of all finite semilattices. For a pseudovariety H
of groups, let H denote the pseudovariety consisting of all finite semigroups all of whose
subgroups lie in H.

2.1. CONTENT, 0, 1 FUNCTIONS Let 5 be an A-generated semigroup, that is, a function
L : A —> S is given whose image generates the semigroup S. We say that S has content
function c if c : S1 -» V(A) is a monoid homomorphism into the semilattice of all
subsets of A under union such that e(ta) = {a} for every a £ A. Thus, there is at most
one content function on the ^-generated semigroup 5. We shall always denote content
functions, irrespective of the semigroup, by c. Assuming 5 has a content function, we
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define for each s € S, 0(s) to be the set of all s\ € 5 1 such that there is a factorisation
s — Sias2 with c(si) ^ c(s) — c(si)L){o}; the set of all such a € A is denoted by 0(s). The
sets l(s) and l(s) are defined dually. While the sets 0(s) and 0(s) are always nonempty
they need not be singletons. The semigroup 5 is said to have 0 (respectively 0, 1, T)
function if 0(s) (respectively 0(s), l (s) , l(s)) is a singleton for every s € 5. The free
semigroup J 4 + and the free band on A both have 0, 0, 1, 1 functions.

From [9, Section 3], it follows that, for every finite ^-generated semigroup 5 , there is
an A-generated finite semigroup T with content, 0, 0, 1, and 1 functions for which there
is a homomorphism T —» S which respects the choice of generators (generally speaking,
a semigroup T for which there exists such a homomorphism is called an expansion of S).
The idea is to first find an (easy) expansion of 5 which has a content function and
then apply the Birget expansion to that to obtain the other functions. If 5 lies in
a pseudovariety which contains SI and is closed under Birget expansion, then it follows
that S has an expansion in the same pseudovariety which has content, 0, 0, 1, T functions.
This holds for instance for the pseudovarieties C R [16] and H [13, XII.(9.4)] for every
pseudovariety H of groups and therefore also for C R D H. By a standard argument,
the free pro-V semigroup on a set A, f ^ V , has content 0, 1, 0, 1 functions provided V
contains SI and is closed under Birget expansion. For later reference, we summarise the
relevant results as follows.

PROPOSITION 2 . 1 . Every finite A-generated semigroup has a Snite A-generated
expansion which has content, 0 ,0 , 1, and 1 functions.

PROPOSITION 2 . 2 . For every pseudovariety H of groups, Ti A{CR n H) has
content, 0, 0, 1, and 1 functions.

2.2. G R A P H S AND SEMIGROUPOIDS By a graph T we mean a set partitioned into a set
V(r ) , of vertices, and E(T), of edges, together with two unary operations a ,w : E{T) —>
V(F) giving the initial and end vertices for each edge. A semigroupoid is a graph endowed
with a partial associative operation on edges such that, for two edges s and t, st is defined
if and only if ws = at, and then a(st) = as and u>(st) — uit.

Graph and semigroupoid homomorphisms are defined as functions sending vertices
to vertices and edges to edges and respecting the operations involved in each case. A
subgraph (respectively a subsemigroupoid) of a graph (respectively semigroupoid) T is
a structure of the same kind on a subset A of T such that the inclusion A •—> T is a
homomorphism. Products and coproducts are also defined in the natural way.

A semigroupoid homomorphism S —> T is said to be faithful if it is injective on
each set of edges {s € E(S) : as = V\, ws — V2} with ui,i>2 € V(S), and it is said
to be a quotient homomorphism if it is surjective and it is injective on V(S). We say
that a semigroupoid 5 divides a semigroupoid T if there exists a semigroupoid U, a
faithful homomorphism U —> T and a quotient homomorphism U —> S. A pseudovariety
of semigroupoids is a class of finite semigroupoids which contains the 1-vertex 1-edge
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semigroupoid and is closed under taking divisors and finitary products and coproducts.
The pseudovariety of all finite semigroupoids is denoted Sd.

A relational morphism fi : S —> T of structures of the same kind (semigroups,
monoids, graphs, semigroupoids) is a relation \i C S x T with domain 5 which is a
substructure of 5 x T.

For a graph F, denote by F+ the free semigroupoid on F, which has the same vertex
set as F and whose edges are the nontrivial paths of F. If W is a pseudovariety of
semigroupoids and F is a finite graph, then we say that a subset L of E(T+) is W-
recognisable if there is a semigroupoid homomorphism tp : T+ —> 5 into a member of W
such that ip~lipL — L.

For a semigroupoid S, we define its consolidation Sea to be the semigroup E(S)
under multiplication of edges, with a zero adjoined if S has edges which cannot be
multiplied, such products being then defined to be zero. The set of edges with beginning
and end at a given vertex v, if nonempty, is a semigroup under edge multiplication and it
is called the local semigroup at v. A semigroup S is viewed as a 1-vertex semigroupoid,
namely as the local semigroup at the single vertex. Note that, for a semigroupoid 5, the
natural homomorphism S —¥ Scd is a faithful homomorphism.

For a pseudovariety V of semigroups, its global is the pseudovariety of semigroupoids
g~V generated by the members of V viewed as semigroupoids.

2.3. F-RECOGNISABILITY AND F-RATIONALITY Throughout this subsection, let B de-
note a profinite graph, meaning a projective limit of finite graphs. For a pseudovariety W
of semigroupoids, the free pro-W semigroupoid over B will be denoted by fijW. This
semigroupoid is characterised by the following universal property: there is a canonical
continuous graph homomorphism i : B -> fiflW and, if tp : B —> S is a continuous
graph homomorphism into a semigroupoid from W, then there is a unique continuous
semigroupoid homomorphism (p : QBW —> 5 such that (pi = ip. Such free semigroupoids
are easily constructed, just as in the case B is finite and W is pseudovariety of semi-
groups, as the projective limit of all continuous graph homomorphisms B —> S whose
image generates 5 (see [10, 11]). In the case where W is globally non trivial (that is;
it includes a semigroupoid with distinct coterminal edges), then since B is profinite, the
canonical mapping L is injective and so we think of B as a subgraph of fiBW.

We extend the work of the first author for the case of finite sets B, pseudovarieties
of semigroups and topological characterisations of recognisable sets (see [1, Section 3.6])
to show how the topology of £}BW is intimately related with certain subsets of the
free semigroupoid B+ over the graph B. Actually, taking into account the intended
applications in this paper and elsewhere, we introduce the further restriction that B
be a clopen subset of ^^V for a pseudovariety V of semigroups and a finite set A.
Since elements of B can then be viewed as both elements of Q^V and of QgW, -where
convenient we distinguish the latter by writing (b) for 6 6 B. More generally, for P C S ,
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we write (P) to denote {(6) : 6 € P).

Let Bo denote the intersection of B with the free semigroup A+. Note that the
metric structure of Bo determined by the natural (ultra)metric on A+ associated with
the pseudovariety V (see [l, Section 3.4]) is such that B is its completion. We further
assume that Bo is a subgraph of B, that is, a(50)Uw(B0) Q Bo- Then V(B0) and E{B0)

are V-recognisable subsets of A+ (see [1, Theorem 3.6.1]).

We say that a subset L of E[(BQ)+) is (V,W')-recognisable if there is a homomor-
phism <p : (JBO)+ ~~> S into 5 € W such that the restriction <P\B0 is uniformly continuous
and L = (p~lipL. We also say that L C E((B0)

+) is (V,W)-rational if there are a finite
graph C, a W-recognisable subset K of E(C+), and a graph homomorphism A : Bo -> C

such that each X~lc (c € C) is a V-recognisable subset of A+, and, for the natural ex-
tension n : (Bo)

+ -» C + to a semigroupoid homomorphism, L = fj.~1K. In informal
terms, L is obtained from a W-recognisable language by substituting each edge by a V-
recognisable subset of (Bo)- In case V = S is the pseudovariety of all finite semigroups
and W = Sd is the pseudovariety of all finite semigroupoids, then we say that a subset of
(Bo)

+ is F-recognisable (respectively F-rational) if it is (S,Sd)-recognisable (respectively
(S,Sd)-rational).

PROPOSITION 2 . 3 . A subset L of £ ( ( B 0 ) + ) is (V,W) -recognisable if and only
if it is (V,W)-rational.

P R O O F : Suppose first that L is (V,W)-recognisable and let ip : B£ —> S be as in the
definition of (V,W)-recognisable set. Since the sets V(BQ) and E(B0) are V-recognisable
and <p\Bo is uniformly continuous, there is a congruence of finite index 6 on A+ saturating
V(B0) and E(B0). whose restriction to Bo is contained in the congruence ker^|B o, and
such that A+/9 € V. In particular, the classes of ker<^|Bo are V-recognisable subsets
of A+. Let C be the quotient set Bo/ker(^|s0, which in fact is a graph in a natural
way since (P\B0 '• Bo —> S is a graph homomorphism. Let A : Bo —> C be the natural
projection. Then A-1c is a V-recognisable subset of A+ for every c € C. The mapping
<p\Bo : BO -¥ S induces an (injective) graph homomorphism C —¥ S which extends
uniquely to a semigroupoid homomorphism ip : C+ —¥ S. The various mappings are
depicted in the following commutative diagram:

(So)+

s
Let K = tp~1(pL and take fi as in the definition of (V,W)-rational set. Then, for
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wi,...,wn € BQ such that (wi) • • • (wn) € E((B0)
+), we have the following chain of

equivalences:

(Wn) £ l « (tpWi) • • • (tpwn) € <pL

since <p is a homomorphism on (BQ)+ whose kernel saturates L

•& (<pwi) • • • {(pwn) € i)K

since tpK = ipip~1ipL = tpL as <p and ip have the same image

• • • (ipXwn) € i>K since tpX = <p\Ba

i)" •" fiiVn)) € $K since I/J is a homomorphism

O (Aiox) • • • (Xwn) € ^ since f 1 ^ = -^

<!=> <«>!> • • • <!«„) € / i " 1 ^ .

This shows that X is (V,W)-rational.

Conversely, assume that L is (V,W)-rational and let C, K, A, /x be as in the definition
of (V,W)-rational set. Let ip : C+ —¥ S be a homomorphism into a semigroupoid of W
recognising K. Then ip — tpfi: (Bo)+ —> 5 is a semigroupoid homomorphism and

= L,

which shows that L is (V, W)-recognisable. D

Note that, if W = <j(W n S), that is if W is the global of a pseudovariety of
semigroups, then the semigroupoid 5, and therefore also the graph C, in the above proof
may be taken to have just one vertex.

In particular, we have the following special case.

COROLLARY 2 . 4 . A subset L ofE((B0)
+) is F-recognisable if and only if it is

F-rational.

From the definition of f2BW it follows that this compact zero-dimensional space
has the initial topology for the homomorphisms (p into semigroupoids from W such that
the restrictions <p\B are continuous. In particular, the clopen subsets of the form <p~lQ,
where (p : fJsW —> 5 is a homomorphism into a semigroupoid from W and Q C S, form
a basis of the topology of Q B W , in which V(fieW) and E(ClBW) are clopen subsets.
We now express the edge part of this topology in terms of (V,W)-recognisable subsets

THEOREM 2 . 5 .

(a) A closed subset P of £;(nBW) is clopen if and only if P n E((B0)
+) is

(V,WJ-recog'nisabie and dense in P.

(b) A subset L of E((B0)
+) is (V,W)-recognisable if and only if L = P n

E((B0)
+) for some clopen subset P
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(c) .4 subset P of E(nBW) is clopen if and only if it is the closure in fiBW
of some (V,W)-recognisable subset of E((B0)

+).

P R O O F : Let P be a clopen subset of E(£1BW). By the remarks preceding the
statement of the theorem, since P is compact, there is a homomorphism <p : fi^W —>• S

with 5 e W and Q C S such that P — <p~xQ and <p\B is continuous. Then P n
E((B0)

+) = (v|(B0>+)~ Q is a (V,W)-recognisable subset by the definition of such sets.
This proves half of (b). On the other hand, it is easy to verify that E((BQ}+) is a dense
subset of E(QBW). Since P is open, it follows that P f l E({Bo)+) is dense in P, thus
proving half of (a).

For the converse in (b), assume that L is a (V,W)-recognisable subset of E({B0)
+).

Then there is a homomorphism ip : (BQ)+ —> S into a semigroupoid S from W and a
subset Q of S such that L = <p~lQ and <p\Bo is uniformly continuous. By the universal
property of fiBW there is a unique extension of ip to a continuous homomorphism (p :

n B W ->• 5. Let P = <p~lQ. Then P is a clopen subset of E(TlBW) and P n £ ( ( J 9 0 ) + ) =
1

For the converse in (a), suppose that L — PDE((BQ)+) is (V,W)-recognisable and
dense in the closed set P. By (b) there is some clopen subset Q of E(£1BW) such that
Q n E((B0)

+) = L. Since E((B0)+) is dense in E(TiBW) and Q is open, L must be
dense in Q. Since L is also dense in P and P is closed, it follows that P = Q and so P
is clopen.

Part (c) follows from (a) and (b). D

In particular, continuity of functions to and from fl,gW may be expressed combi-
natorially in terms of (V,W)-recognisable languages. For later usage, we formulate the
following special cases. Recall that a function between topological spaces is said to be
open if it maps open sets to open sets.

Note that Theorem 2.5 (c) generalises the well known description of V-recognisable
languages [1].

C O R O L L A R Y 2 . 6 .

(a) A function ip : A+ -t E({B0)
+) is uniformly continuous with respect to V,

W (that is, it extends to a unique continuous function QAV -4 £(OflW)j
if and only if, for every (V,W)-recognisable L C E({B0)

+), (p~xL is V-
recognisable.

(b) A uniformly continuous function ip : A+ —> E((BQ)+) with respect to V,
W, is such that its unique continuous extension f2xV —> E(QBW) is open

if and only if, for every V-recognisable subset L ofQAV, <pL is (V,W)-

recognisable.

The theory of F-rational languages can thus be developed as a generalisation of the
theory of rational languages of a finitely generated free semigroup. We shall use freely
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other results, such as the closure of the class of F-rational languages under the finitary
Boolean operations and left and right quotients. The following property will also be used
without further proof.

LEMMA 2 . 7 . There is an algorithm to compute, for a given F-rational language

L C E((B0)
+) and a given homomorphism ip : {Bo)

+ -t S into a finite semigroupoid S,

the set i^L.

3. T H E CHARACTERISTIC SEQUENCE

The characteristic sequence of a unary word (meaning a term in a free unary semi-
group) was introduced by Kadourek and Polak [14] in connection with their solution of
the word problem for free completely regular semigroups. A similar construction was
introduced by the second author in an earlier independent solution of the same problem
[19]. We are presently interested only in semigroup words, not involving the extra unary
operation, although the extension we shall consider of the characteristic sequence will also
extend, in a sense which we shall not analyze here, the Kadourek and Polak definition
since the unary operation can be viewed as the local inversion x t-+ x""1.

For the remainder of this paper, we let A denote a finite set and for w £ A+ we let
\u>\ denote the length of w (not to be confused with the notation \X\ for the cardinality
of a set X). We define a map x : A+ —» {A+)+ as follows: for w e A+ with \c(w)\ > 1, let
x{w) = (wi) • • • (wr) if w = UiWiVi, |c(u>j)| = | C ( I D ) | - 1 , the last letter of Uj (in case Uj ^ 1)
and the first letter of vt (in case Vi =£ 1) do not belong to c(tUj), 0 < |ui| < • • • < |ur | ^ \w\,
and there are no other such maximal factors Wi of w whose content misses just one letter
of the content of w. Note that, for w € A+, x(^) is always a word of length at least 2,
the first and the last letter being, respectively 0(w) and l(w). For w 6 A+, if w = uav
with a = 0(w) and u = 0{w), then we write O'(u>) = av. The function 1' is defined dually.

The inverse image under x stands for the reconstruction of a word from its charac-
teristic sequence. This reconstruction is essentially obvious and is given in the following
lemma (see [15, Result 5.3]).

LEMMA 3 . 1 . Let v — {w\) • • • (wn) S (A+)+. Then v belongs to the image of x
if and only if n ^ 2 and the following conditions hold:

c(wi) 7̂  c(wi+i) and l(wi) = 0(iUi+1) for i — 1 , . . . , n — 1.

Moreover, then the only w € A+ such that x{w) = v is given by w = Wi- O'(u)2) • • • 0' {wn).

In particular, the function x is injective.

For X C A, denote by [X] the set of all elements of A+ of content X. See [1, Section
8.1] for an extension of the content function to implicit operations on pseudovarieties of
semigroups containing the pseudovariety SI of all finite semilattices.
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3.1. EXTENSION TO Q^S Let V be a pseudovariety of semigroups containing SI, P C
ClAV, and let X be a subset of A with at least 2 elements. We define a graph dxP

on the set of all factors v € (FLiV)1 of elements of P such that \X \ c(y)\ € {1,2} by
letting the vertices be those v such that \X \ c(v)\ — 2 and the edges be the remaining
elements ofdxP, the adjacency functions being a = 0 and ui = 1. Note in particular that
V(dxA+) and E(dxA+) are rational languages of A+ which are in fact Sl-recognisable.

The significance of the graph dxA
+ comes from Lemma 3.1. Indeed, the character-

istic sequences of words of content X can be viewed as paths in the graph, although not
all paths fulfil the conditions of the lemma. More precisely, we have the following result.

PROPOSITION 3 . 2 . The set xPO is an F-rational subset of the free semi-
groupoid (dxA

+)+.

P R O O F : Define on dxA
+ a relation ~ as follows:

for all vi,v2 e V(dxA
+), vx ~ v2\

for w\, w2 € E(dxA+), w\ ~ w2 if c(wi) = c(w2).

The quotient set C — 9x^4+/~ is then a finite set and it is in fact a 1-vertex graph in a
natural way such that the canonical mapping fi: dxA+ —¥ C is a graph homomorphism.
Moreover, the ~-classes are Sl-recognisable subsets of A+.

For each edge w / ~ of C, we have an associated "content" c{w/~) = c(w). For each
edge w = Xi • • • xn of C + , with the z* € E(C), define

Xc{w)=

Define on E(C+) a relation ~ by letting, for coterminal Wi,w2 € E(C+), wi ~ w2 if
W\ and iti2 start with the same edges, end with the same edges, and Xc(^i) = Xcb"2)-

Then S = E(C+)/— is a finite set and a finite semigroupoid in a natural way so that
ii>: C+ —> S is a homomorphism.

To complete the proof, in view of Lemma 3.1 and Proposition 2.3, it suffices to
observe that the set x[X] 1S precisely the set of all paths w € E({dxA+)+) such that
Xc{w) contains no pair (c(x),c(j/)) with c(x) — c(y). D

Let A2 denote the multiplicative semigroup consisting of the matrices

Then it is well known that the semigroupoid 5 in the proof of Proposition 3.2 belongs
to the global of the pseudovariety V(A2) of all so-called 1-testable finite semigroups (see
[13, 4]). Hence, in the terminology of subsection 2.3, we have the following result.

COROLLARY 3 . 3 . The set x[X] is an (SI,gV(A2))-recognisable subset of
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We wish to extend the function x to continuous functions [X] —¥ f^n^s^d and
[X] -> ^dxnACR^> where [X] is the closure of [X] in fi/iS and fi^CR respectively.
By Corollary 2.6, the existence of such functions means the uniform continuity of x
with respect to various uniform structures and translates combinatorially in terms of
the inverse image under x of certain F-rational languages being rational languages of a
certain type.

LEMMA 3 . 4 . Let Lbea rational language ofA+ and suppose that it is recognised
by a homomorphism <p : A+ -* S onto a finite semigroup 5 possessing content and 0
functions. Then 0(L) and O'(L) are both recognised by ip and L can be partitioned into
a finite number of rational languages L, such that Lt = 0(Li)0'(Lj) with each of the
languages 0(Li) and O'(Li) recognised by (p.

PROOF; Note that yO = Ocp. On the other hand, for s € <pL and s = sis2, we have
((^"1Si)(y~1s2) C tp~ls C L. Taking si = 0(s), we conclude that 0(L) = \J{<p~lSi : si e

0(<pL)} and 0'(L) = \J{<P~ls2 : s € <pL, s = 0(s) • s2}- Finally, for each s € <pL and each
s2 such that s = 0(s) • S2, let LS:S2 — ((p~10(s))((p~1s2)- Then the rational languages L$iS2

partition L into finitely many parts and 0(iJi52) = ip~10(s), and 0'(LJ]J2) = <p~ls2- D

By Kleene's Theorem, we obtain the following result.

COROLLARY 3 . 5 . Let L be a rational language ofA+. Then 0(L) and O'(L) are
aiso rationai Janguages and there is a partition of L into finitely many rational languages
Li such that L{ = 0(Li)0'(L;).

We can now show by Corollary 2.6 that x\[x\ is uniformly continuous.

PROPOSITION 3 . 6 . For every F-rational subset L of E((dxA
+)+), the lan-

guage x~lLQ A+ is rational.

PROOF: In this proof we restrict our attention to F-rational subsets of L that are
components of L under various decompositions. Since, say by Theorem 2.5, the intersec-
tion of two F-rational subsets of E({dxA

+)+) is again F-rational, by Proposition 3.2 we
may assume that L C xP^]- By Lemma 3.1, it follows that X-1L consists of all words of
the form w\ • O'[w2) • • • 0'(wn) such that (wi)(w2) • • • (wn) € L. Let C, K, A, y, describe
L as in the definition of (S, Sd)-rational set. Since Sd = gS, we may assume that C is a
1-vertex graph.

By partitioning K into a finite number of rational languages, we may assume that
all words in K start with the same letter x0 e E(C). By introducing a new letter in C,
if necessary, we may assume that xo only occurs as the first letter of words in K. By
assumption, each language \~xx C A+ (x € E[C)) is rational and so, by Corollary 3.5,
so is Q'(\~lx). Hence x~lL is the language obtained from K by substituting x0 by A-1xo
and the remaining x € E(C) by O^A"1!). Now, it is well known and easy to show that,
if K is a rational language over a finite alphabet, then by replacing all letters by rational
languages of A+, we obtain a rational language of A+. Hence x~lL C A+ is rational. D

https://doi.org/10.1017/S000497270001950X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270001950X


[11] Completely regular semigroups 417

Let p : A+ —» S be a homomorphism onto a finite semigroup with content, 0,
and 1 functions. We associate with S and a subset A' of A with at least 2 elements a
semigroupoid §x defined as follows. The vertices of Sx are the elements of S1 whose
content is contained in X but miss precisely two elements of X. The edges of Sx are just
the elements of 5 whose content is contained in X and miss at most one element of X.
The adjacency functions are given by a(s) = 0(0(s)) and w(s) = l ( l (s)) for edges s of
content X and by a(s) = 0(s) and LJ(S) = l(s) for edges whose content misses a letter
of A'. The product S\ o s2 of consecutive edges s\, s2 € E(Sx) is obtained by taking Sis'2
where s'2 is any element of 5 such that s2 = a(s2)s'2. If s2 is another element of 5 such
that s2 = a(s2)s2, then, taking an arbitrary t € S such that Si = tcj(si), we conclude
that

sis'2 = t CJ(SI) s'2 = t a(s2) s'2 — t a(s2) s2 = tw(si) s2 = sis2.

Similarly, we can show that u(sis2) — w(s2), while obviously a(sis'2) = a(si). Hence the
product o is well defined and it is easily verified that it is associative, thus showing that
Sx is indeed a semigroupoid.

Consider the function dxA+ —> Sx defined by sending each w € dxA
+ to (pw and

note that it is a graph homomorphism since S has content and 0 and 1 functions. It is also
obviously uniformly continuous with respect to the metric structure of dxA+ defined by
the natural metric on A+ since it is a restriction of the uniformly continuous mapping <p.
This graph homomorphism extends uniquely to a semigroupoid homomorphism ips,x •
(dxA

+)+ -> Sx.

PROPOSITION 3 . 7 . T ie function x\[x) sends rational languages of A+ to F-
rational languages ofE((dxA+)+).

P R O O F : Let L be a rational language of A+ contained in [X].

Let <p : A+ —> 5 be a homomorphism onto a finite semigroup S which recognises L.
Note that L is also recognised by any semigroup divisible by 5. By Proposition 2.1, we
may thus assume that 5 possesses content, 0, and 1 functions.

Consider the semigroupoid Sx constructed above and the associated homomorphism
<Ps,x • {dxA+)+ -» Sx- We claim that \L — <Ps*x<PL n

 X P O I which will establish the
desired result in view of Proposition 3.2.

If w € [X] and xw — (wi) • • • (wn), then the path ((tui) , . . . , {wn)) in the graph
dxA+ (that is, the corresponding edge in the free semigroupoid (dxA

+)+) is mapped
under <p to the edge product (pw 1 o • • • o cpwn which is easily recognised to be precisely
(pw. Hence w e L if and only if xw 6 ¥>s!xlP^ anc^ this proves the claim. D

In view of Corollary 2.6, we have thus established the following result.

THEOREM 3 . 8 . For each subset X with at least two elements of a finite alpha-
bet A, the characteristic sequence mapping x extends uniquely to a continuous mapping
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where [X] denotes the closure of[X] in fi^S. Moreover, the mapping \ x js open.

Let V, Vj , and V2 be pseudovarieties of semigroups such that Vj 2 V2 2 SI and let
W, Wi , and W2 be pseudovarieties of semigroupoids such that Wj D W2. For each sub-
set X of A with at least two elements, the canonical projection pvi,v2 '• &AV\ -»• ^/iV2

induces a continuous graph homomorphism dx^A^\ —> dx^AV2 which extends to a
unique continuous semigroupoid homomorphism <7vJ|V2

 : ^ W n ^ W —» ^dxnAv^• We
thus have the following commutative diagram of continuous semigroupoid homomor-
phisms where, for a profinite graph T, the canonical projection firWi —> f2rW2 is also
denoted by pw,,w2:

In particular, we may define a (continuous) function Xv,w : PH ̂  ^ S —>
taking

Xv,w = 9s,v ° Psd.w o X •

A question of interest in view of the applications in this paper is under what conditions
the function Xv,w factorises through the canonical projection ps,v- Although some
examples are presented in the next subsection, we have no general characterisation of the
pairs V, W for which there is such a factorisation.

3.2. EXTENSION TO fi^CR From [15, Theorem 3.6], one immediately deduces the
following result.

THEOREM 3 . 9 . For any pseudovariety H of groups, ifu, v G A+, then the iden-

tity u = v holds in C R n H if and only if all of the following conditions hold:

1. c(u) = c(v);

2. CRnH(=0(u) = 0(i));

3. CRnH|=l(u) = l(D);

4. either \c(u)\ = 1 and H f= u = v, or \c{u)\ > 1 and H |= XcRnHsd" ~

XcRnH,Sdu> where X = c(u).

In the following we also use systematically the following result which follows from

[15, Proposition 2.2].

PROPOSITION 3 . 1 0 . If H is a finitely generated pseudovariety of groups, then

the pseudovariety CR D H is locally finite.

We consider now the composite Q^j^yg ° Psd,gn ° x\[x]-
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P R O P O S I T I O N 3 . 1 1 . For \X\ ^ 2, the mapping x\[x) • [X] -> {dxA
+)+ is

uniformly continuous with respect to the canonical pro-CR n H metric of A* and the
canonical pro-fCRfl H,gH) uniformity of (8xA

+)+.

PROOF: Consider a Cauchy sequence (wn)n in [X] (with respect to the canonical
pro-CR n H metric of A+). Let G € H and let ip : (dxA

+)+ -> G be a semigroupoid
homomorphism (where G is viewed as a one-vertex semigroupoid with the vertex missing)
whose restriction to the graph dxA

+ is continuous with respect to the canonical pro-
CR n H metric of A+. We must show that there is some n0 such that n ^ n0 implies

<fXWn = ipXWno-

Since the restriction of <p to dxA
+ is continuous, it induces a rational partition of A+.

Since dxA
+ is itself a recognisable subset of A+, there is some congruence of finite index

0 on A+ which saturates every class in the partition and also the set dxA
+. Let W —

V(G) V (V(A+/9) n G) where V(G) and V(A+/6) are the pseudovarieties generated by
the indicated semigroups. Let S — CIAU where U = C R D W; so A+/8 € U. Note that
5 is finite by Proposition 3.10. If ip : (dxA

+)+ -t (dxClA\J)+ denotes the semigroupoid
homomorphism induced by the canonical projection A+ —¥ fl^U, then ker^ C kenp as
we now show. Note that if> is a literal homomorphism between free semigroupoids, in the
sense that it sends edges of the generating graph dxA

+ of the first free semigroupoid to
edges of the generating graph 9x^/iU of the second free semigroupoid. Hence it suffices to
verify that kertp\gxA+ C ker<p. Indeed, since A+/6 € U, we have ker i/j\gxA+ Q9C kery.

Now, from the inclusion ker^ C ker<p, it follows that there exists a semigroupoid
homomorphism S : ( 9 A ' ^ A U ) + —> G such that dip — (p. The situation is depicted in the
following commutative diagram.

Since (wn)n is a Cauchy sequence in A+, there is no such that, for all n JJ no, S \= wn =
wno. Since in fact S = fi/iU, we also have U | = u ) n = wno for all n ^ n0. By Theorem 3.9,
W \= Xu.sd^n = Xu.Sd^no f°r a ^ n ^ no- Hence, for n ^ n0, the following equalities
hold

where the middle equality follows from the fact that G € W. D

COROLLARY 3 . 1 2 . For each pseudovariety H of groups and each X C A with
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at least two elements, the mapping x induces a unique continuous function

where [X] denotes the closure of[X] in fi

The following commutative diagram may help to keep track of the various functions
involved.

4. THE WORD PROBLEM FOR T

It is now rather easy to give a "solution" of the word problem for the profinite
semigroups fi^CR. More generally, we have the following result.

THEOREM 4 . 1 . For any pseudovariety H of groups and any u, v € fi^S, the
pseudoidentity u = v holds in CR n H if and only if each of the following conditions
holds:

1. c{u) = c{v);

2. CRf lH|=0(u) = 0(t));

3. C R n H |= l(u) = l(u);

4. either \c(u)\ = 1 and H (= u - v, or |c(u)| > 1 and H \= x£RnHsdu =

XcRnHSd1'' w^ere X ~ c(u)-

PROOF: Suppose first that the pseudoidentity u = v holds in CR n H. Since
SI C CR fl H, the profinite free objects over the pseudovariety CR n H have a content
function and so condition (i) certainly holds. Conditions (ii) and (iii) follow from the fact
that fi^CR l~l H possesses 0 and 1 functions as guaranteed by Proposition 2.2. Finally,
for condition (iv), the case |.X| = 1 is obvious, so we assume |X| > 1. Then the condition

which in view of the commutativity of the diagram (1), means that XCRHH H PS,CRTIHU =

H Ps.CRnH -̂ ^ n e necessity of the condition then follows from the assumption that

PS,CRTIH U — P

Conversely, suppose that the conditions (i)-(iv) hold. Let X = c(u). If |A'| = 1,
then clearly CR n H (= u — v since the one-generated members of CR n H are the
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cyclic groups in H. So, assume that \X\ > 1. It suffices to show that C R n W f = u = «
for every finitely generated subpseudovariety W of H. For such a W we deduce from
Proposition 3.10 that there are words u',v' £ A+ such that c(u') = X = c(u'), C R n W
satisfies u' = u, v' = v, O(u') = 0(u), O(u') = 0(u), l(u') = l(u), l(u') = l(u), and W
satisfies the pseudoidentities X ^ H . S C / ^ R n H . s d " a n d ^CRnH.Sd^' = ^BnH.sa"-
From (ii) and (Hi), it follows that C R n W satisfies O(u') = O(u') and l(u') = l(v').
From (iv), we deduce that W |= XcRr>wsdu' = *CRnw sdw'" Hence, by Theorem 3.9, we
conclude that C R n W satisfies the identity u' = v' and so also the pseudoidentity u = v

in view of the choice of u', v'. D

REMARK. It is legitimate to ask in what sense Theorem 4.1 gives a solution of the word
problem for fi^(CRnH). If H is a locally finite pseudovariety of groups with computable
finitely generated free objects, then Theorem 4.1 contains a solution of the word problem
for ^ ( C R n H ) but it is one which reduces to Theorem 3.9. In the general case, say if
u, v € f2^S with a an implicit signature (see Section 5 for details) such that the functions
c, 0, 1, and XcRnHsd a r e c o m P u table on fi^S and take values within the same signature,
and the word problem is solvable for figH, then from Theorem 4.1 it follows that the word
problem for fl^(CRnH) is solvable in the usual sense. Thus, although strictly speaking
Theorem 4.1 does not solve any word problem in an algorithmic sense, it provides a
theoretical characterisation of equality over C R D H which yields the solution of word
problems for many members of C R D H.

5. O P E N PROBLEM: AN EXTENSION OF ASH'S RESULTS

Throughout this section, we fix a mapping g : A —t B between finite sets. We denote
by V an arbitrary pseudovariety of finite semigroups.

By a g-relational morphism we mean a relational morphism /J. : S —» T where 5 is
an ^-generated semigroup, T is a B-generated semigroup and (a, go) € fi for all a € A.

A labelling of a graph T by a semigroup 5 is a function 7 : T —> S1. The labelling 7
is said to be consistent if. for every edge x € E(T), the equality (jax)(jx) = yux holds.

Two labellings 7 and S of a graph F respectively by semigroups 5 and T are said
to be n-related under a relational morphism \i: S -> T if, under the canonical extension
H : S1 -> T1 for every x € T, (71, 5x) € fi.

We say that a labelling 7 of the graph F by the ^-generated semigroup 5 is inevitable

with respect to a ^-relational morphism /j,: S —> T if there is a consistent labelling 6 of F
by T which is /x-related with 7. We also say that 7 is (V, g)-inevitable if it is inevitable
with respect to every g-relational morphism fi: S - > T with T G V. In case B = A and
g is the identity function, we then say that 7 is V-inevitable. The pseudovariety V is
said to be hyperdecidable if there is an algorithm to decide whether a labelling of a finite
graph by a finite semigroup is V-inevitable.
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The following result extends [3, Proposition 3]. The proof is obtained by a straight-
forward adaptation of the proof of the original result and is therefore omitted.

PROPOSITION 5 . 1 . A labelling 7 of a finite graph F by a Snite A-generated
semigroup is (V, g)-inevitable if and only if it is inevitable with respect to the canonical
g-relational morphism v — J o ^ " 1 where tp : fi/jS —> S is the homomorphism induced
by the choice of generators and g : QAS —> QgV is the only continuous homomorphism
whose restriction to A is equal to g.

By an implicit signature we mean, as in [7], a set a of implicit operations on finite
semigroups which contains the basic semigroup multiplication. Profinite semigroups are
then viewed naturally as a-semigroups. In particular, for a pseudovariety V of semi-
groups, the cr-subsemigroup of fi/V generated by A is denoted by Q^V. This is easily
seen to be precisely the free object freely generated by the set A in the variety of a-
semigroups generated by V.

The most commonly used implicit signature consists of the basic semigroup multi-
plication together with the w — 1 power which associates to each element s of a finite
semigroup 5 the inverse s""1 of su+1 = ssu in the subsemigroup generated by s, where
sw denotes the only idempotent power of s. This signature is denoted by K. In particular,
fi^S is the free object on the set A in the unary semigroup variety for which w — 1 is the
unary operation.

Given an A-generated finite semigroup 5 and a pseudovariety V of semigroups, the
canonical (a, g)-relational morphism (jfy : 5 -* fiflV is the composite 'goip'1 of the inverse
tp~x of the unique homomorphism of cr-semigroups tp : fi^S —» 5, determined by the
choice of generators, with the natural homomorphism of cr-semigroups 'g : fi^S —> figV
determined by the mapping g. We say that the pseudovariety V is (a, g)-reducible if
a labelling of a finite graph by a finite ^-generated semigroup 5 is (V, £>)-inevitable
if and only if it is inevitable with respect to the canonical (a, ̂ -relational morphism
/̂ v : S —> fifiV. In case g is the identity function, we say that V is o-reducible for
A-generated semigroups if it is (a, ^-reducible. Finally, we say that V is o-reducible if,
for every finite set A, V is a-reducible for A-generated semigroups.

Now, Ash's inevitability theorem may be phrased as stating that G is /t-reducible
(see [7, 8]). In the next section, we show that K-reducibility of CR follows from a stronger
property which we now state as an open problem.

PROBLEM 5.2. Is it true that, for every (onto) mapping g : A —» B between finite sets,
G is (K, ^-reducible?

While we have no specific evidence that the answer should be affirmative, the exten-
sion of Ash's results which it would provide does not appear to be very significant. Yet, in
trying to extend Ash's arguments to this situation, one quickly finds that the apparently
harmless collapse of generators produced by pdoes not allow Ash's proof to carry through
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in a straightforward manner. On the other hand, the compactness argument that led to

Proposition 5.1 does not require much change to handle the collapse in generators. So,

at least it appears that to conjecture an affirmative answer to the problem is reasonable.

The real motivation comes from Theorem 6.4.

6. O N K-REDUCTIBILITY OF C R

In this section we shall see that if Problem 5.2 has an affirmative answer then the

pseudovariety C R is /c-tame (that is, C R is K-reducible).

Let A be a non-empty set and S be a finite ^-generated semigroup that has content,

0 and 1 functions defined on it. Denote by tp : QAS —> 5 the natural homomorphism that

extends the identity map on A. Our aim is to show that, given a finite graph F, with

k vertices, and a labelling 7 : F -* Sl, we can decide whether there exists a labelling

6 : F —> ( I^AS)1 such that <p<5 = 7 and PCR<$ is consistent. Here PCR •' ^ A S -> Q A C R is

the canonical projection. In other words we wish to show that we can decide whether 7 is

CR-inevitable. Following [7] we shall aim at the more refined property of /c-reducibility,

namely the following property: 7 is CR-inevitable if and only if there is a labelling 6 as

above, but which takes its values in (fJJS)1. The converse is immediate.

Note that, if the labelling 7 as above can be lifted to a labelling 6 over Q^S such

that PCR^ is consistent, then one may effectively construct such a labelling. Indeed, we

may recursively enumerate the candidate labellings over the recursively enumerable set

fi^S. For each candidate 6, we may compute <p6 and check whether it is equal to 7. We

may also compute the labelling pcR<5 to test whether it is consistent using the solution

of the word problem for CR.

We shall show that there exists a finite computable subset P of (fi^S)1 such that

for every finite graph A of at most m vertices and every labelling r : A —» Sl, r is

CR-inevitable only if there is a labelling TT : A —> P such that ipn — r and pcR"' is

consistent. Observe that if two coterminal edges of A are labelled with the same element

of S1 then they may also be labelled with the same element of fi^S. So we may assume

A has at most | 5 | + 1 distinct coterminal edges. Therefore we need consider only finitely

many graphs with at most m vertices; of course there are only finitely many 5-labellings

of these. So if C R is /t-reducible, then there must exist such a computable set P.

In order to show that C R is K-reducible we shall make use of Theorem 4.1. Con-

dition 4 of the theorem involves testing the function XcR,sa> where B has at least two

elements; this is obtained by composing xB with a projection of QgBnBsSd- Recall

by Theorem 3.8 that xB '• [-S] ~* ^aflnBs^^ is a continuous map on the closure of

[B] — {w € B+ : c(w) = B] that extends the function x- A modification of the semi-

groupoid 5 B of Section 3.1 will play an important role in the application of Theorem

4.1; in particular we make use of its consolidation monoid (5B)cd (see Section 2.2). This

monoid can be defined in algebraic terms as follows.
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Let SB be the B-generated subsemigroup of Sl and consider the subsets

Z={weSB: \B\c{w)\ = l}, T={w€SB: \B\c{w)\ < l} U {1}.

For w € T \ { 1 } define

and define 0(iu) dually. The set 2 generates the o-rnonoid (T°, o) for S with binary
operation defined for u, v ^ 1 by

i uv' if l(u) = Q(v) where t> = 0(v)v'

0 if l(u) ^ 0(u) or u = 0 or v = 0
and 1 is the identity element.

We shall later obtain a graph from T labelled by (^eflnBs^^)cdi this *s a monoid
in which we again let o denote the binary operation. It will be convenient to identify
the partial semigroup E(^ldgQBSSd) with the partial semigroup {^gBnBs^^-)cd \ {0} and
to assume it contains the range of xB• Notice that (fiaBnBsSd)cd is the closure of the
monoid ({5sftBS)+)cd which is generated as a o-monoid by

Y =

Define ip : (fiflanBs^d)cd —> (T°, o) to be the unique homomorphism that extends the

action of (p on the generating set Y. Observe that if w € [B] then, by Lemma 3.1,

ip(w) = ipxB(w)- Furthermore since <p,rpt and xB a r e continuous functions then on [B],

<P = i>XB-

By [2, Proposition 2.3] the set (fiasnBsSd)cd\{0} embeds as a partial subsemigroup

in fiy-S (by an injective partial homomorphism fi, say). The canonical homomorphism

A : fiyS —> (^aflnBsSd)cd that extends the identity map on Y is such that Ap. is the

identity map on its domain. In effect, fj, and A interchange the binary operations o and •.

Let us return to the problem of the existence of the set P.

If the labelling r of A is by elements from <a £ S1 : \c{a)\ < l | then, since 5

satisfies a periodic law xp+<> = xp, it can be easily seen that it suffices that P includes

{a*, a"'"*'1 : a e A, 1 ̂  i; ^ p+q}- We proceed by induction, with the following assumptions

for some n, 1 < n < \A\ and each subset B C A such that |J5| = n. Let U = {w €

(aBS)i:c(w)CB}.

There exists a finite subset P' of U n (fi^S)1 and a map 6 : U -> P' such that

(i) B2 = 8,00 = 06, 01 = 16 and <p0 = <p,

(ii) for each u, v € U,

U) = PCR(V) =*• PCR0{U) = PCR0(V).
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(iii) for every finite graph A with at most maxl /c^SI} vertices and each la-

belling T : A —» U such that PCRT is consistent then PCR&T is consistent,

(iv) for each « e F , i € P'nv?-VO(u)npckPcRO(u) and y 6 P'n(p-l<pl(v.)n

PCRPCRI(W) there exists uxy G P' such that <p{uxy) = <p(u), x = O ^ ) ,

y = l(uxy) and uxy € PCRPCR(U)-

If \B\ = 2 then for any w € U, c(w) ^ 1; it follows from the comments preceding the
assumptions that 9 can be chosen in this case to satisfy (i), (ii), (iii) and (iv). The aim
is to show , given the assumptions, that P' can be extended to a finite subset of (ftgS)1

and the domain of 9 can be extended to (figS)1 in such a way as to satisfy (i), (ii), (iii)
and (iv).

Notice that the graph dBfisS has a subgraph, denoted by 09£ftBS, with edge set
9{Y) = {0(w) : w £ Y}. Let 9 : (ftaflfiBsSd)cd ~>_(*W f l S Sd)k , be the unique
continuous homomorphism that extends 6\y. Of course (^eafinBs^d)cd embeds by /i as a
partial subsemigroup in f2e(K)S. Since we are assuming that <p6 = <p on Y then il>9 = ip.

For any r,s € OsS such that c(rs) ^ B consider the graph A with E(A) — {e},

V(A) — {a(e),o;(e)} and a labelling r : A —¥ fl^S given by ra(e) = r, r(e) = s and
ruj(e) — rs. Then PCRT is consistent and hence, by the induction assumption (iii), PCROT

is also consistent. Therefore pcR(8(r)0(s)) = pcR^i^s).

In the rest of the paper A, S, <p and T are as specified above and B is a subset of
A with \B\ > 1. Let 7 : T -> 5 1 be a CR-inevitable labelling of F by the ^-generated
submonoid of Sl via the labelling S : T —> (fijjS)1; that is, <̂><5 = 7 and PCR<5 is consistent.
Note that PCR and (̂  preserve content and commute with the 0 and 1 functions. Since
PCR<5 is consistent then for any path in F from x to y we have c(S(x)) C c(S(y)).

LEMMA 6 . 1 . Tijere is a labelling 6 : F -» ( ^ S ) 1 such that </?<5 = 7, pCR<^ J's
consistent, and for each z € F,

(i) if ci5(z) = B, then xB$(z) = HBKZ) and> in particular, 0S(z), l5(z) € P',

(ii) ifc5(z) $ B then 6{z) e P ' .

PROOF: By Lemma 3.1 and induction assumption (i), if w e [B] then &xB(w) is

in the range of x- Since 9xB maps [B] continuously into ^ggBnBs^ t n e n t n e range of

9xB is within the range of xB- So for w e \B] we may select a tu j € [5] such that

9X
B{w) = X
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Define a labelling 6' : F -> (f^S)1 by

0S{z) i f ^ W ^ B
s(z)$ if cS{z) = B.

We shall see that the labelling 6' satisfies the requirements of the Lemma.

Suppose e € E(T) and c6u(e) ^ B. Then <p6'(z) = 7(2) for z € {a(e),e,w(e)} by

the induction assumption (i), while by assumption (ii) and an observation following the

induction assumptions pcn.(6'(a(e))6'(e)j = pcm.S'ui(e).

Now suppose e € E{T) and c6ui(e) = B. By Theorem 4.1, G (= Xcn.,Sd{Sa(e)6(e)) =
XcR.Sd'k^6)- If c<5a(e) = B then xB^a(e) — uox for some u G (figBnBsSd)cd\{0} and
x = lSa(e). Dually if a5(e) = B then xfl(5(e) = y ov for some u € (f^nBsSd^d^O}
and y = 05(e). If c6a{e) ^ B or aS(e) / B put a; = 6a(e),u = I or y — 6(e),v = 1
respectively. Then

X
B{Sa(e)6{e)) =uoX

B{xy)ov and c{x) ^ B, c{y) ̂  B.

The elements of c(x) can be listed without repetition as T(i),Il(a;),Tll(x), Hence

Xs(xy) = 0(sy) o 0(l(x)y) o0(ll(i)y) © . . . o l(a;y)

is a factorisation of XB(^J/) by elements of Y; there are at most \c(x) | + 2 factors. Likewise

XB(<5'a(e)5'(e)) = 6(u) *x
B(0(x)6(y)) o6(v) and

Xs (0(x)%)) = 0{6(x)9(y)) o 0(l(e(x)6{y)) oO{ll{6(x)e(y)) o . . . o 1 (fl(i)e(y)).

By the the induction assumptions and the observations following them, each factor of
XB(0(z)0(y)) *S respectively p^kPcR-related to the 0-value of the corresponding fac-
tor of xB{xy)- So modulo PCRPCB., the factors of 6xB(6a{e)6(e)) and xB(<S'a(eH'(e))
are identical. Furthermore by induction assumption (ii), any factors of 6xB (Sa(e)6(e))

and 6xB (<Jw(e)) are p^kPcR-related if the corresponding factors of xB(<$a(e)<5(e)) and
XB(Su>(e)) are. It follows from Theorem 4.1 that pcR(<5'a(e)(5(e)) = pCR<$'w(e)- Also,
we saw above that tp =; tpxB = ^x3, so for z € F and c[6(z)) = B we have

In the remainder of this paper assume that 6 is as described in Lemma 6.1. We now
modify F and its labellings 7 and 8 to obtain a graph Fi, with labellings 71 and <5i in
such a way as to reduce the problem to one in which all vertex labels have content B.

Let B = {61,62. • • • A } and d = M2 • • • bn € O£S.

Construct Fi from F as follows. Let

te} and
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where ex is a new edge from the new vertex £ to x. Define 5\ : F —> (fi^S)1 by

1 x ~ ^ Si{e) =
d6(x) i f x e V ( F )

and 71 = <p8i. Since PCR& is consistent so is PCR^I by construction, whence 71 is a
CR-inevitable labelling of Fj. The converse is by the following lemma.

LEMMA 6 . 2 . Let 71 be a CR-inevifcabie labelling of Fi via 6\ and let 6 : F —>
(fisS)1 be given by

S(x) = <5i(ex) for x € V(T) and 6{e) = ^(e) for e € E(T).

Ifpcn(Sa(e) • S(e)) and PCR8UJ(C) take the same values under the respective functions c,
0 and 1 for each e € E(T) then 7 = tp6 is a CR-inevitaWe labelling ofT via 5.

P R O O F : This follows from an observation on the completely regular semigroup
(fiaCR)1. Suppose u,v € (F2BCR)] are such that 0(u) = 0(v), l{u) = l(v), c(u) = c(v)
(so uHv). Suppose w € (f isCR)1 and wu = wv. We shall prove that this implies u = v.
If c(w) C c(u) then uwuuu = uwvuv, and since uwuu = uwiP and is %-related to u
and v then u •= v. Assume the result whenever c(w) C c{d) and proceed by induction.
If c(w) = c(d) ^ c(u) then there exists 1̂ 1,102 € (fi^CR)1 such that w = W1W2 and

= l(wu) = l(wv) — W2V\ by the assumption then u — v.

For each e € E[T) we have PcR($ia{e)5i{e)) - pcR<5iw(e) so pCR(d6a(e)6(e)) =
). Therefore, if pcR(Sa(e)5(e)) and pcR^w(e) take the same values under

the respective functions c, 0 and 1 then by the above pcR(Sa(e)6(e)) = pcR6ui(e) as
required. D

We shall construct a graph F2 from Fj, labelled by (fi8flnBsSd)cd> fr°m which XcR.sd
can be tested. An observation is needed for this. Suppose e = (x, y) is an edge from
x to y in T\. Since PCR$I is consistent then PcR{8i(x)6i(e)) = PcR$\{y)- We have

— uo \6i{x) for some u € (

B(5 (x)S (e)) = l u o ^ ( 1 ( J i ( I ) ' 0*i(c)) ow i f ^ i ( e ) = 5> s o m e

However by Lemma 6.1, l<$i(x) and 0<5i(e) or <5j(e) respectively are in QK
BS. So there is a

finite o-factorisation of xB (l^i(^) -0(5i(e)) or xB(l<5i(z)-<5i(e)) respectively into elements
from f l j S n Y . Let the factorisation be u\ o u2 o .. - © uT for some natural number r; call
this the 5\-factorisation of e with length r.

We can now construct and label F2. Let {x0 : x € ^(Fi )} be a set disjoint from
VlTx) but of the same size. For each e = (x,y) € ^(Fi) with ^-factorisation of length r
let graph Fe be as shown.
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XQ X\ Xr—\

The graph F2 is the union of the graphs Te, e € -E(Fi) such that the edges {xo,x) are
identified, for each x € V(Fi). Define 62 : F2 -> (^aBnBsSd)cd as follows. For each
e = (x, y) €E E(Ti), with S\-factorisation U\ o u2 o ... o uT and u, v defined as above, we
label Fe by

S2(x0) = u, 62(x0,x) — lSi(x), S2(x) = xB6i(x) — 2̂(2:0) 0^2(2:0,2;),

62(xi-\,Xi) = Ui, 62(xi) = 62(x0) oui o u 2 o . . . ou,- for 1 < i ^ r,

v if cSi(e) = B

1

Label the edge {yo,y) and its vertices as (xo,x) and its vertices were labelled, with y
replacing x. Notice that

62(x0)oS2(x0,xi) o ... o62(xr_hxr) o<S2(xr,y) = xB(Si(x)6i(e)).

Since pCR<*i(i/) = PcR(«5i(i)*i(e)) then G |= XcR.sd^iC1)5!!6)) = XcR.sd^Cs/)
where XcRSd =

 9 |^:RXB;
 w e have XB {$i{x)&i(e)) as a o-product of <52-labels of consec-

utive edges from x0 to y and we have XB$i{y) as the <52-label for y. Define the labelling
72 :F2-^(T°,o)by 72 = # 2 .

Recall that the set (fiaflnBsSd)cd\{0} embeds as a partial subsemigroup in Qy-S
by the injective partial homomorphism /i and the canonical homomorphism A : QyS —>
(fieflfjBSSd)cd is such that Xp is the identity map on its domain. As previously noted, the
continuous homomorphism 8 maps (^aflnfls^^)cd onto its subsemigroup (fiflaBnBsS^)cd
and (fieaflnBs^^)cd\{0} embeds by /x as a partial subsemigroup in fi^yjS. The map
7] = /j.962 now relabels F2 by the finitely generated profinite semigroup ft^KjS such that
A77 = 062.

Let X = {PCRPCRCW) : w € 0(Y)} and p : 6(Y) -)• X be given by p(w) =
PCRPCR(^)- Denote by jo the unique continuous homomorphism that extends p, as in
the diagram.

(^V)S)1

(T°,o) nxG

We have seen that ip = tpd. As well, by Lemma 6.1, it follows that G (=
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qscR0xB (6i(x)8i(e)) = qfd
CR9xB6i(y). Hence by Theorem 4.1 and the construction

we get the next Lemma.

LEMMA 6 . 3 . Let <5i and 7J = (p6i be labelliags of T\ by fi#S and S respectively.
Let T) and *y2 be l&bellings of F2 by QyS and (T°,o) respectively as constructed above
from 6i for each e = (x,y) € E(Ti). Then 71 is CR-inevitable via <5j if and only if for
each e € E(Ti) the elements PcR{$i<x{e) • ^i(e)) and pcR^iw(e) take the same values
under the respective functions c, 0 and 1, and

p[v{xo)v(xo,xi). ..r](xT-i,xr)T](xr,y)) = pq{y).

Since 71 is a CR-inevitable labelling of T\ then the labelling 72 of F2 by (T°, o) via
the labelling r\ of F2 by fie(y)S is (G, /5)-inevitable. So we can now apply the strengthened
version of Ash's theorem to obtain a labelling rf of F2 by fi«y)S via which 72 is (G, p)-
inevitable.

However, before we apply the extension of Ash's theorem, we modify the semigroup
(T°,o) so as to ensure that the labelling 77' we obtain is compatible with the labels
obtained by Lemma 6.1. We also want to ensure that the labelling Xrf is compatible with
\B\ remember that Xrj = 662 and (52-labellings are determined from xs<5i-la.bellings. Let
l(w) denote respectively l(w) or ll(u;) according as c(w) / B or c(w) = B and dually
define 0(w). Let

(x) = s = ip(y) if c[s) ^ B

and define a binary operation Doni?U {0} by

(*(*),,, eiy))a(o(u), t, 9(v)) = I {9{x)>s ° *'9{v)) if 9{v) = 9{u)' >*W*i°**
I 0 otherwise.

Let ip' : (tteaBnBSSdycd —> (it0, D) be the unique continuous homomorphism such
that for w € E{6dBUBS)

For w € (^ffaBnBS^^)cd we define 0(w) € £(^9sflBS) to be the initial edge of w. Dually
define \{w). For u € fiyS define 0(u) to be the initial term from Y to appear in u and
dually define l(u). Notice that since <52-labellings are determined from xB<$i-labellings
then ^'Ary-labellings are non-zero

The labelling 72 = %1>'\T) of F2 by the finite semigroup (i?°,D) is (G,p)-inevitable
via the labelling 77 of F2 by the finitely generated fi^yjS. Remember that the restriction
of A and 0 to 8(Y) is the identity map on 6(Y) and that clearly 0A = 0,1A = 1. So for
any labelling rj of F2 by f^yjS such that rp'Xr)' = 72, and any x € F2. if cy'2(x) — B
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then 0?7'(x) = 0OJ/(Z) = 90T]{X) = 0T?(X) and dually l7?'(z) = 177(1). If crf2(x) / B then

rf(x) e 0{Y) so rf(x) = 9rf{x) = 0T?(X) = T?(X).

THEOREM 6 . 4 . If Problem 5.2 has an affirmative answer then C R is n-reducible.

P R O O F : Assume that 7 is a CR-inevitable labelling of F by 5 that satisfies the
conditions of Lemma 6.1. We apply the strengthened version of Ash's theorem to obtain
a labelling 77' of F2 by elements of r2£(y)S for which ip'Xrf = 7^ is (G, p)-inevitable. We
shall assume without loss of generality that iiXrf = rf.

Any w € &e(Y)S has a finite factorisation as a product of terms from 6(Y). Since
ip'Xrj' = 72 and the range of j ' 2 excludes 0 then, by Lemma 3.1, for any x € F2 with
C77'(x) = B there exists a unique u € Q B S such that xB(u) = -W(z)-

Recall that 77 = n662 where 662 — A77 is a labelling of T2 by (^eaBnBsSd)cd- Consider
an edge e = (x,y) € E(Ti). The (52-labels for the associated edges (xo,x), (yo,y) and
(XJ_I , Xi), 1 ̂  i ^ r, of Te are all of content cardinality | S | - 1 . So for each of these edges,
77' and 77 take the same value. As well, since pr]' is consistent we may assume without loss
of generality that 77'(XJ) = 77(xi), 1 ̂  i ^ r. The remaining elements z € Te have content
B and so Or)'(z) = 077(2) and likewise lr)'(z) = T](z).

Let us relabel Fi by S{, again with e = {x,y) € E(Ti). Put

X
BS[(x) = AT7'(X), X

B6[(y) - A7?'(y) and

X
BS[(e) = 0<5x(e) o A77'(xr, y) if cSx(e) = B

S[(e)=6,(e) ifc6i{e)?B.

Since tp'XT}' = T/>'AT?, SO ipX-q' = ipXrj, and since 0<51(e)oA77'(xT., y) = xB<5'i(e) when c<5i(e) =
B, we get i>6[ = 71.

From the above it also follows directly that 06[(x) = 0<5i(x), l<5i(x) = l^i(x),
05[(e) = 0<$i(e) and 15i(e) = l<5i(e). Therefore to show that PCR5[ is consistent it
suffices to show that condition 4 of Theorem 4.1 is satisfied. To do this we construct 6'2
from 6[ as 62 was constructed from <5i and prove that

pne(6'2{x0) o 8'2{x0, xt) o . . . o S'2(xT-Uxr) o 5'2{xT,y)) = pn§6'2(y).

Since I6[(x) • 06[(e) = l<5i(x) • 0(5i(e) or I6[(x) • 6[(e) = I6i{x) • S^e) according as
c^e ) = B or not, then ^ ( l i - i . i i ) = <52(Xi-i,Xi) and S'2(xi) = 62(xi), 1 ^ z < r. So
S'^x^Xi) = Xrf{xi.uxi). We have <52(x0) 0 l<5J(x) = <52(x) = X

BS[{x) = X
BW{x) =

AT7'(X0) O 1(5'J(X) SO we can put 6'2{x0) = Xrf{x0). Also 0«i(e) o<52(xr, y) = (51 (e) = 0<5J(e) o

A77'(xr,y) so we can pu t 8'2{xT,y) — Xr]'(xr,y). Because OXrf = Xrf then

pn6(5'2(x0) o (52(x0, i i ) ° - - - ° <52(xr_i, xr) o 5'2(xr, y))

= pnX(n'(x0) • ff(x0, Xi) • . . . • V'{xr-1, XT) • v'(Xr, V))

= p(r)'(x0) • 77;(xo,x1). ..rfixr-uXr) • v'{xT,y)).
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But since pq' is consistent, this equals prj'{y). We have prf(y) = pi*i\ri'(y) = pnxB&[(y) =

pp£X
B6[(y) = p(ie6'2{y).

By the above, we have selected a labelling 8[ of F] by fi£S such that PCR6[ is
consistent and such that for each edge e € E(Ti) we have 0<JJ(e) = 0<5i(e) and lS[(e) =
I6i(e), or 6[(e) = 5x(e) (according as c6i(e) is B or not). The <$i edge labels of E{V\)

are the 8 labels for the vertices and edges of F. By Lemma 6.2 we may now select
6' : F —> (H^S)1 from 8[ such that <p8' = 7 and 7 is CR-inevitable via 8'.

The remainder of the proof is concerned with selecting elements of fi£S to make up
a set P that will satisfy the requirements of the induction assumptions when extended
to elements of Q.% S.

A subset {di,..., dp) of S is a CR-pointlike subset of S of content B if c(d{) = B

for 1 < i ^ p and the labelling TT of the p vertex chain as shown is CR-inevitable. Here

If 7T is CR-inevitable then by the above construction applied to n rather than 7, and by
the portion of the proof above, there is a labelling £ of the chain by fi£(y)S C Cl%S such
that ipe = IT and pcn£ is consistent.

Let {Di,..., £>,} be the set of all maximal CR-pointlike subsets of 5 of content B,
indexed by natural numbers ^ q. Suppose D — Dj for some j and D = {di,..., dp). So
there is a set Rp = {ui,... ,up} € fijgS such that <p(ui) = dt and pcR(ui) = Pcn{v>j)
for all i,j, 1 ^ i,j ^ p. We shall make an assumption for each D and u £ RD-
Consider elements v € QBS such that <p(v) = <p(u) and recall that ap = c, Oip = (pO and
lip — (pi. If there exists such a v and v = 0(u)uil(v) for some Vi € (fiflS)1 (that is, the
0 and 1 segments of v do not overlap) then we may assume the 0 and 1 segments of u
do not overlap. This is because in the last paragraph, if necessary we can modify the
labelled graph, and retain CR-inevitability, by adjoining to the vertex labelled <p(v) a
path labelled as shown

(pO(v) <p(0(v)vi) ip(v)

Alternatively if all such v have their 0 and 1 segments overlapping we may assume the 0
and 1 segments of u overlap in a word of minimal content.

As above the function xB uniqely provides a finite o-factorisation of each Ui € RD

into components from 0(Y). For each u € RD select u' € (^eaflnBsSd)cd s u c h t n a t

XBu = 0(u) © v! o l(u); if u' = 1 then 10(u) = 01 (u).

We now construct 6 : QBS -^ P to extend 6\v as described in the induction assump-
tion. Suppose v € figS, c(v) = B and let Dj be the maximal CR-pointlike subset of 5 of
content B with least index j such that <PPCRPCR(V) Q DJ. There exists uniquely u € RD,
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such that <p(u) = f(v). Define 8(v) = 60(v)ov' o6l(v) where v' is constructed from u' as
follows. If u' 7̂  1, let v! have o-factorisation v! = a,i o o2 o •.. o a3 into 0(K)-components.
For each i, 1 ^ i ^ s, define Xi and j/< as follows; if \0[u) or 01 (u) or neither is in
rp~1ip(0(ai)) npckPcR(O(ai)) then respectively let x,- be 6l0(v) or 60l(v) or 0(aj), and
likewise, if 10(u) or 01 (u) or neither is in il)~1xp(l(ai)) npckPcR(l(ai)) then respectively
let yi be 6lO(v) or 601 (v) or l(a<). Then define bi = Oj,..,,. as determined by induction
assumption (iv). Now define v' = b\ o b2 o... o b8. Alternatively, if v! = 1 then we may
select v' = 1. Without loss of generality we may assume that 6{u) = u for each u € RDJ •
Observe that ip(a,i) = <p{bi) for each i so <p(v) = (p(u) = <p(6(v). Also pcR^i = PCR&I

for each i, so modulo PCRJ>CR> the factorisations of u and 8(v) are identical except in
their first and last terms. If P C R ( ^ ) = PCR(W) then modulo PCRPCRI 8(V) and 9(w)
have identical first and last terms and are constructed from elements of ROJ as above, so
PCR8{V) =PCR6{W). Define

p = hM-.vGn*

The induction hypothesis (i), (ii) and (iii) can be easily seen to apply for content B terms.
With u 6 P and c(u) £ B, and with x,y as specified in the induction assumption (iv)
we can construct uxy by replacing 0(u) and l(u) in the o-factorisation of u by x and y
respectively and by replacing the other factors by compatible factors (as was done above
in the construction of 0(v)). D
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