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THE PSEUDOIDENTITY PROBLEM AND REDUCIBILITY FOR
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Dedicated to George Szekeres on the occasion of his 90th birthday

Necessary and sufficient conditions for equality over the pseudovariety CR of all finite
completely regular semigroups are obtained. They are inspired by the solution of
the word problem for free completely regular semigroups and clarify the role played
by groups in the structure of such semigroups. A strengthened version of Ash’s
inevitability theorem (k-reducibility of the pseudovariety G of all finite groups) is
proposed as an open problem and it is shown that, if this stronger version holds, then
CR. is also k-reducible and, therefore, hyperdecidable.

1. INTRODUCTION

Word problems (or rather the decidability thereof) have long played an important
role in various branches of Mathematics. In some contexts a property can be associated
with a decision problem by which the problem can be reduced in the sense that if it has a
solution in an enlarged universe then it has a solution in the restricted universe. The first
author and Steinberg (7] (see also [8]) have shown that two such properties on recursively
enumerable pseudovarieties Vy,...,V, of finite semigroups (which are then said to be
tame) together are strong enough to guarantee decidability of their semidirect product
Vi x---%V,, whereas in general such a semidirect product is not decidable if the factors
are only assumed to be decidable [17]. Although examples of tame pseudovarieties do not
abound in the literature, and it may be quite to hard to establish tameness, it appears
natural to conjecture that they are quite common [3, 17]. The most famous example of
a tame pseudovariety is the pseudovariety G of all finite groups, a result due to Ash [12].

Specifically, the properties in question involve an enlarged algebraic signature (made
up of implicit operations) which have a natural interpretation on (pro)finite semigroups
and concern the solution of the word problem for relatively free objects with respect to
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this signature, as well as a reduction property for inevitability of graph labellings. A
generalised version of such word problems is the pseudoidentity problem, that is to say,
to obtain criteria for equality over the given pseudovariety of two arbitrary implicit op-
erations. While there are too many implicit operations to even consider this question
from an algorithmic point of view, when attention is restricted to specific implicit signa-
tures, a measure of the effectiveness of such criteria is whether they yield true algorithmic
solutions of the corresponding word problems.

In this paper, we consider a specific example, namely the pseudovariety CR of
all finite completely regular semigroups. Completely regular semigroups are unions of
groups. Such semigroups have received considerable attention in recent years in the
realm of the algebraic theory of semigroups. They are in a sense close enough to groups
to allow the development of a theory in which many problems are reduced to problems in
group theory,-although often in rather nontrivial ways. This is the case in particular, for
the word problem for the free completely regular semigroup (as a unary semigroup) which
was obtained by Kadourek and Polék [14]. It is one of the ingredients in establishing
the criterion for equality in the free profinite completely regular semigroup presented in
Section 4. The other ingredients are basically the study of combinatorial properties of
the characteristic sequence introduced by Kadourek and Poldk.

Rather than showing that CR is a tame pseudovariety, we show that this property
would follow from a strengthened version of Ash’s inevitability theorem [12, Theorem 2.1]
in which collapse of generators is admitted. In view of the interest Ash’s theorem has
attracted over the past decade and its connections with other areas of Mathematics (see
[5, 6, 18]), it appears to be worthwhile proposing this as an open problem.

2. PRELIMINARIES

The reader is referred to [1] for general background and motivation on the theory of
finite semigroups. See also [10] for an emphasis on the profinite aspects of the theory.

In the three subsections of this section, we either recall results from other papers or
introduce preliminary results and notation which will play a role in the development of
the main results. '

We denote by Sl the pseudovariety of all finite semilattices. For a pseudovariety H
of groups, let H denote the pseudovariety consisting of all finite semigroups all of whose
subgroups lie in H.

2.1. CONTENT, 0, 1 FUNCTIONS Let S be an A-generated semigroup, that is, a function
¢: A — S is given whose image generates the semigroup S. We say that S has content
function ¢ if ¢ : S* — P(A) is a monoid homomorphism into the semilattice of all
subsets of A under union such that c(«a) = {a} for every a € A. Thus, there is at most
one content function on the A-generated semigroup S. We shall always denote content
functions, irrespective of the semigroup, by ¢. Assuming S has a content function, we
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define for each s € S, 0(s) to be the set of all s; € S? such that there is a factorisation
s = 81a83 with ¢(s;) # ¢(s) = ¢(s1)U{a}; the set of all such a € A is denoted by 0(s). The
sets 1(s) and 1(s) are defined dually. While the sets 0(s) and 0(s) are always nonempty
they need not be singletons. The semigroup S is said to have 0 (respectively 0, 1, 1)
function if 0(s) (respectively 0(s), 1(s), 1(s)) is a singleton for every s € S. The free
semigroup A* and the free band on A both have 0, 0, 1, T functions.

From [9, Section 3], it follows that, for every finite A-generated semigroup S, there is
an A-generated finite semigroup T with content, 0, 0, 1, and 1 functions for which there
is a homomorphism T" — S which respects the choice of generators (generally speaking,
a semigroup T for which there exists such a homomorphism is called an ezpansion of S).
The idea is to first find an (easy) expansion of S which has a content function and
then apply the Birget expansion to that to obtain the other functions. If S lies in
a pseudovariety which contains Sl and is closed under Birget expansion, then it follows
that S has an expansion in the same pseudovariety which has content, 0, 0, 1, T functions.
This holds for instance for the pseudovarieties CR. {16] and H [13, XI1.(9.4)] for every
pseudovariety H of groups and therefore also for CR N H. By a standard argument,
the free pro-V semigroup on a set A, 2,4V, has content 0, 1, 0, T functions provided V
contains S] and is closed under Birget expansion. For later reference, we summarise the
relevant results as follows.

PROPOSITION 2.1. Every finite A-generated semigroup has a finite A-generated
expansion which has content, 0, 0, 1, and 1 functions.

PROPOSITION 2.2. For every pseudovariety H of groups, Q4(CR N H) has
content, 0, 0, 1, and T functions.

2.2. GRAPHS AND SEMIGROUPOIDS By a graph I" we mean a set partitioned into a set
V(T), of vertices, and E(T'), of edges, together with two unary operations o,w : E(I') —
V(T') giving the initial and end vertices for each edge. A semigroupoid is a graph endowed
with a partial associative operation on edges such that, for two edges s and ¢, st is defined
if and only if ws = ot, and then a(st) = as and w(st) = wt.

Graph and semigroupoid homomorphisms are defined as functions sending vertices
to vertices and edges to edges and respecting the operations involved in each case. A
subgraph (respectively a subsemigroupoid) of a graph (respectively semigroupoid) T is
a structure of the same kind on a subset A of I" such that the inclusion A — I"is a
homomorphism. Products and coproducts are also defined in the natural way.

A semigroupoid homomorphism S — T is said to be faithful if it is injective on
each set of edges {s € E(S) : as = vy, ws = vy} with v),v; € V(S), and it is said
to be a quotient homomorphism if it is surjective and it is injective on V(S). We say
that a semigroupoid S divides a semigroupoid T if there exists a semigroupoid U, a
faithful homomorphism U — T and a quotient homomorphism U — S. A pseudovariety
of semigroupoids is a class of finite semigroupoids which contains the 1-vertex l-edge
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semigroupoid and is closed under taking divisors and finitary products and coproducts.
The pseudovariety of all finite semigroupoids is denoted Sd.

A relational morphism p : S — T of structures of the same kind (semigroups,
monoids, graphs, semigroupoids) is a relation g C S x T with domain S which is a
substructure of S x T'.

For a graph T, denote by I't the free semigroupoid on I', which has the same vertex
set as I' and whose edges are the nontrivial paths of I". If W is a pseudovariety of
semigroupoids and [’ is a finite graph, then we say that a subset L of F(['") is W-
recognisable if there is a semigroupoid homomorphism ¢ : I't — S into a member of W
such that ¢~'pL = L.

For a semigroupoid S, we define its consolidation Scq to be the semigroup FE(S)
under multiplication of edges, with a zero adjoined if S has edges which cannot be
multiplied, such products being then defined to be zero. The set of edges with beginning
and end at a given vertex v, if nonempty, is a semigroup under edge multiplication and it
is called the local semigroup at v. A semigroup S is viewed as a 1-vertex semigroupoid,
namely as the local semigroup at the single vertex. Note that, for a semigroupoid S, the
natural homomorphism S — Sgq is a faithful homomorphism. _

For a pseudovariety V of semigroups, its global is the pseudovariety of semigroupoids
gV generated by the members of V viewed as semigroupoids.

2.3. F-RECOGNISABILITY AND F-RATIONALITY Throughout this subsection, let B de-
note a profinite graph, meaning a projective limit of finite graphs. For a pseudovariety W
of semigroupoids, the free pro-W semigroupoid over B will be denoted by Q5 W. This
semigroupoid is characterised by the following universal property: there is a canonical
continuous graph homomorphism ¢ : B — QW and, if ¢ : B = S is a continuous
graph homomorphism into a semigroupoid from W, then there is a unique continuous
semigroupoid homomorphism & : QW — S such that $1 = ¢. Such free semigroupoids
are easily constructed, just as in the case B is finite and W is pseudovariety of semi-
groups, as the projective limit of all continuous graph homomorphisms B — S whose
image generates S (see [10, 11]). In the case where W is globally non trivial (that is;
it includes a semigroupoid with distinct coterminal edges), then since B is profinite, the
canonical mapping ¢ is injective and so we think of B as a subgraph of QgW.

We extend the work of the first author for the case of finite sets B, pseudovarieties
of semigroups and topological characterisations of recognisable sets (see [1, Section 3.6})
to show how the topology of 05 W is intimately related with certain subsets of the
free semigroupoid B* over the graph B. Actually, taking into account the intended
applications in this paper and elsewhere, we introduce the further restriction that B
be a clopen subset of Q4V for a pseudovariety V of semigroups and a finite set A.
Since elements of B can then be viewed as both elements of 4V and of QgW, where
convenient we distinguish the latter by writing (b) for b € B. More generally, for P C B,
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we write (P) to denote {(b) : b € P}.

Let By denote the intersection of B with the free semigroup A*. Note that the
metric structure of By determined by the natural (ultra)metric on A* associated with
the pseudovariety V (see [1, Section 3.4]) is such that B is its completion. We further
assume that By is a subgraph of B, that is, a(By) Uw(By) C By. Then V(By) and E(By)
are V-recognisable subsets of A* (see [1, Theorem 3.6.1]).

We say that a subset L of E((Bo)*) is (V,W )-recognisable if there is a homomor-
phism ¢ : (Bg)™ — S into S € W such that the restriction ¢|g, is uniformly continuous
and L = ¢~'pL. We also say that L C E((By)*) is (V,W )-rational if there are a finite
graph C, a W-recognisable subset K of E(C?), and a graph homomorphism A : By — C
such that each A~!c (c € C) is a V-recognisable subset of A*, and, for the natural ex-
tension u : (Bg)* — C* to a semigroupoid homomorphism, L = y~'K. In informal
terms, L is obtained from a W-recognisable language by substituting each edge by a V-
recognisable subset of (Bg). In case V = S is the pseudovariety of all finite semigroups
and W = Sd is the pseudovariety of all finite semigroupoids, then we say that a subset of
(By)* is F-recognisable (respectively F-rational) if it is (S,Sd)-recognisable (respectively
(S,Sd)-rational).

PROPOSITION 2.3. A subset L of E((Bo)*) is (V,W )-recognisable if and only
if it is (V,W )-rational.

PROOF: Suppose first that L is (V,W)-recognisable and let ¢ : B — S be as in the
definition of (V,W)-recognisable set. Since the sets V(By) and F(By) are V-recognisable
and | g, is uniformly continuous, there is a congruence of finite index 6 on A* saturating
V(B,) and E(Bg), whose restriction to By is contained in the congruence ker ¢|g,, and
such that A*/6 € V. In particular, the classes of ker ¢|g, are V-recognisable subsets
of A*. Let C be the quotient set By/ ker ¢|p,, which in fact is a graph in a natural
way since (g, : By — S is a graph homomorphism. Let A : By — C be the natural
projection. Then A~!c is a V-recognisable subset of A* for every ¢ € C. The mapping
¢lg, : By — S induces an (injective) graph homomorphism C — S which extends
uniquely to a semigroupoid homomorphism ¢ : C* — S. The various mappings are
depicted in the following commutative diagram:

By A C

[ |

(Bo)* - c+
N A

Let X = ¢~ '¢L and take u as in the definition of (V,W)-rational set. Then, for
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Wy,...,Wn € Bg such that (wy)---(ws) € E((By)*), we have the following chain of
equivalences: :

(w) -+ {wg) € L & (pwn) - (pwn) € oL
since  is a homomorphism on (By)* whose kernel saturates L
< (pwy) - - (pwn) € YK
since YK = ¢Y~1pL = ¢L as ¢ and ¥ have the same image
& (PAwy) - - (YAw,) € YK since Y = ¢|p,
< P((Awr)--- (Mwn)) € YK  since 1 is a homomorphism
< (Awy) - (Awy,) € K since v~ 19K = K
& (wy) - (ws) € K.

This shows that L is (V,W)-rational. )

Conversely, assume that L is (V,W)-rational and let C, K, A, uz be as in the definition
of (V,W)-rational set. Let ¢ : C* — S be a homomorphism into a semigroupoid of W
recognising K. Then ¢ = 9u : (B)™ — S is a semigroupoid homomorphism and

ool = o7l YT IYK) = T lop WK = ¢ IYK = pT YT IYK = L,

which shows that L is (V, W)-recognisable. 0

Note that, if W = ¢g(W N S), that is if W is the global of a pseudovariety of
semigroups, then the semigroupoid S, and therefore also the graph C, in the above proof
may be taken to have just one vertex.

In particular, we have the following special case.

COROLLARY 2.4. A subset L of E({Bo)*) is F-recognisable if and only if it is
F-rational.

From the definition of QW it follows that this compact zero-dimensional space
has the initial topology for the homomorphisms ¢ into semigroupoids from W such ‘that
the restrictions ¢|p are continuous. In particular, the clopen subsets of the form ¢~1Q,
where ¢ : QgW — S is a homomorphism into a semigroupoid from W and Q C S, form
a basis of the topology of W, in which V(@5 W) and E(QgW) are clopen subsets.
We now express the edge part of this topology in terms of (V,W)-recognisable subsets
of E((Bo)+) .

THEQREM 2.5.

(a) A closed subset P of E(QgW) is clopen if and only if P N E((Bo)*) is
(V,W )-recognisable and dense in P.

(b) A subset L of E({Bo)*) is (V,W)-recognisable if and only if L = PN
E({Bo)*) for some clopen subset P of E(QgW).
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(c) A subset P of E(QgW) is clopen if and only if it is the closure in g W
of some (V,W )-recognisable subset of E((Bo)™).

PROOF: Let P be a clopen subset of F(2gW). By the remarks preceding the
statement of the theorem, since P is compact, there is a homomorphism ¢ : Qg W — S
with S € W and Q@ C S such that P = ¢~ !Q and ¢|p is continuous. Then P N
E((Bo)*) = (pl(aoy+) ' Q is a (V,W)-recognisable subset by the definition of such sets.
This proves half of (b). On the other hand, it is easy to verify that E((B;)*) is a dense
subset of E(Q5W). Since P is open, it follows that P N E((Bo)*) is dense in P, thus
proving half of (a).

For the converse in (b), assume that L is a (V,W)-recognisable subset of £ ({By)*).
Then there is 2 homomorphism ¢ : (By)* — S into a semigroupoid S from W and a
subset @ of S such that L = ¢~'Q and ¢|p, is uniformly continuous. By the universal
property of Q3 W there is a unique extension of ¢ to a continuous homomorphism  :
0sW — S. Let P = $7'Q. Then P is a clopen subset of E(QsW) and PNE((Bo)*) =
@leo+) @=L

For the converse in (a), suppose that L = PN E({By)*) is (V,W)-recognisable and
dense in the closed set P. By (b) there is some clopen subset @ of E(©2zW) such that
QN E((By)*) = L. Since E((Bo)*) is dense in E(QpW) and Q is open, L must be
dense in @. Since L is also dense in P and P is closed, it follows that P = @ and so P
is clopen.

Part (c) follows from (a) and (b). g

In particular, continuity of functions to and from QW may be expressed combi-
natorially in terms of (V,W)-recognisable languages. For later usage, we formulate the
following special cases. Recall that a function between topological spaces is said to be
open if it maps open sets to open sets.

Note that Theorem 2.5 (c) generalises the well known description of V-recognisable
languages [1].

COROLLARY 2.6.

(a) A function ¢ : A* = E((B,)*) is uniformly continuous with respect to V,
W (that is, it extends to a unique continuous function Q,V — E(QpW))
if and only if, for every (V,W)-recognisable L C E((Bo)*), ¢~'L is V-
recognisable.

(b) A uniformly continuous function ¢ : A* — E((Bo)*) with respect to V,
W, is such that its unique continuous extension 4V — E(Q15W) is open
if and only if, for every V-recognisable subset L of Q,V, oL is (V,W)-
recognisable.

The theory of F-rational languages can thus be developed as a generalisation of the
theory of rational languages of a finitely generated free semigroup. We shall use freely
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other results, such as the closure of the class of F-rational languages under the finitary
Boolean operations and left and right quotients. The following property will also be used
without further proof.

LEMMA 2.7. There is an algorithm to compute, for a given F-rational language
L C E({(By)*) and a given homomorphism 1 : (By)* — S into a finite semigroupoid S,
the set ¥L.

3. THE CHARACTERISTIC SEQUENCE

The characteristic sequence of a unary word (meaning a term in a free unary semi-
group) was introduced by Kadourek and Polék [14] in connection with their solution of
the word problem for free completely regular semigroups. A similar construction was
introduced by the second author in an earlier independent solution of the same problem
[19]. We are presently interested only in semigroup words, not involving the extra unary
operation, although the extension we shall consider of the characteristic sequence will also
extend, in a sense which we shall not analyze here, the Kadourek and Polsk definition
since the unary operation can be viewed as the local inversion z +— z¥~!.

For the remainder of this paper, we let A denote a finite set and for w € A we let
|w| denote the length of w (not to be confused with the notation | X| for the cardinality
of a set X). We define a map x : A* — (A*)* as follows: for w € A+ with |c(w)| > 1, let
x{(w) = (wy) - - - (w,) if w = ww;v;, Ic(w,-)l = |c(w)|—1, the last letter of u; (in case u; # 1)
and the first letter of v; (in case v; # 1) do not belong to e(w;), 0 € ] < - -+ < |up| < |wl,
and there are no other such maximal factors w; of w whose content misses just one letter
of the content of w. Note that, for w € A*, x(w) is always a word of length at least 2,
the first and the last letter being, respectively O(w) and 1(w). For w € A%, if w = uav
with a = 0(w) and u = 0(w), then we write 0'(w) = av. The function 1’ is defined dually.

The inverse image under x stands for the reconstruction of a word from its charac-
teristic sequence. This reconstruction is essentially obvious and is given in the following
lemma (see [15, Result 5.3)).

LEMMA 3.1. Letv={w) ---{wn) € (A*)*. Then v belongs to the image of x
if and only if n 2 2 and the following conditions hold:
e(wi)| = -+ = |e(wn)];
c(w;) # c(wiy1) and 1(w;) =0(wyyq) fori=1,...,n—1. }
Moreover, then the only w € A" such that x(w) = v is given by w = w;-0'(wy) - - - 0' (wy,).
In particular, the function x is injective.
For X C A, denote by [X] the set of all elements of A* of content X. See [1, Section

8.1] for an extension of the content function to implicit operations on pseudovarieties of
semigroups containing the pseudovariety S of all finite semilattices.
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3.1. EXTENSION TO Q4S Let V be a pseudovariety of semigroups containing S1, P C
0,4V, and let X be a subset of A with at least 2 elements. We define a graph 0y P
on the set of all factors v € (24V)! of elements of P such that |X \ c(v)| € {1,2} by
letting the vertices be those v such that IX \ ¢(v)| = 2 and the edges be the remaining
elements of 9x P, the adjacency functions being & = 0 and w = 1. Note in particular that
V(8xA*) and E(8xA*) are rational languages of A* which are in fact Sl-recognisable.

The significance of the graph dx A* comes from Lemma 3.1. Indeed, the character-
istic sequences of words of content X can be viewed as paths in the graph, although not
all paths fulfil the conditions of the lemma. More precisely, we have the following result.

PrOPOSITION 3.2. The set x[X] is an F-rational subset of the free semi-
groupoid (Ox A*)™.
PROOF: Define on dxA* a relation ~ as follows:
for all vy, v3 € V(OxAY), v ~ vy;
for wy, wy € E(OxA™), wy ~ wy if c(w;) = c(ws).
The quotient set C = dx A"/~ is then a finite set and it is in fact a 1-vertex graphin a

natural way such that the canonical mapping u: dx A* — C is a graph homomorphism.
Moreover, the ~-classes are Sl-recognisable subsets of A*.

For each edge w/~ of C, we have an associated “content” ¢(w/~) = ¢(w). For each
edge w = ;- - -z, of C*, with the z; € E(C), define

Xc(w) = {(C(xi),c(x,'+1)) i=1,...,n— 1}.

Define on E(C*) a relation =~ by letting, for coterminal wy,w, € E(C*), wy =~ w, if
w; and wy start with the same edges, end with the same edges, and x.(w;) = xc(ws).
Then S = E(C*)/~ is a finite set and a finite semigroupoid in a natural way so that
¥ : C*t — § is a homomorphism.

To complete the proof, in view of Lemma 3.1 and Proposition 2.3, it suffices to
observe that the set x[X] is precisely the set of all paths w € E((8xA*)*) such that
Xc(w) contains no pair (c(z), c(y)) with ¢(z) = c(y).

Let A, denote the multiplicative semigroup consisting of the matrices

o) Go) 60069

Then it is well known that the semigroupoid S in the proof of Proposition 3.2 belongs
to the global of the pseudovariety V(Az) of all so-called I-testable finite semigroups (see
[13, 4]). Hence, in the terminology of subsection 2.3, we have the following result.

COROLLARY 3.3. The set x[X] is an (Sl,gV(Az))-recognisable subset of
E((@x4%)").
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We wish to extend the function X to continuous functions [X] — ﬁax-ﬁ ,s5d and
x] - —ﬁaxﬁ ,crG, where [X] is the closure of [X] in §24S and Q4CR respectively.
By Corollary 2.6, the existence of such functions means the uniform continuity of x
with respect to various uniform structures and translates combinatorially in terms of
the inverse image under x of certain F-rational languages being rational languages of a
certain type.

LEMMA 3.4. Let L bearational language of A* and suppose that it is recognised
by a homomorphism ¢ : AT — § onto a finite semigroup S possessing content and 0
functions. Then O(L) and 0'(L) are both recognised by ¢ and L can be partitioned into
a finite number of rational languages L; such that L; = 0(L;)0'(L;) with each of the
languages 0(L;) and 0'(L;) recognised by .

PRrooF; Note that @0 = Op. On the other hand, for s € ¢L and s = 5,52, we have
(p7's1) (¢ 's2) C @~ 's C L. Taking s, = 0(s), we conclude that O(L) = J{¢7's1: 51 €
0(¢L)} and 0'(L) = U{p 's2:s€ oL, s=0(s) - s,}. Finally, for each s € L and each
s such that s = 0(s)- sz, let L, ,, = (¢710(s)) (¢"'s2). Then the rational languages L, ,,
partition L into finitely many parts and 0(L,,,) = ¢~20(s), and 0'(L,s,) = ¢~ 'so.

By Kleene’s Theorem, we obtain the following result. '

COROLLARY 3.5. Let L be a rational language of A*. Then O(L) and 0'(L) are
also rational languages and there is a partition of L into finitely many rational languages
L; such that L; = O(L,)O’(L,)

We can now show by Corollary 2.6 that x|(x) is uniformly continuous.

PROPOSITION 3.6. For every F-rational subset L of E((8xA*)*), the lan-
guage x~'L C A% is rational.

PRrROOF: In this proof we restrict our attention to F-rational subsets of L that are
components of L under various decompositions. Since, say by Theorem 2.5, the intersec-
tion of two F-rational subsets of E({OxA*)*) is again F-rational, by Proposition 3.2 we
may assume that L C x[X]. By Lemma 3.1, it follows that x~!L consists of all words of
the form wy - 0'(wsy) - - - 0'(w,) such that (w;){wy)---(w,) € L. Let C, K, ), u describe
L as in the definition of (8, Sd)-rational set. Since Sd = ¢S, we may assume that C is a
1-vertex graph.

By partitioning K into a finite number of rational languages, we may assume that
all words in K start with the same letter x5 € E(C). By introducing a new letter in C,
if necessary, we may assume that zp only occurs as the first letter of words in K. By
assumption, each language A~z C A* (z € E(C)) is rational and so, by Corollary 3.5,
so is 0'(A~'z). Hence x~'L is the language obtained from K by substituting zo by A~z
and the remaining z € E(C) by 0'(A~!z). Now, it is well known and easy to show that,
if K is a rational language over a finite alphabet, then by replacing all letters by rational
languages of A*, we obtain a rational language of A*. Hence x™'L C A is rational. 0
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Let ¢ : AT — S be a homomorphism onto a finite semigroup with content, 0,
and 1 functions. We associate with S and a subset X of A with at least 2 elements a
semigroupoid S 'x defined as follows. The vertices of §x are the elements of .S! whose
content is contained in X but miss precisely two elements of X. The edges of Sy arejust
the elements of S whose content is contained in X and miss at most one element of X.
The adjacency functions are given by a(s) = 0(0(s)) and w(s) = 1(1(s)) for edges s of
content X and by a(s) = 0(s) and w(s) = 1(s) for edges whose content misses a letter
of X. The product s; ¢ s, of consecutive edges s, s2 € E(§A) is obtained by taking s;s5
where s} is any element of S such that s, = a(sp)s,. If 54 is another element of .S such
that s; = a(s;)sh, then, taking an arbitrary t € S such that s; = tw(s;), we conclude
that

$189 = tw(s1) 55 = ta(ss) sh = ta(se) sh = tw(sy) s5 = 8155.
Similarly, we can show that w(s;54) = w(s,), while obviously a(s;s,) = a(s;). Hence the
product o is well defined and it is easily verified that it is associative, thus showing that
Sy is indeed a semigroupoid.

Consider the function 8y A+ — Sx defined by sending each w € dx A* to @w and
note that it is a graph homomorphism since S has content and 0 and 1 functions. It is also
obviously uniformly continuous with respect to the metric structure of dx A* defined by
the natural metric on A" since it is a restriction of the uniformly continuous mapping .
This graph homomorphism extends uniquely to a semigroupoid homomorphism g x :
(Bx AT)T — Sx.

PrOPOSITION 3.7. The function x|ix) sends rational languages of A* to F-
rational languages of E({OxA*)*).

PROOF: Let L be a rational language of A* contained in [X].

Let ¢ : At — S be a homomorphism onto a finite semigroup S which recognises L.
Note that L is also recognised by any semigroup divisible by S. By Proposition 2.1, we
may thus assume that S possesses content, 0, and 1 functions.

Consider the semigroupoid Sx constructed above and the associated homomorphism
wsx : (OxATYY o Sx. We claim that xL = <p§llxgoL N x[X], which will establish the
desired result in view of Proposition 3.2.

If w € [X] and xw = (w;)--- (wn), then the path ((w)),...,{w,)) in the graph
Ox At (that is, the corresponding edge in the free semigroupoid (8xA*)*) is mapped
under ¢ to the edge product pw, ¢ --- 0 pw, which is easily recognised to be precisely
ow. Hence w € L if and only if yw € <p§,lxgaL and this proves the claim. 0

In view of Corollary 2.6, we have thus established the following result.
THEOREM 3.8. For each subset X with at least two elements of a finite alpha-

bet A, the characteristic sequence mapping x extends uniquely to a continuous mapping

x* m - ﬁaxﬁAsSd»
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where [X] denotes the closure of [X] in $48. Moreover, the mapping x* is open.

Let V, V,, and V; be pseudovarieties of semigroups such that V, 2 V; D Sl and let
W, W/, and W, be pseudovarieties of semigroupoids such that W, O W,. For each sub-
set X of A with at least two elements, the canonical projection py, v, : Q4V1 = 04V,
induces a continuous graph homomorphism 9xQ,4V; — x4V, which extends to a
unique continuous semigroupoid homomorphism ¢V, v, : Q5,7,v, W — Q4,5,v,W. We
thus have the following commutative diagram of continuous semigroupoid homomor-
phisms where, for a profinite graph I, the canonical projection QrW, — QrW, is also
denoted by pw, w,:

= Pwiw, —=
Qo,a,vi W1 ——— Q5 5,v, W2

Wy W2
vV vy,

In particular, we may define a (continuous) function X% w : [X] C 45 -85, 5,vW by
taking

Xé,w = qg’,vv © Psd,w © XX-
A question of interest in view of the applications in this paper is under what conditions
the function x{‘,,w factorises through the canonical projection psgy. Although some

examples are presented in the next subsection, we have no general characterisation of the
pairs V, W for which there is such a factorisation.

3.2. EXTENSION TO Q4CR From [15, Theorem 3.6]), one immediately deduces the
following result.
THEOREM 3.9. For any pseudovariety H of groups, if u,v € A%, then the iden-
tity w = v holds in CR. N H if and only if all of the following conditions hold:
1. c(u) = c(v);
2. CRNH [ 0(u) =0(v);
3. CRNH [ 1(u) = 1(v);
4. either |c(u)| =1l and Hru=wv, or |e(u)] > 1 and H | x%, oo u=
XSrnmsq?> Where X = c(u).
In the following we also use systematically the following result which follows from
(15, Proposition 2.2].
PROPOSITION 3.10. If H is a finitely generated pseudovariety of groups, then
the pseudovariety CR N H is locally finite.

. . H
We consider now the composite qg crng © Psa.gH © X]ix)-
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ProPosITION 3.11. For [X| > 2, the mapping x|ix) : [X] = (OxA*)* is
uniformly continuous with respect to the canonical pro-CR N H metric of At and the
canonical pro-(CR N H,gH) uniformity of (9xA*)*.

PROOF: Consider a Cauchy sequence (wy), in [X] (with respect to the canonical
pro-CR N H metric of A*). Let G € H and let ¢ : (xA*)* — G be a semigroupoid
homomorphism (where G is viewed as a one-vertex semigroupoid with the vertex missing)
whose restriction to the graph dxA* is continuous with respect to the canonical pro-
CR N H metric of At. We must show that there is some ng such that n > ng implies
PXWn = OXWnq-

Since the restriction of ¢ to 8x A* is continuous, it induces a rational partition of A*.
Since 9x At is itself a recognisable subset of A*, there is some congruence of finite index
# on A* which saturates every class in the partition and also the set IxA*. Let W =
V(G)V (V(A*/6) N G) where V(G) and V(At/6) are the pseudovarieties generated by
the indicated semigroups. Let S = Q,U where U = CR N W; so A*/6 € U. Note that
S is finite by Proposition 3.10. If 1 : (9xA*)* — (9xQ24U)* denotes the semigroupoid
homomorphism induced by the canonical projection A* — Q,4U, then ker C kery as
we now show. Note that ¢ is a literal homomorphism between free semigroupoids, in the
sense that it sends edges of the generating graph 8x A% of the first free semigroupoid to
edges of the generating graph dx Q,4U of the second free semigroupoid. Hence it suffices to
verify that ker |5, 4+ C ker ¢. Indeed, since A*/8 € U, we have ker 1|s, 4+ C 6 C ker .

Now, from the inclusion kerty C ker ¢, it follows that there exists a semigroupoid
homomorphism 6 : (OxQ4U)* — G such that 81 = . The situation is depicted in the
following commutative diagram.

At — [X]

Xﬁ,sa
xlx}

S Bx ATy Lo (95T, U)*

€
-—
\
\
\
o\
\
\

Since (w, ), is a Cauchy sequence in A*, there is ng such that, for all n > ng, S = w, =
Wy, Since in fact S = Q4 U, we also have U = w, = w,, for all n > ny. By Theorem 3.9,

W E x{saWn = XU saWn, for all n > ng. Hence, for n > ng, the following equalities
hold

PXWn = X saWn = OXP saWno = PXWn,

where the middle equality follows from the fact that G € W. g

COROLLARY 3.12. For each pseudovariety H of groups and each X C A with
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at least two elements, the mapping x induces a unique continuous function
~X Raval —=
XCRnﬁ,gH : [X] - anﬁACRnﬁ gH’

where [X| denotes the closure of [X] in Q4CRNH.

The following commutative diagram may help to keep track of the various functions
involved.

QOxﬁASSd sa
_ — XEpe, —
248 —[X] S Qoxa,cromSd (1)
lps.canﬁ ; lde,gH
— — )—v—- ngnﬁ.gH o _
Q.CRNH [X] Q5,0 crEgH

4. THE WORD PROBLEM FOR {,CR

It is now rather easy to give a “solution” of the word problem for the profinite
semigroups {2,CR. More generally, we have the following resuit.

THEOREM 4.1. For any pseudovariety H of groups and any u,v € $14S, the
pseudoidentity u = v holds in CR. N H if and only if each of the following conditions
holds:

c(u) = c(v);

CRNH k= 0(u) = 0(v);

CRNEH k 1(u) = 1(v);

either |c(u)| = 1and HiEE u=v, or |c(u)] > 1 and H | Xéanﬁ,sa“ =
v, where X = c(u).

N

XGRo sd
PROOF: Suppose first that the pseudoidentity « = v holds in CR N H. Since
S1 C CR N H, the profinite free objects over the pseudovariety CR N H have a content
function and so condition (i) certainly holds. Conditions (ii) and (iii) follow from the fact
that 04,CR N H possesses 0 and 1 functions as guaranteed by Proposition 2.2. Finally,
for condition (iv), the case |X| = 1 is obvious, so we assume |X| > 1. Then the condition
H Xérmﬁ,sa” = Xémﬁ,sa" is equivalent t0 psa,gn Xénnﬁ,sa“ = DPsdgH Xémﬁ,sa”
which in view of the commutativity of the diagram (1), means that SzéRnﬁ,gH Ps.CRAEY =
?éRﬂﬁ.yH Ps.crniY- The necessity of the condition then follows from the assumption that
Ps,crnHY = Ps,crnEY:
Conversely, suppose that the conditions (i)-(iv) hold. Let X = c(u). If |[X| = 1,
then clearly CRNH | u = v since the one-generated members of CR N H are the
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cyclic groups in H. So, assume that |X| > 1. It suffices to show that CRN'W | u=1v
for every finitely generated subpseudovariety W of H. For such a W we deduce from
Proposition 3.10 that there are words v/, v’ € A* such that c(u') = X = ¢(¢v'), CRN'W
satisfies v’ = u, v' = v, O(v') = O(xw), 0(v') = O(v), 1(v') = 1(u), 1(v') = 1(v), and W
satisfies the pseudoidentities Xgp g gqt = Xepnmsqt 2nd XéRn—ﬁ,S oV = Xopafisal-
From (ii) and (iii), it follows that CR N W satisfies 0(»') = 0(v') and 1(«') = 1(v').
From (iv), we deduce that W |= XéRnW,S JU = Xénnv_v,s 4"~ Hence, by Theorem 3.9, we
conclude that CR.N'W satisfies the identity »' = v’ and so also the pseudoidentity v = v
in view of the choice of u',v'. 0

REMARK. It is legitimate to ask in what sense Theorem 4.1 gives a solution of the word
problem for §4(CRNH). If H is a locally finite pseudovariety of groups with computable
finitely generated free objects, then Theorem 4.1 contains a solution of the word problem
for Q4(CR N H) but it is one which reduces to Theorem 3.9. In the general case, say if
u,v € Q%8S with o an implicit signature (see Section 5 for details) such that the functions
¢, 0,1, and X)C(Rnﬁ,s 4 are computable on 23S and take values within the same signature,
and the word problem is solvable for 23 H, then from Theorem 4.1 it follows that the word
problem for Q% (CR NH) is solvable in the usual sense. Thus, although strictly speaking
Theorem 4.1 does not solve any word problem in an algorithmic sense, it provides a
theoretical characterisation of equality over CR N H which yields the solution of word
problems for many members of CR N H.

5. OPEN PROBLEM: AN EXTENSION OF ASH’S RESULTS

Throughout this section, we fix a mapping g : A — B between finite sets. We denote
by V an arbitrary pseudovariety of finite semigroups.

By a p-relational morphism we mean a relational morphism g : S — T where S is
an A-generated semigroup, T is a B-generated semigroup and (a, ga) € u for all a € A.

A labelling of a graph T by a semigroup S is a function v : I' = S'. The labelling y
is said to be consistent if, for every edge x € E(I'), the equality (yaz)(yz) = ywz holds.

Two labellings v and é of a graph I respectively by semigroups S and T are said
to be y-related under a relational morphism y : S — T if, under the canonical extension
81— T for every z € T, (yz,0z) € p

We say that a labelling - of the graph I’ by the A-generated semigroup S is inevitable
with respect to a p-relational morphism u : S — T if there is a consistent labelling 6 of T’
by T which is p-related with . We also say that -y is (V, g)-inevitable if it is inevitable
with respect to every p-relational morphism g :S — T with T € V. In case B = A and
o is the identity function, we then say that v is V-inevitable. The pseudovariety V is
said to be hyperdecidable if there is an algorithm to decide whether a labelling of a finite
graph by a finite semigroup is V-inevitable.
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The following result extends [3, Proposition 3]. The proof is obtained by a straight-
forward adaptation of the proof of the original result and is therefore omitted.

PROPOSITION 5.1. A labelling v of a finite graph T by a finite A-generated
semigroup is (V, p)-inevitable if and only if it is inevitable with respect to the canonical
p-relational morphism v = po ¢~ where ¢ : Q48 — S is the homomorphism induced
by the choice of generators and 7 : Q4S — QpV is the only continuous homomorphism
whose restriction to A is equal to p.

By an implicit signature we mean, as in [7], a set o of implicit operations on finite
semigroups which contains the basic semigroup multiplication. Profinite semigroups are
then viewed naturally as o-semigroups. In particular, for a pseudovariety V of semi-
groups, the o-subsemigroup of 4V generated by A is denoted by Q9V. This is easily
seen to be precisely the free object freely generated by the set A in the variety of o-
semigroups generated by V.

The most commonly used implicit signature consists of the basic semigroup multi-
plication together with the w — 1 power which associates to each element s of a finite
semigroup S the inverse s*~! of s**! = ss* in the subsemigroup generated by s, where
s“ denotes the only idempotent power of s. This signature is denoted by x. In particular,
%S is the free object on the set A in the unary semigroup variety for which w — 1 is the
unary operation.

Given an A-generated finite semigroup S and a pseudovariety V of semigroups, the
canonical (0, p)-relational morphism p$; : S — NGV is the composite gow ™" of the inverse
©~! of the unique homomorphism of o-semigroups ¢ : Q4S — S, determined by the
choice of generators, with the natural homomorphism of o-semigroups 2: Q23S — Q%V
determined by the mapping g. We say that the pseudovariety V is (o, g)-reducible if
a labelling of a finite graph by a finite A-generated semigroup S is (V, g)-inevitable
if and only if it is inevitable with respect to the canonical (o, p)-relational morphism
vy 0 S = QFV. In case p is the identity function, we say that V is o-reducible for
A-generated semigroups if it is (o, g)-reducible. Finally, we say that V is o-reducible if,
for every finite set A, V is o-reducible for A-generated semigroups.

Now, Ash’s inevitability theorem may be phrased as stating that G is s-reducible
(see [7, 8]). In the next section, we show that x-reducibility of CR follows from a stronger
property which we now state as an open problem.

PROBLEM 5.2. Isit true that, for every (onto) mapping ¢ : A — B between finite sets,
G is (k, p)-reducible?

While we have no specific evidence that the answer should be affirmative, the exten-
sion of Ash’s results which it would provide does not appear to be very significant. Yet, in
trying to extend Ash’s arguments to this situation, one quickly finds that the apparently
harmless collapse of generators produced by g does not allow Ash’s proof to carry through
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in a straightforward manner. On the other hand, the compactness argument that led to
Proposition 5.1 does not require much change to handle the collapse in generators. So,
at least it appears that to conjecture an affirmative answer to the problem is reasonable.
The real motivation comes from Theorem 6.4.

6. ON k-REDUCIBILITY OF CR

In this section we shall see that if Problem 5.2 has an affirmative answer then the
pseudovariety CR is k-tame (that is, CR is x-reducible).

Let A be a non-empty set and S be a finite A-generated semigroup that has content,
0 and 1 functions defined on it. Denote by ¢ : ©4S — S the natural homomorphism that
extends the identity map on A. Our aim is to show that, given a finite graph I', with
k vertices, and a labelling v : I' = S?, we can decide whether there exists a labelling
§: T — (2245)! such that ¢6 = v and pcrd is consistent. Here pcr : 245 — Q4CR is
the canonical projection. In other words we wish to show that we can decide whether v is
CR-inevitable. Following [7] we shall aim at the more refined property of k-reducibility,
namely the following property: v is CR-inevitable if and only if there is a labelling § as
above, but which takes its values in (Q%S)!. The converse is immediate.

Note that, if the labelling v as above can be lifted to a labelling & over Q%S such
that pcrd is consistent, then one may effectively construct such a labelling. Indeed, we
may recursively enumerate the candidate labellings over the recursively enumerable set
2%S. For each candidate 4, we may compute é and check whether it is equal to v. We
may also compute the labelling pcré to test whether it is consistent using the solution
of the word problem for CR.

We shall show that there exists a finite computable subset P of (25S)! such that
for every finite graph A of at most m vertices and every labelling 7 : A — S!, 7 is
CR-inevitable only if there is a labelling 7 : A — P such that o7 = 7 and pcrr7 is
consistent, Observe that if two coterminal edges of A are labelled with the same element
of S then they may also be labelled with the same element of 5S. So we may assume
A has at most | S|+ 1 distinct coterminal edges. Therefore we need consider only finitely
many graphs with at most m vertices; of course there are only finitely many S-labellings
of these. So if CR is x-reducible, then there must exist such a computable set P.

In order to show that CR. is k-reducible we shall make use of Theorem 4.1. Con-
dition 4 of the theorem involves testing the function xZg g4, where B has at least two
elements; this is obtained by composing x® with a projection of _Qagﬁ »s5d. Recall
by Theorem 3.8 that x& : [B] — Q5,7,55d is a continuous map on the closure of
[B] = {w € B* : ¢(w) = B} that extends the function x. A modification of the semi-
groupoid Sp of Section 3.1 will play an important role in the application of Theorem
4.1; in particular we make use of its consolidation monoid (Sg)L4 (see Section 2.2). This
monoid can be defined in algebraic terms as follows.
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Let Sp be the B-generated subsemigroup of S! and consider the subsets
Z= {w € Sp: |B\c(w)| = 1}, T= {w € Sp: |B\c(w)| < 1} U {1}).
For w € T\ {1} define

~ ) 1(1(w) ife(w)=B
Lw) = { lw) ifc(w) # B

and define O(w) dually. The set Z generates the o-monoid (T°,0) for S with binary
operation defined for u,v # 1 by

TREY 2
uov:{ we'  if 1(u)

=0(v) where v =0(v)v'
0 if T(u) #0(v

} oru=0orv=0

and 1 is the identity element.

We shall later obtain a graph from T labelled by (2,,5,55d)%,; this is a monoid
in which we again let ¢ denote the binary operation. It will be convenient to identify
the partial semigroup E(Q,_5,5Sd) with the partial semigroup (%2, s,55d)ca \ {0} and
to assume it contains the range of xZ. Notice that (ﬁasﬁasSd)}:d is the closure of the
monoid ((33535)"); 4, Which is generated as a o-monoid by

Y = {w € T0sS: [B\c(w)| = 1}.

Define 9 : (Q,5,55d)&a — (79, 0) to be the unique homomorphism that extends the
action of ¢ on the generating set Y. Observe that if w € [B] then, by Lemma 3.1,
@(w) = ¥xPB(w). Furthermore since ¢, 1, and x? are continuous functions then on [B]J,
¢ =¢xB.

By [2, Proposition 2.3) the set (5,5,55d)ca\{0} embeds as a partial subsemigroup
in QyS (by an injective partial homomorphism u, say). The canonical homomorphism
A:0yS - (ﬁaa'ﬁasSd)cd that extends the identity map on Y is such that Ay is the
identity map on its domain. In effect, # and A interchange the binary operations ¢ and -.

Let us return to the problem of the existence of the set P.

If the labelling 7 of A is by elements from {a € St ’c(a), < 1} then, since S
satisfies a periodic law zP*? = z?, it can be easily seen that it suffices that P includes
{a},a¥* : a € 4,1 < i < p+q}. We proceed by induction, with the following assumptions
for some n, 1 < n < |A| and each subset B C A such that |B| = n. Let U = {w €
(Q25S)! : c(w) ¢ B}.

There exists a finite subset P’ of U N (R%S)! and a map 6 : U — P’ such that

(i) 82=20,60=00, 601 =10 and ¢f = ¢,
(i1} for each w,v € U,

pcr(u) = pcr(v) = perd(u) = pcrb(v).
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(iii) for every finite graph A with at most max{k, 3|S |} vertices and each la-
belling 7 : A — U such that pcr7 is consistent then pcrfT is consistent.

(iv) foreach u € P', 2z € P'Nyp~ ¢0(u) NpcrpcrO(u) and y € PN~ lpl(u)N
perPcrl(u) there exists ugzy € P’ such that p(uz) = ¢(u), z = 0(ugy),
¥ = 1(ugy) and ug, € pghpcr(v).

If |B] = 2 then for any w € U, ¢(w) < 1; it follows from the comments preceding the
assumptions that @ can be chosen in this case to satisfy (i), (ii), (iii) and (iv). The aim
is to show , given the assumptions, that P’ can be extended to a finite subset of (25S)*
and the domain of 8 can be extended to (©25S)! in such a way as to satisfy (i), (ii), (iii)
and (iv).

Notice that the graph Bgﬁgs has a subgraph, denoted by 80505S, with edge set
oY) = {8(w) : w € Y}. Let 8 : (Q,7,55d)Eg — (‘QaagQBSSd)Cd be the unique
continuous homomorphism that extends 8|y. Of course (QaaBQBSSd)Cd embeds by pas a
partial subsemigroup in {24(y)S. Since we are assuming that ¢ = ¢ on Y then ¢8 = 1.

For any r,s € Q285 such that c(rs) # B consider the graph A with E(A) = {e},
V(4) = {ale),w(e)} and a labelling 7 : A — QS given by Ta(e) = 7, 7(e) = s and
Tw(e) = rs. Then pcrT is consistent and hence, by the induction assumption (iii), pcrfT
is also consistent. Therefore pcr (8(r)8(s)) = pcré(rs).

In the rest of the paper A, S, ¢ and I" are as specified above and B is a subset of
A with |B| > 1. Let v: T' - S! be a CR-inevitable labelling of T' by the B-generated
submonoid of S via the labelling § : I' — (Q2S)?; that is, ¢d = v and pcrd is consistent.
Note that pcr and ¢ preserve content and commute with the 0 and 1 functions. Since
Pcrd is consistent then for any path in T from z to y we have c(6(z)) C c(6(y)).

r —5 (QBS

1 o=

(15CR)!

LEMMA 6.1. There is a labelling § : ' — (Q5S)! such that 6 = v, pcrd is
consistent, and for each z € T,
(i) ifcd(z) = B, then xBo(z) = é\XBJ(z) and, in particular, 06(z), 1§(2) € P/,
(i) ifcé(z) C B then é(z) € P'.
PROOF: By Lemma 3.1 and induction assumption (i), if w € [B] then 8xZ(w) is
in the range of x. Since #x2 maps [B] continuously into ﬁeaBﬁBSSd then the range of
@\XB is within the range of x%. So for w € TB_] we may select a wy € [B] such that

8x® (w) = xB (we)-
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Define a labelling 6’ : ' = (258)! by

5 = {oa(z) i cile) # B
6(z)g i co(z2) =

We shall see that the labelling &' satisfies the requirements of the Lemma.

Suppose e € E(T') and cdw(e) # B. Then @8'(z) = ~(z) for z € {e(e), e,w(e)} by
the induction assumption (i), while by assumption (ii) and an observation following the
induction assumptions pcr (6’ (a(e))d’ (e)) = pcrd'wle).

Now suppose e € E(I') and céw(e) = B. By Theorem 4.1, G = X&g sa (6afe)d(e)) =
xBr sadw(e). If cda(e) = B then xPda(e) = u oz for some u € (Qp,7,55d)54\{0} and
z = 18a(e). Dually if cs(e) = B then xZ4(e) = y o v for some v € (0, 7,55d)5,\{0}
and y = 08(e). If cda(e) # B or cé(e) # B put z = dafe),u =1 or y = d(e),v =1
respectively. Then

xZ(6ale)é(e)) =uoxP(zy)ov and c(z) # B, c(y) # B.
The elements of ¢(z) can be listed without repetition as 1(z), 11(z), 111(z), . ... Hence

X7 (zy) = 0(zy) 0 0(1(z)y) 0 0(11(2)y) o .. o L(zy)

is a factorisation of x®(zy) by elements of Y; there are at most |c(z)|+2 factors. Likewise

x? (' e)é' )= u) 0 x2(8(z)6(y)) 0 6(v) and
X% (8(2)0(y)) —0( () © 0(1(8()8(y)) < 0(11(8()6(y)) © ... o 1(6(z)8(v)).

By the the induction assumptions and the observations following them, each factor of
xZ(6(z)0(y)) is respectively pcrpcr-related to the f-value of the corresponding fac-
tor of x(zy). So modulo pghpcr, the factors of 8x2 (Sc(e)d(e)) and xB(8'a(e)d!(e))
are identical. Furthermore by induction assumption (i), any factors of ng (6c(e)d(e))
and 8x? (6w(e)) are pgrpcr-related if the corresponding factors of x?(6a(e)é(e)) and
x5 (6w(e)) are. It follows from Theorem 4.1 that pcr(&'a(e)é(e)) = pcrd'w(e). Also,
we saw above that ¢ = ¥xB = ¢0x?, so for z € T and ¢(8(z)) = B we have
08'(2) = ¥xP6(2)s = YOx® (8(2)) = ¥5(2). |

In the remainder of this paper assume that § is as described in Lemma 6.1. We now
modify I" and its labellings 4 and ¢ to obtain a graph I';, with labellings v, and é; in
such a way as to reduce the problem to one in which all vertex labels have content B.
Let B = {b1,bs,...,b,} and d = byby...b, € QS.

Construct I'y from I' as follows. Let

V() =V({)u{¢} and E(N) =ET)u{e,:zeV(D)}
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where e, is a new edge from the new vertex £ to z. Define §; : ' — (Q5S)! by

61(2) = d ifz=¢ 5i(e) = 8(z) ife=e,
' ds(z) ifzev() s(e) ifee B(D),

and 773 = @d;. Since pcrd is consistent so is pcrd; by construction, whence v, is a
CR-inevitable labelling of I';. The converse is by the following lemma.

LEMMA 6.2. Let v, be a CR-inevitable labelling of T'y via 6, and let § : T —
(©28S)! be given by

d(xz) = b1(e;) for z € V(T') and é(e) = é,(e) for e € E(T).

If pcr (8c(e) - 6(e)) and pcrdw(e) take the same values under the respective functions c,
0 and 1 for each e € E(T') then v = ¢4 is a CR-inevitable labelling of T via é.

ProoF: This follows from an observation on the completely regular semigroup
(2CR)". Suppose u,v € (QpCR)! are such that 0(u) = 0(v), 1(u) = 1(v), c(u) = c(v)
(so uHv). Suppose w € (2pCR)! and wu = wv. We shall prove that this implies u = v.
If c(w) C ¢(u) then vwu¥u = uwv*v, and since vwu? = uwr” and is H-related to u
and v then u = v. Assume the result whenever c(w) C ¢(d) and proceed by induction.
If c(w) = c(d) € c(u) then there exists w;,w, € (QpCR)! such that w = w;w, and
wou = 1{wu) = 1(wv) = wsv; by the assumption then u = v.

For each e € E(T") we have pcr(6;a(e)d1(e)) = pcréiw(e) so pcr(déale)d(e)) =
pcr(déw(e)). Therefore, if pcr (6c(e)d(e)) and pcréw(e) take the same values under
the respective functions ¢, 0 and 1 then by the above pcr (da(e)d(e)) = pcréw(e) as
required.

We shall construct a graph I'; from I'y, labelled by (5855 555d)&q, from which ng’Sd
can be tested. An observation is needed for this. Suppose e = (z,y) is an edge from
z to y in I';. Since pcrd; is consistent then pcr(81(2)d1(e)) = pcrdi(y). We have
xB61(z) = u 0 18,(z) for some u € (Qp,5,55d)E, and

uo x5 (18, (z) - 06,(e)) ov if cdi(e) = B, some v € (Qp,57,55d)Eq

X" (6u(z)61(e)) = {uo X (16,(z) - 61(e)) if ¢, (e) # B.

However by Lemma 6.1, 16,(z) and 08,(e) or 8;(e) respectively are in Q3S. So there is a
finite o-factorisation of xZ(16,(z)-06:(e)) or x2(16,(z)- &1 (e)) respectively into elements
from Q3SNY. Let the factorisation be uj o uz ©... o u, for some natural number r; call
this the é,-factorisation of e with length r.

We can now construct and label ;. Let {zo : z € V(['1)} be a set disjoint from
V(T,) but of the same size. For each e = (z,y) € E(I',) with J;-factorisation of length r
let graph I', be as shown.
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The graph I'; is the union of the graphs I',, e € E(T';) such that the edges (zy,z) are
identified, for each z € V(I'1). Define &, : I; — (Q,,5,55d)Ly as follows. For each
e = (z,y) € E(T), with §-factorisation u; o us ¢... o u, and u,v defined as above, we
label I', by

b2(z0) = u, 82(z0,z) = 181(z), &(z) = xBb1(z) = b2(z0) © 82(z0, T),

02(Zio1, Ti) = wi, 82(xi) = Ga(xp) ouyoupo...0ou; for1 i<,

_Jv ifchi(e) =
62(x”y)—{1 if ¢by(e) # B.

Label the edge (yo,y) and its vertices as (zg,z) and its vertices were labelled, with y
replacing z. Notice that

62(Z0) © 82(Z0, T1) © ... 0 8a(Zr-1, ;) © &3(2,, y) = X° (61 (2)é1(e)).

Since pcrdi(y) = pcr(61(z)di(e)) then G | x&rsa(01(2)01(€)) = xEr sadi(v)
where XZg sq = BErx”; we have xZ(6;(z)81(e)) as a o-product of d,-labels of consec-
utive edges from zo to y and we have x28,(y) as the &,-label for y. Define the labelling
72 : Ta — (T°,0) by 72 = 6.

Recall that the set (Q5,7,5Sd)cd\{0} embeds as a partial subsemigroup in 0y S
by the injective partial homomorphism pu and the canonical homomorphism A : QyS —
(Qaga »s5d)cq is such that /\u is the identity map on its domain. As previously noted, the
continuous homomorphism 8 maps (Qaan »s5d)ca onto its subsemigroup (QMBQBSSd)Cd
and (QeaanBsSd )ca\{0} embeds by u as a partial subsemigroup in Qgy)S. The map
7= p6’52 now relabels I'; by the finitely generated profinite semigroup Q4(y)S such that
)\'I) 052

Let X = {pcrpcr(w) : w € 6(Y)} and p : 8(Y) — X be given by p(w) =
porPcr(w). Denote by p the unique continuous homomorphism that extends p, as in
the diagram.

(Qer)S)*

l/\

(T

We have seen that ¢ = 1[)5. As well, by Lemma 6.1, it follows that G [
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qu’cnﬁxB (6:(z)8:(e)) = gj’CRngdl(y). Hence by Theorem 4.1 and the construction
we get the next Lemma.

LEMMA 6.3. Let$, andy, = @6, be labellings of T'; by QS and S respectively.
Let n and ~y, be labellings of T'y by QyS and (T°,) respectively as constructed above
from &, for each e = (z,y) € E(T,). Then 7, is CR-inevitable via 6, if and only if for
each e € E(T";) the elements pcn(éla(e) . 51(6)) and pcréw(e) take the same values
under the respective functions ¢, 0 and 1, and

5(77(150)77(1?0,331) .. ~77(Zr—1,$r)77(zray)) = ﬁn(y)

Since 7, is a CR-inevitable labelling of I'; then the labelling v, of T, by (T°,¢) via
the labelling n of I'; by ﬁg(y)s is (G, p)-inevitable. So we can now apply the strengthened
version of Ash’s theorem to obtain a labelling ' of I'; by Q';(y)S via which v, is (G, p)-
inevitable.

However, before we apply the extension of Ash’s theorem, we modify the semigroup
(T°,0) so as to ensure that the labelling n' we obtain is compatible with the labels
obtained by Lemma 6.1. We also want to ensure that the labelling A% is compatible with
xZ; remember that An = 562 and d,-labellings are determined from xZ6;-labellings. Let
T(w) denote respectively T(w) or 11(w) according as c(w) # B or ¢(w) = B and dually
define 6(11)) Let

R={(6(z),5,6(y)) € 8(Y) x T x (Y) : {

and define a binary operation O on RU {0} by

(6(). 5,6())D(0(w), 1,0(v)) =

(6(z),s0,0(v)) if8(y) =0(u),s0t#0and Is # Ot
0 otherwise.

Let 9 : (Rys,7,55d)sq — (R®,0) be the unique continuous homomorphism such

that for w € E(60505S)
¥'(w) = (6(w), ¥(w), 6(w)).

For w € (Qy,5,55d)ca we define 0(w) € E(695025S) to be the initial edge of w. Dually
define 1(w). For u € QyS define 0(u) to be the initial term from Y to appear in u and
dually define 1(u). Notice that since d,-labellings are determined from x?6;-labellings
then ' Anp-labellings are non-zero

The labelling v, = 4/An of I’y by the finite semigroup (R° 0) is (G, p)-inevitable
via the labelling 7 of I'; by the finitely generated Qy(y)S. Remember that the restriction
of A and 8 to 6(Y) is the identity map on 8(Y") and that clearly 0\ = 0,1A = 1. So for
any labelling 7' of T3 by Qg(y)S such that ¥/An’ = 73, and any z € Ty, if cyy(z) = B
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then 07/ (z) = 607'(z) = 80n(z) = On(z) and dually 17'(z) = 1n(z). If cyy(z) # B then
7'(z) € 8(Y) so 7'(z) = 67/ (z) = On(z) = n(z).
THEOREM 6.4. IfProblem 5.2 has an affirmative answer then CR is k-reducible.

PROOF: Assume that v is a CR-inevitable labelling of I" by S that satisfies the
conditions of Lemma 6.1. We apply the strengthened version of Ash’s theorem to obtain
a labelling 7’ of I'; by elements of Qf 6v)S for which ¥'An' = +} is (G, p)-inevitable. We
shall assume without loss of generality that uAn’ = 7.

Any w € §5,)S has a finite factorisation as a product of terms from 6(Y). Since
Y'dn' = v, and the range of v excludes 0 then, by Lemma 3.1, for any z € T'; with
cn'(z) = B there exists a unique u € Q35S such that xZ(u) = Ay'(2).

Recall that n = 4186, where 86, = An is a labelling of T, by (Qpp,7,55d)5g. Consider
an edge e = (z,y) € E(T';). The é,-labels for the associated edges (zo,z), (v0,y) and
(zi-1,7i), 1 € i < r, of T, are all of content cardinality | B} —1. So for each of these edges,
7' and 7) take the same value. As well, since p7’ is consistent we may assume without loss
of generality that #'(z;) = n(z;), 1 € 7 € r. The remaining elements z € T, have content
B and so 07/(z) = 0n(z) and likewise 17/(z) = n(2).

Let us relabel I'y by 4}, again with e = (z,y) € E(T";). Put

x261(z) = M (z), x°81(y) = M'(y) and
xP81(e) = 06,(€) o A/ (zr,y) if cbi(e) =
d1(e) = é1(e) if cdi(e) # B.

Since ¥/ An’ = ' An, so YAn' = ¥An, and since 08, (e) o An'(z,,y) = xB8;(e) when cby (e) =
B, we get 98] = .

From the above it also follows directly that 06i(z) = 04,(z), 14i(z) = 16:(z),
067 (e) = 06:(e) and 16j(e) = 16,(e). Therefore to show that pcrd] is consistent it
suffices to show that condition 4 of Theorem 4.1 is satisfied. To do this we construct &,
from &} as ; was constructed from d; and prove that '

PuB(8y(z0) © 8 (0, T1) © - . . 0 8y(Tr—1, Z,) © By(2s,y)) = Pubéy(y).

Since 163(z) - 061 (e) = 16:(z) - 061(e) or 16} (z) - i(e) = 16:(z) - b1(e) according as
cb,(e) = B or not, then 8(z;_1,z;) = 62(Zi-1,2:) and dj(z;) = d2(z:), 1 < i < r. So
85(xim1, i) = An'(Ti-1, ;). We have 8)(zo) 0 18)(z) = 8)(z) = xBb{(z) = xBa'(z) =
Ay’ (zq) © 187 (z) so we can put 85(zo) = An'(zo). Also 06(e) 0 05(z,,y) = &) (e) = 057(e) o
' (z,,y) so we can put 85(z,,y) = A'(z,,y). Because 8an’ = A7y then

PuB (83 (z0) © 8(z0, T1) © . . . © 6(T,1, T1) 0 83(2+, 1))
= p )‘(77 (o) - (zo,xl)""'n,(xr—l’zr) 'nl(zny))
= p(n'(zo) - 7 (0, 71) - - 7' (Tr 1, 22) - 7' (21, 9)).
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But since pn’ is consistent, this equals p7'(y). We have prf'(y) = pury'(v) = pux®8;(v) =
PuBXB i (y) = Pubdy(y).

By the above, we have selected a labelling 6; of I'; by Q23S such that perd] is
consistent and such that for each edge e € E(T';) we have 06} (e) = 04, (e) and 16}(e) =
18,(e), or &;(e) = &:1{e) (according as cd(e) is B or not). The §; edge labels of E(I'1)
are the & labels for the vertices and edges of I'' By Lemma 6.2 we may now select
8 : T — (Q5S)? from 6} such that pé’ = v and 7 is CR-inevitable via ¢'.

The remainder of the proof is concerned with selecting elements of Q%S to make up
a set P that will satisfy the requirements of the induction assumptions when extended
to elements of QFS.

A subset {di,...,dp} of S is a CR-pointlike subset of S of content B if ¢(d;) = B
for 1 € ¢ < p and the labelling 7 of the p vertex chain as shown is CR-inevitable. Here
p<|St

1 1

—————» [ e .

d, dy dpoy  dp

If = is CR-~inevitable then by the above construction applied to 7 rather than v, and by
the portion of the proof above, there is a labelling £ of the chain by Qg(y)S C Q%S such
that e = n and pcre is consistent.

Let {Dy,..., Dy} be the set of all maximal CR-pointlike subsets of S of content B,
indexed by natural numbers < ¢. Suppose D = D; for some j and D = {d;,...,d,}. So
there is a set Rp = {uy,...,up} € QS such that o(u;) = d; and pcr(ui) = pcr(y;)
for all 4,7, 1 € 4,7 £ p. We shall make an assumption for each D and u € Rp.
Consider elements v € (1S such that ¢(v) = (u) and recall that ¢y = ¢, 0p = 0 and
1y = @l. If there exists such a v and v = 0(v)v;1(v) for some v; € (25S)? (that is, the
0 and 1 segments of v do not overlap) then we may assume the 0 and 1 segments of u
do not overlap. This is because in the last paragraph, if necessary we can modify the
labelled graph, and retain CR-inevitability, by adjoining to the vertex labelled ¢(v) a
path labelled as shown

_ p(v) el(v)
©0(v) (0(v)v1) w(v)

Alternatively if all such v have their 0 and 1 segments overlapping we may assume the 0
and 1 segments of u overlap in a word of minimal content.

As above the function xZ uniqely provides a finite o-factorisation of each u; € Rp
into components from 8(Y). For each u € Rp select v’ € (ﬁgaeﬁﬂsSd)}:d such that
xBu = 0(u) o v’ 0 1(u); if v’ = 1 then 10(xu) = 01(u).

We now construct 8 : QS — P to extend 8|y as described in the induction assump-
tion. Suppose v € 5S, c(v) = B and let D; be the maximal CR-pointlike subset of S of
content B with least index j such that pggrpcr(v) € Dj. There exists uniquely u € Rp,
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such that ¢(u) = ¢(v). Define §(v) = 80(v) 0 v’ 001 (v) where ' is constructed from v’ as
follows. If v’ # 1, let v’ have o-factorisation v’ = a; 0az¢... o a, into §(Y)-components.
For each i, 1 € ¢ £ s, define z; and y; as follows; if 10(u) or 01(u) or neither is in
¥~ (0(a)) N pcrPcr(0(a;)) then respectively let z; be §10(v) or 601(v) or 0(a;), and
likewise, if 10(u) or 01(u) or neither is in !9 (1(a;)) Npgrpcr (1(a;)) then respectively
let y; be 610(v) or 601(v) or 1(a;). Then define b; = a;, ,, as determined by induction
assumption (iv). Now define v' = by o by 0... o b,. Alternatively, if ' = 1 then we may
select v’ = 1. Without loss of generality we may assume that (u) = u for each u € Rp,.
Observe that ¢(a;) = @(b;) for each i so p(v) = p(u) = p(8(v). Also pcra: = pcrbi
for each 4, so modulo Pawcn, the factorisations of u and 6(v) are identical except in
their first and last terms. If pcr(v) = pcr(w) then modulo pghpcr, 6(v) and 9(w)
have identical first and last terms and are constructed from elements of Rp; as above, so
pcrO(v) = perb(w). Define

P= {G(U) ‘v € ﬁBS}.

The induction hypothesis (i), (ii) and (iii) can be easily seen to apply for content B terms.
With u € P and ¢(u) € B, and with x,y as specified in the induction assumption (iv)
we can construct ¢z, by replacing 0(u) and 1(u) in the o-factorisation of u by z and y
respectively and by replacing the other factors by compatible factors (as was done above
in the construction of 6(v)). 0
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