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ON AUTOMORPHISM GROUPS 
OF DIVISIBLE DESIGNS 

DIETER JUNGNICKEL 

0. Introduction. A (group) divisible design is a tactical configuration 
for which the v points are split into m classes of n each, such that points 
have joining number Xi (resp. X2) if and only if they are in the same 
(resp. in different) classes. We are interested in such designs with a nice 
automorphism group. We first investigate divisible designs with equally 
many points and blocks admitting an automorphism group acting regu­
larly on all points and on all blocks, i.e., with a Singer group (Singer [50] 
obtained the first result in this direction for the finite projective spaces). 

As in the case of block designs, one may expect a divisible design with 
a Singer group to be equivalent to some sort of difference set; as it turns 
out, one here obtains a generalisation of the relative difference sets of 
Butson and Elliott [11] and [20]. The Singer group will have a normal 
subgroup acting regularly on each point class if and only if each of its 
elements either fixes no or all point classes. In this case, the dual of the 
divisible design is also divisible with the same parameters and the same 
Singer group. These results are obtained in Section 2, after reviewing 
some properties of divisible designs in Section 1. Sections 3, 4 and 5 give 
constructions of divisible designs with Singer groups, using e.g. affine 
geometry, difference sets and uniform Hjelmslev matrices. In particular 
it is shown that the examples obtained from affine spaces by discarding 
either all hyperplanes parallel to a given line or one point and all hyper-
planes through it have a Singer group. In Sections 6 and 7 we study 
divisible designs with Xi = 0 (but not necessarily b = v) admitting an 
automorphism group acting regularly on each point class; these are 
equivalent to ' 'partial difference matrices" which generalise difference 
matrices, (generalised) Hadamard matrices and (generalised) balanced 
weighing matrices. This approach is in analogy to the one taken in the 
case of transversal designs by the author in [30]. Finally, we introduce 
semisymmetic designs in Section 8, generalising the semibiplanes of 
Hughes [25]. We prove some basic results and apply the constructions of 
the previous sections to obtain classes of examples. 

1. Divisible designs. Divisible designs have first been studied in [6]. 
In this section, we repeat the necessary definitions and some known re­
sults on such structures. 
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1.1 Definition. An incidence structure A = (^ , Se, I) is called a 
divisible design with parameters n, my k, Xi and X2 if the following condi­
tions are satisfied: 

(1.1) The point set SP is split into m classes of n points each. One writes 
p ~ qïi p and q are in the same class. 

(1.2) For distinct points p, q} we have 

, . (Xi ïip ~ q 

(Here [p, q] denotes the number of blocks through p and q as in [16].) 

(1.3) Each block contains exactly k points. 

The ^-classes are called the point classes. If b: — \B\ = mn = : v, then 
A is called square. If furthermore the dual structure A* of A is also a 
divisible design with parameters w, m, k, Xi and X2, then A is called 
symmetric. 

We warn the reader that what we have called "square" is often called 
"symmetric" in the literature; "symmetric" in our sense then is called 
"with the dual property". It is immediate from Definition 1.1 that a 
divisible design is a block design if and only if either n = 1 or Xi = X2. 
We will assume always n ^ 1 and Xx ^ X2 unless the contrary is stated. 
Such divisible designs may be called proper. In the literature, one often 
encounters the term "group" instead of "point class" and the term "group 
divisible design"; we avoid this terminology, as there is no connection to 
the algebraic group notion and as we will deal with groups acting on the 
point classes. 

1.2 PROPOSITION (Bose and Connor). Let A be a divisible design with 
parameters n, m, k, Xi and X2. Then: 

(1.4) Each point is on exactly r blocks, where 

r(k - 1) - n(m - 1)X2 + (n - l)X i ; 

(1.5) nmr = bk; 

(1.6) rk ^ nm\2. 

Proof. (1.4) is essentially proved in [6], (3.1) and follows in fact by 
counting all flags (q, B) with p I B for a fixed point p in two ways. So A is 
a tactical configuration, which implies (1.5). (1.6) is [6], Theorem 3. 

1.3 Definition. A divisible design with parameters n, m, k, Xi and X2 is 
called singular, if r = \\\ semi-regular, if r > Xx and rk = nm\<i\ and 
regular if r > Xx and rk > nm\i. 

This is the classification of Bose and Connor [6], where it is shown that 
singular divisible designs are equivalent to block designs (where each 
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point is taken n times) (see [6], Theorem 2). As this case is rather un­
interesting, we assume for the rest of the paper that all divisible designs 
considered are non-singular. One then has: 

1.4 PROPOSITION (Bose, Connor, Agrawal). Let A be a semiregular 
divisible design with parameters n,m,k,\i and X2. Then: 

(1.7) m divides k and each block meets each point class precisely c: = 
k/m times. 

(1.8) X2 > Xi; 

(1.9) b^v-m + 1; 

(1.10) Two distinct blocks have at most 

2r(k - 1) + Ax , , , 
—* - k + r - Xi 

points in common. 

Proof. (1.7) and (1.9) are [6], Theorems 4 and 5; (1.8) is in [13], 
Lemma 7.1; and (1.10) is due to Agrawal, see [43], Theorem 8.5.9. The 
case c — 1 is of particular interest: it is equivalent to Xx = 0. 

1.5 Definition. A semiregular divisible design with parameters n, m, k, 0 
and X2 (so c — 1, m = k) is called a transversal design with parameters n> k 
and X = X2. (The dual structure then is an (n, k; X)-net in the sense of 
[19].) A symmetric transversal design with parameters n, k = n\ and X 
(the value for k follows from (1.4)) is denoted an ST (w, X). 

1.6 PROPOSITION. Let A be a transversal design with parameters n, k and X. 
Then: 

(1.11) k ^ ( n 2 X - l ) / ( n - 1) 

with equality if and only if A is the dual of an affine design. 
Assume furthermore that A is resolvable, i.e., there is a partition of the block 

set into parallel classes such that each point is on precisely one line of each 
parallel class. Then 

(1.12) k ^ n\ 

with equality if and only if A is symmetric. 

These results have been proved independently by many authors (cf. 
the survey paper on affine designs and symmetric transversal designs by 
Mavron [38], who uses the term "hypernet" instead of "symmetric trans­
versal design"). The inequalities are in fact consequences of [6], Theorem 
5 and Corollary. A proof of (1.11) may be found in [19], Section 5 and 
one of (1.12) in [30], Section 3. 

1.7 PROPOSITION (Bose, Connor). Let Abe a regular divisible design with 
parameters n, m, k, Xx and X2. Then: 
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(1.13) r ^ k (equivalently, b ^ v); 

(1.14) If A is square, then [B, C] ^ max {Xi, ^2} for all B ?± C. 

(1.15) / / A is square and (k2 — nm\2, Xi — X2) = 1, then A is symmetric. 

Proof. (1.13) is [6], Theorem 6 and (1.14) and (1.15) are [13], Theorems 
5.1 and 6.2. 

1.8 PROPOSITION. (Bose and Connor). Let Abe a square regular divisible 
design with parameters n, m, k, Xx and X2. 

(1.16) If m is even, then k2-nm\2 is a square. If furthermore m = 2 mod 4, 
then k — Xi is the sum of two squares. 

(1.17) / / m is odd and n is even, then k — \i is a square and the equation 

(k2 - mn\2)x
2 + (-l)ro(,n-1>/2nX2y2 = z2 

has a non-trivial solution in integers x,y,z. 

(1.18) / / both m and n are odd, then the equation 

(k - XX)X2 + (- l)wC*-D/2W :y2 = Z2 

has a nontrivial solution in integers x,y,z. 

Proof. This is [6], Theorem 9 (cf. also [16], 7.1.13). 

In the square case with Xi = 0, there is a further non-existence result: 

1.9 PROPOSITION (Bose, Mielants). Let A be a square divisible design 
with parameters n, m, k, 0 and X2. Then there exists a symmetric block design 
with parameters m, m — k, m — 2k + n\2 and 

(1.19) n\2 j£ k, k - 1 => n\2 ^ * - V 7 ^ 

Proof. The first assertion is in [5] Theorem 3.2 as well as in [41] where 
(1.19) has been obtained as a consequence of the first assertion. 

Further results on the intersection structure of square divisible designs 
with Xx = 0 may be found in [35] including another proof of Bose's 
result 1.9. We finally mention a few more basic results which do not seem 
to be in the literature. 

1.10 LEMMA. A square divisible design has no repeated blocks. 

Proof. If A is regular, then the assertion is clear from (1.14), as Xi < 
r — k and X2 < k from k2 > nm\2. Now assume that A is semi-regular, i.e., 
k2 = nm\2. Using (1.7) and counting all flags (q, B) where Bip for a fixed 
point p and where q is from a point class not containing p, we get X2 = 
kc/n\ then from (1.4) 

\x = (wx2 - k)/(n - 1) = k{c - l ) / ( n - 1). 

Using k2 = nm\2, it is easy to see from (1.10) that two distinct blocks 
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intersect in less than 2X2 — Ai points. But 

2X2 — Xi = k(cn — 2c + n)/n(n — 1) 

and trivially en — 2c + n < n(n — 1), as c < n. 

1.11 LEMMA. Let a be an automorphism of a square regular divisible design 
A. Then a has as many fixed points as fixed blocks. 

Proof. Let N be an incidence matrix for A. As A is regular, N is non-
singular by the results of Bose and Connor (see [6], (3.7)). Now a induces 
permutation matrices P, Q with PNQ = N and thus P = NQ^N'1. 
Hence trace P = trace Q; but trace P is the number of fixed points of a 
and trace Q is the number of fixed blocks of a. 

This is in fact a standard argument due to E. T. Parker who first used 
it for symmetric designs. Using 1.11 and Burnside's lemma on the number 
of orbits of a permutation group (see e.g. [27], Result 1.14) we obtain 
at once 

1.12 PROPOSITION. Let G be an automorphism group of a square regular 
divisible design. Then the number of orbits of G on the point set equals that of 
orbits on the block set. 

1.13 COROLLARY. Let G be an automorphism group of a square regular 
divisible design. Then G acts regularly on the point set if and only if it acts 
regularly on the block set. 

2. Singer groups and relative difference sets. In this Section we 
consider square divisible designs admitting a Singer group and investigate 
the corresponding difference method. It may be remarked that Bose, 
Shrikhande and Bhattacharya [7] were the first to use difference methods 
for the construction of divisible designs. 

2.1 Definition. Let A be a square divisible design and let G be an auto­
morphism group of A acting regularly on both the point and block sets of 
A. Then G is called a Singer group for A. If G is abelian or cyclic, then A is 
also called abelian or cyclic. 

Remark. We would like to call a divisible design with a Singer group 
'"regular", but refrain from doing so as this would collide with the well-
established use of ''regular" as in Definition 1.3. 

In view of Corollary 1.13, it is sufficient to postulate one of the two 
conditions in Definition 2.1 provided that A is regular. Note that Corol­
lary 1.13 fails if A is not regular; a counterexample is obtained by con­
sidering the symmetric transversal design obtained from an affine trans­
lation plane by discarding a parallel class of lines and taking G to be the 
translation group (and similarly for affine spaces). 

https://doi.org/10.4153/CJM-1982-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-018-x


262 DIETER JUNGNICKEL 

2.2 PROPOSITION. Let Abe a square divisible design with a Singer group G 
and choose a point p of A. Then N: = {g £ G: pQ ~ p\ is a subgroup of G. 
Furthermore, the point class of the point q = ph is pN+h. Also, N is normal 
in G if and only if each g Ç G satisfies the following condition: 

(2.1) x ~ x9 for some point x implies y ~ yQ for all points y. 

Proof. As Xi ^ X2 and as the point classes are defined by the joining 
number Xb it is clear that every automorphism of A respects the relation 
~ . Thus N is a subgroup of G. Now let q = ph and n G N; then p ~ pn 

implies q = ph ~ pn+h^ from the regularity of G we see that the class of q 
is precisely pN+h. Then the group Nq defined in analogy to Np = TV is 
obviously 

(2.2) Nq= -h + N+h. 

Now if (2.1) holds, we must have NQ = N because of the regularity of G; 
thus N is normal in G in this case by (2.2). Conversely, if N is normal in G, 
then Ng = N for all q which implies (2.1). 

We remark that (2.1) is automatically satisfied if G is abelian, as then 
any subgroup is normal. In this case N is uniquely determined, and we 
will use the symbol N then always in this sense. If a non-abelian Singer 
group nevertheless satisfies (2.1), it will be called normal. The divisible 
design A then will also be called normal. We will exhibit some examples 
not satisfying (2.1) in Section 4. Our next goal is to show the equivalence 
of divisible designs with a Singer group and of a generalisation of the 
relative difference sets of Butson and Elliott. 

2.3 Definition. Let G be a group of order nm and let TV be a subgroup of 
G of order n. Then a ^-subset D of G is called a relative difference set with 
parameters n, m, k, Xx and X2 (relative to N) or briefly an (n, m, k, \ h X2)-
RDS, provided that 

(2.3) The differences d — d' (d,df G D,d j* d') contain each element of N 
(excepting 0) precisely Xx times and each element of G\N exactly 
X2 times. 

Elliott and Butson [20] have considered the special case of a normal 
subgroup N and of Xx = 0. This had earlier been introduced for cyclic 
groups G by Butson [11]. Before proving the announced equivalence 
result, we will give some examples: 

2.4 Examples, (i) {0, 1} is a (2 ,2 ,2 ,0 , l ) -RDSinZ 4 . 
(ii) {1, i,j, k} is a (2, 4, 4, 0, 2)-RDS in the quaternion group, 

(iii) {0, 1, 4, 6} is a (2, 7, 4, 0, 1)-RDS in Z14. 
(iv) {0, 1, 2, 4, 9} is a (2, 6, 5, 0, 2)-RDS in Z12. 
(v) {(0, 0), (1,0), (0, 1), (1, 1), (1, 2), (2, 2)} is a (3, 3, 6, 3, 4)-RDS 

in EA (9). 
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(vi) {(0, 0), (0, 1), (1, 0), (1, a), (3, 0), (3, 1 + a)} is a (4, 7, 6, 2, 1)-
R D S i n Z 7 0 EA (4). 

(vii) {(0, 0), (a, 0), (0, 1), (1, 1), (0, 2), (1 + a, 2)} is a (4, 3, 6, 2, 3)-
RDS in EA (4) 0 Z3. 

Here (and in the remainder of the paper) Zw denotes the cyclic group 
of residues modulo w, and EA (q) denotes the elementary abelian group 
of order q (for prime powers q). 

We note the following equation which follows trivially from counting 
the differences arising from D: 

2.5 LEMMA. Let D be an (n, m, k, Xi, X2)-RDS in G. Then 

(2.4) k(k - 1) = n(m - 1)X2 + {n - 1)XL 

2.6 Definition. Let G be a group and D a subset of G. Then the incidence 
structure 

devD: = (G, {D + g: g Ç G}, 6) 

is called the development of D. 

2.7 THEOREM. Let G be a group of order nm and D a k-subsetof G. Then 
dev D is a divisible design with parameters n, m, k, Xi and X2 admitting G 
as a Singer group if and only if D is an (n, ra, k, Xlf X2)-RDS in G relative 
to some subgroup N of G of order n. Furthermore, all divisible designs with 
a Singer group may be represented in this way. 

Proof. Clearly dev D has constant block size k. Consider any two 
distinct elements g, g' of G and a block D + x of dev D. Then g, g' Ç D + x 
if and only if g = d + x and g' = d' + x for some d, d' G A i.e., if and 
only if g — gf — d — d' and g = d + x. Thus we have shown 

(2.5) [g,£'] = IKd.d'M,**7 £D,g-g' = d-d'}\. 

Now assume that D is an (w, w, k, Xi, X2)-difference set in G. Take as 
point classes of dev D the right cosets N + x. Then by (2.5) and the 
definition of a relative difference set, we have [g, gr] = X2 if and only if 
g - gf G G\N and 

[g>g] = *i**g- g' £ N <&g~ g\ 

So dev D is a divisible design with the desired parameters. Also, G acts 
regularly on the point set of dev D by defining the action of g Ç G by 

(2.6) xf->x + g, D + x\->D + x + g. 

(So iV is the group determined from the point 0 according to Proposition 
2.2.) If we consider blocks D + x, D + y as distinct if and only if x 9e y, 
then G is obviously also regular on the blocks of dev D and thus a Singer 
group. Lemma 1.10 then shows that in fact distinct blocks are also distinct 
as point sets. Conversely, let A be any divisible design with parameters 
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nt w, k} Xi and X2 admitting G as a Singer group. Choose a "base point" p; 
then any point q of A may be uniquely coordinatised as q = p°, g € G, as G 
acts regularly on the point set of A. Similarly, any block C may be 
uniquely coordinatised as C == Bh, h £ G, where B is a fixed "base block". 
Let D be the set of coordinates of all points q of B and let N be the 
subgroup of order n of G, determined by the point p as in Proposition 2.2 
so that the point classes of A are the right cosets N + x of N. Also G acts 
on A ^ dev D as described in (2.6). Then from (2.5) and the properties 
of a divisible design, we at once obtain that D is an (n, m, k} \ u A2)-RDS 
in G relative to N. 

Our next aim is to show that divisible designs with a normal Singer 
group are symmetric. We first prove 

2.8 PROPOSITION. Let D be an (n, m, k, Xb \2)-difference set in G relative 
to the normal subgroup N. Then D also satisfies 

(2.7) The differences — d + d' (d, d' £ D, d ^ df) contain each element 
of N {excepting 0) exactly \\ times and each element of G\N exactly 
A2 times. 

Proof. Consider the group algebra QG of G over the field of rational 
numbers, where we write G multiplicatively for notational convenience. 
Also, put 

S: = J^d, S*: = J^d~\A: = £ g and £: = ! > . 
d£D d£D (j£G ne N 

With these notations, the condition (2.3) for an RDS reads 

(2.8) 55* = k + A2,4 + (Xx - X2)£ = : C; 

similarly, the validity of (2.7) is equivalent to 

(2.9) S^S = C. 

As N is a normal subgroup of G, it is easy to see that C is in the center of 
QG- We try to find an inverse of the form x + y A + zB of C in QG-
This yields the equation 

(2.10) (x + y A + zB)C = xk + (x\2 + yk + ynm\2 + yn(\i — X2) 

+ zn\2)A + (*(Xi - X2) + zk + (Xi - \2)zn)B = 1. 

Now (2.10) has a (unique) solution provided that 

k + n( \ i — X2) ^ 0 and k + nm\2 + «(Xx — X2) ^ 0. 

The last term is always ?* 0, as it equals k2 + Xi by (2.4) ; again by (2.4) 
k + wXi — n\2 = 0 is equivalent to k2 = nm\2 — Xx. But by Theorem 2.7 
and (1.6), k2 ^ nm\2. Thus if k + n\\ — rih2 = 0, then 

(2.11) Xi = 0, * = n\2, k2 = wwX2. 
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We first consider the case k + n\\ — n\2 T6- 0. Then C is invertible and 
thus from (2.8) 5 is invertible too and in fact 5* = S~lC. (Note that left 
inverses and right inverses coincide in QG.) But then 5*5 = S~lCS = C 
as C is in the center of QG, which proves the assertion (2.9). It remains to 
consider the case (2.11). Then dev D is a transversal design admitting G 
as Singer group by Theorem 2.7. We want to show that dev D is sym­
metric, in this case. As dev D is square, it is sufficient to show that it is 
resolvable because of (1.12). In fact the block orbits of dev D under N 
define a resolution of dev D: Clearly no two blocks in the same orbit can 
intersect as they both meet the same point classes exactly once each 
(because Xx = 0) and as G acts regularly on the point set of dev D. But 
then each point is on a block in each orbit for reasons of cardinality. Thus 
two blocks D + x and D + y intersect exactly X2 times if and only if 
x — y £ G\N and not at all otherwise. The assertion (2.7) now follows 
from 

(2.12) [D + x, D + y] = \{(d,df): d, df G D, -d + d' = x - y}\ 

which is proved similarly as (2.5). 

2.9 COROLLARY. Let G be a group of order nm, N a normal subgroup of 
order n and D a subset of G. Then conditions (2.3) and (2.7) are equivalent. 

These results are trivial if G is abelian. For the case n = 1, they have 
been proved (in the non-abelian case) by Bruck [9] whose proof in fact 
inspired our arguments for Proposition 2.8. Using Proposition 2.8 and 
Theorem 2.7, we now immediately obtain 

2.10 THEOREM. Any divisible design A with a normal Singer group G is 
symmetric. Furthermore, the normal subgroup N of G acting regularly on 
each point class of A also acts regularly on each block class of A. 

We remark that Theorem 2.10 does not in general follow from Connor's 
result (1.15) which demands that A is regular and also satisfies the con­
dition 

(k2 — nm\2, Xi — X2) = 1. 

It would be interesting to decide whether or not the hypothesis of nor­
mality in Theorem 2.10 is essential; the author knows no examples of 
non-symmetric divisible designs with a Singer group. We now list some 
consequences of Theorems 2.7 and 2.10 and the results of Section 1. 

2.11 COROLLARY. The existence of a (symmetric) divisible design with 
parameters n} m, k, Xx, X2 admitting a normal Singer group is equivalent to 
that of an (n, my k, \ïy X2)-RDS relative to a normal subgroup. In particular, 
the existence of an ST (n, X) admitting a normal Singer group is equivalent 
to that of an (n, n\, n\, 0, X)-RDS relative to a normal subgroup. 
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2.12 COROLLARY. Let D be an (n, m, &., 0, X)-RDS relative to a normal 
subgroup. Then: 

(2.13) nX 9* k, k - 1 => wX ^ k - V F 

and if k2 > nm\,then (1.16) /0 (1.18) /wW. 

We will also require the following result in the case Xi = 0: 

2.13 PROPOSITION (Elliott and Butson). Let D be an (n, m, k, 0, X)-
RDS in G relative to N. Then 

(2.14) k g m; 

a/50, if Mis any normal subgroup of G contained in N, then {d + M: d £ D) 
is an (n/s, m, k, 0, Xs)-RDS in G/M relative to N/M, where s is the order 
of M. In particular, if N is normal in G, then there exists an ordinary differ­
ence set with parameters m,k}n\in G/N. 

Proof. These results are (in the case of normal subgroups N) in [20], 
Section 2. (2.14) follows, as the elements of D have to belong to mutually 
distinct cosets of N (otherwise we would obtain elements of N as differences 
from D). The same argument is used in proving the remaining assertion. 

Proposition 2.13 gives further restrictions on the existence of relative 
difference sets with \x = 0. It might be mentioned here that Shrikhande 
[48] has obtained existence conditions for cyclic relative difference sets 
(with arbitrary Xx but only in the regular case) and that Elliott and 
Butson [20] have obtained multiplier theorems which also give necessary 
existence conditions (only for Xx = 0). A recent paper on multiplier 
theorems is [36]. We will not make use of any multiplier results in this 
paper. 

2.14 COROLLARY. Let Abe a (symmetric) divisible design with parameters 
n, m, k, 0, X admitting a normal Singer group G (with normal subgroup N 
acting on the point classes). Furthermore let M be any normal subgroup of G 
contained in N. Then A admits an epimorphism a onto a symmetric divisible 
design with parameters n/s, m, k,0,\s (where s is the order of M) having 
G/M as a Singer group. Also, a satisfies 

(2.15) p ~ q => pa ^ qafor all points p, q (and dually). 

In particular, A is always the pre-image of a symmetric block design admit­
ting a Singer group. 

We finally mention special cases of two well-known results (see e.g. [16], 
1.2.13 and 1.2.14). 

2.15 PROPOSITION. Any abelian divisible design admits a polarity. 
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2.16 PROPOSITION. Let Abe a divisible design admitting a Singer group, 
represented in the form dev D as in Theorem 2.7. Then a permutation 
x i—> x* of the points of A is contained in the normaliser of G in the full 
automorphism group of A if and only if there exist a, b £ G and an auto­
morphism a of G satisfying 

(2.16) D<* = -a + D + b 

and 

(2.17) p* = -a + p<*} (D + x)* = D + b + xa for all p,x G G. 

In fact, the proof of Bruck [9], Theorem 3.1 may be immediately 
adapted to the situation considered here. It is natural to call a a "multi­
plier" for D, in analogy to the case for symmetric block designs. As 
already mentioned, Elliott and Butson [20] have in fact studied "numeri­
cal multipliers" of relative difference sets. We will not make use of this 
concept in this paper. 

In the following three Sections, we will show that various classes of 
divisible designs admit Singer groups and thus construct examples of 
relative difference sets (or vice versa). We will first consider the case 
Xi = 0 in Section 3 (for transversal designs) and in Section 4 (for k y^ #X2). 
Constructions for \i ^ 0 will be given in Section 5. Only some of these 
examples of relative difference sets will be new, but in the remaining cases 
the proofs are (in our opinion) considerably simpler. 

A relative difference set with parameters n, m, k, Xx = 0 and X2 = X will 
henceforth simply be called an (w, m, k, X)-RDS, omitting the parameter 
which is 0. 

3. Const ruct ions for Xi = 0, k = n\. By the results of Section 2, 
relative difference sets with \x = 0, k = n\ correspond to symmetric 
transversal designs ST (n, X) and have m = k. Examples 2.4 (i) and (ii) 
are of this type. We give one more non-abelian example, in fact a pre-
image of Example 2.4 (ii): {(0, 1), (0, i), (0, j ) , (1, *)} is a (4, 4, 4, 1)-
RDS in the direct sum of Z2 with the quaternion group relative to N = 
Z2 0 {1, —1}. We will obtain more non-abelian examples below. Of the 
examples given up to now, only the (2, 2, 2, 1)-RDS was in a cyclic 
group. This is no coincidence: 

3.1 PROPOSITION (Elliott and Butson). The only (n, n\, n\, X)-RDS in a 
cyclic group G is the (2, 2, 2,1)-RDS. 

Proof. See [20], Theorem 6.2. The case X = 1 is already in [23]. 

We now start with the case X = 1, i.e., with relative difference sets 
corresponding to affine planes with one parallel class discarded. (It is 
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easy to see that any ST (», 1) can be extended to a unique affine plane 
of order n by considering the point classes as new lines.) 

3.2 THEOREM. Let II be any affine plane coordinatized by a division ring R 
of order n. Then the ST (n, 1 ) 2 obtained from II by discarding one parallel 
class of lines of U admits a normal Singer group G. Gis abelian if and only if 
the division ring R is commutative. 

Proof. We may assume II to be defined on the point set (x, y),x}y Ç R, 
with lines 

[m, k] = {(x, y): mx + y = k} (m, k £ R) and 

[*] = l ( * , y ) : y 6 R\ 

(see e.g. [27], Chapters V and VI). We may also assume without loss of 
generality that the parallel class discarded consists of the lines [k] (k £ R). 
For (a, b) G R, consider the mapping aab with 

oiab' (x, y) i-» (x + a, y + ax + b). 

aab is an automorphism of 2 as 

aab: [m} k] t—» [m — a, k + ma + b — a2]. 

It is easily checked that 

Wab&a'b' z= Wa+a' ,b-\-b'+a'a't 

thus all aab(a, b Ç R) form a group G which obviously is abelian if and 
only if R is commutative. It is trivial to check that G operates regularly 
on both the point and block sets of 2. Also, the aab satisfy (2.1) as aab: 
[k] i—> [k + a]. Thus G is a normal Singer group for A. 

The division ring property is used in proving that aab is an automor­
phism; here both distributive laws are needed. Theorem 3.2 is essentially 
due to Hughes who gave this construction in [24] from the point of view 
of quasiregular collineation groups of projective planes. The result is for 
two reasons particularly interesting. First, there is no affine plane with 
a cyclic collineation group acting regularly on all points (by [23]) except­
ing the plane of order 2; but any plane over a commutative division ring 
admits a group regular on the points and regular on all lines except for 
those of one parallel class. (Omitting the last condition, this holds of 
course for every translation plane.) 

Secondly, it is widely conjectured that the only projective resp. affine 
planes admitting a Singer group (i.e., those corresponding to a difference 
set resp. an affine difference set) are the desarguesian ones. Theorem 3.2 
shows that the corresponding conjecture for symmetric transversal de­
signs with X = 1 is not true. We now use Theorem 3.2 to obtain relative 
difference sets. 
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3.3 THEOREM. Let qbe a prime power. Then there exists a (g, q, q, 1)-RDS 
in G, where G = EA (q2) is the elementary abelian group of order q2 if q is 
odd and G = Z4 © . . . © Z4 if q is even. 

Proof. We consider the desarguesian affine plane of order q in Theorem 
3.2, i.e., we take R = GF(q). By Corollary 2.11 and the proof of Theorem 
3.2, we obtain the existence of a (q, q, q, 1)-RDS in G, where G is defined 
on GF(q) X GF(q) by 

(3.1) (a, b) * (a', V) = (a + a', b + V + a'a). 

It remains to show that G has the structure asserted in the statement 
of the theorem. Now it is easily shown by induction on m that 

/ 7 \m ( i , m(m — 1) 21 . ,„ x (a, b) = I ma, rafr H a J in (G, *). 

Thus if q = pT (where p is a prime) then (a, 6) has order p for all (a, b) 9e-
(Q, 0) if p is odd ; and for p = 2, (0, 6) has order 2 for all b j* 0 and order 4 
for all (a, b) with a ^ 0. This implies the assertions on G. 

For q ^= p or p2, p 9e 2, relative difference sets with these parameters 
in EA (q2) have already been obtained in [20], Theorems 3.1 and 3.2. The 
arguments given in the proof of Theorem 3.3 remain valid for any com­
mutative division ring. If q = p2r, r 9e 1, p 9e 2, then there exists a com­
mutative division ring which is not a field (see [27], Theorem 9.12). The 
symmetric transversal designs constructed from such a division ring and 
from the Galois field are clearly not isomorphic (as the extension to an 
affine plane is unique and the affine planes are not isomorphic). This gives 

3.4 THEOREM. If q = p2r is a prime power with r ^ 1, p 9e 2, then there 
are at least two non-isomorphic symmetric transversal designs ST (n, 1) 
admitting EA (q2) as a Singer group. 

Proof. It only remains to check that the subgroup N is the same in 
both cases. But from the proof of Theorem 3.2 we see that N is the sub­
group of G of all a0b (b Ç R) and thus N = EA (q), as the additive groups 
of GF(q) and of any division ring of order q are isomorphic. 

If q = pT, r ^ 3, p 9e 2 then there are also non-commutative division 
rings of order q (see [16], 5.3.8). We will not consider the more complex 
situation for p = 2. We thus have 

3.5 THEOREM. If q = pT is a prime power with r ^ 3, p ^ 2, then there 
exists a normal (ç, q, q, 1)-RDS in a non-abelian group. 

We finally remark that the unique ST (4, 1) (unique as the affine plane 
of order 4 is unique) admits both an abelian Singer group (i.e., Z4 © Z4 
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by Theorems 3.2 and 3.3; explicitly, we may take 

{(0,0), (1,0), (0,1), (3,3)} 

as relative difference set) and a non-abelian normal Singer group as shown 
in the beginning of this section. Thus isomorphic ST's may admit non-
isomorphic Singer groups (as in the case of projective planes). 

Next, we apply Proposition 2.13 to Theorem 3.3 for a = pi+j, p a prime. 
Then we obtain (taking a normal subgroup of order pj) : 

3.6 THEOREM. There exists a {p\ pi+i, pi+j, pj)~RDS in an abelian group 
G whenever p is a prime and i, j are non-negative integers. Here, if p ^ 2, 
G = EA (p2i+i);ifp = 2, G = EA (2>) 0 Z4 0 . . . 0 Z4. 

Again, for odd p, the cases i = 1 and i = 2, j even, have already been 
obtained in [20], Theorems 3.1 and 3.2. As for p = 2, Elliott and Butson 
have obtained examples with i = 1 and j odd in EA (2j+2) in [20], 
Theorem 4.1. They have also shown (see [20], Lemma 6.1.3) that for 
p = 2 no relative difference set with the parameters given above can exist 
in an elementary abelian group when i -f j is odd. Note that this agrees 
nicely with Theorem 3.3. We will now generalise the construction of [20], 
Theorem 4.1 to obtain further relative difference sets with k = n\ and 
n = 2. 

3.7 THEOREM. Assume the existence of an ordinary difference set D\ with 
parameters 

(3.2) v = 4w2, k = 2u2 — u, X = u2 — u 

in a group H. Then D: = ({0} X Dx) \J ({1} X £>i) is a normal relative 
difference set with parameters 

(3.3) m = k = n\ = 4w2, n = 2, X = 2u2 

in G = Z 2 © F . Here D\ denotes the complement of Dx. 

Proof. First of all it is obvious that (0, 0) and (1, 0) do not occur as 
differences from D. Also, it is well-known that D\ is a difference set with 
parameters 4^2, 2u2 + u, u2 + u. Using this fact the assertion is easily 
checked. 

In [40], Menon has constructed difference sets with parameters 4w2, 
2u2 — u, u2 — u for all values u = 2s3 r with s ^ r — 1 by means of a 
direct product construction and by exhibiting examples for u = 1 and 
u = 3. Applying these results to Theorem 3.7, we in fact obtain 

3.8 COROLLARY. There exist relative difference sets with parameters (3.3) 
in G = Z2 © H for all values u = 2s3 r with s ^ r — 1. Here H is the direct 
product of r groups of order 36 and of s — r + 1 groups of order 4; each factor 
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of order 36 may be chosen to be either Z6 © Z$ or <S3 ® S3 (where S% denotes 
the symmetric group on 3 elements) and each factor of order 4 may be chosen 
to be either Z4 or EA (4). 

Corollary 3.8 includes both the case p = 2, i = 1 of Theorem 3.6 and 
Theorem 4.1 of [20]. We will see later that the case n = 2, k = 2X is 
intimately connected with Hadamard matrices. We conclude this section 
with some investigations concerning the possibility of relative difference 
sets with n = 2 not having parameters (3.3). We will see in Section 6 that 
X has to be even. So we have parameters 

(3.4) n = 2, X = 2a, k = m = n\ = 4a 

and G is of order 8a. We first assume that G = Z2 © H where N = Z2 X 
{0}. We assert that in this case a is a square and thus the parameters 
reduce to (3.3). For let t denote the number of elements of D of the form 
(1, x) ; then we obtain 2/(4a — t) differences with first coordinate 1, which 
should cover the 4a — 1 elements (1, x) with x ^ O each 2a times. But 
this yields t = 2a ± y/a and thus the assertion. In fact it may be shown 
that the elements of D with first coordinate 0 and those with first co­
ordinate 1 induce a pair of complementary difference sets in H, one of 
which has parameters 4w2, 2u2 — u, u2 — u (if a = u2). Thus we have: 

3.9 PROPOSITION. Assume the existence of a relative difference set D with 
parameters (3.4) in G — Z2 © H relative to N — Z2 X {0}. Then a — u2, 
so that D has in fact parameters (3.3), and either D or D can be constructed 
as in Theorem Z.7. 

We next assume that G = Z4 © H and N = {(0,0), (2, 0)}. Let x, y, z 
denote the number of elements of D with first coordinate 0, 1, 2 respec­
tively. Counting all differences with first coordinate 0, 1, 2 we obtain 
the three equations 

(3.5) x(x - 1) + y(y - 1) + z(z - 1) + (4a - x - y - z) 

X (4a - x - y - z - 1) = 2a(2a - 1) ; 

(3.6) (4a — x — y — z) (x + z) + xy + yz = 4a2; 

(3.7) 2xz + 2y(4a - x - y - z) = 2a(2a - 1). 

Note that the differences with first coordinate 3 again yield (3.6). From 
(3.6), we get at once x + z = 2a. Then (3.5) and (3.7) are equivalent 
and reduce to 

(3.8) (x - a)2 + (y - a)2 = a. 

Hence in this case a is the sum of two squares. Thus we have: 

3.10 PROPOSITION. Assume the existence of a relative difference set D with 
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parameters (3.4) in G = Z4 © H whene N = {(0, 0), (2, 0)}. Then a is 
the sum of two squares and the numbers x, y, z of elements of D with first 
coordinates 0, 1, 2 respectively satisfy x + z = 2a and (3.8). 

The results now obtained suffice to exclude the possibility of abelian 
relative difference sets with parameters (3.4) for many odd values of a. 
In this case, G has order 8a, a odd. As G is abelian, it splits into a group K 
of order 8 and a group L of order a. Assume that a is squarefree ; then L is 
cyclic and thus K cannot be cyclic too by Proposition 3.1. By Proposition 
3.9, we cannot have K = Z2 © Z4 and N = Z2 X {0} or K = EA (8). 
Thus the only remaining possibility is K = Z2 © Z4 and N = {(0,0), (0, 2)} 
C K. But then a is a sum of two squares by Proposition 3.10. Thus we 
have shown 

3.11 PROPOSITION. There exists no relative difference set with parameters 
(3.4) in an abelian group whenever a is squarefree, odd and not the sum of 
two squares. 

This excludes for example the values a = 3, 7, 11, 15, 19, 21, etc. On the 
other hand, we know the existence of a relative difference set with 
parameters (3.4) for a = 1,4, 9, 16, 36, . . . by Corollary 3.8. So the 
smallest open cases are a = 2 and a = 5. Using Proposition 3.10, one 
finds a solution for a = 2 in Z4 © Z4 relatively easily: 

3.12 Examples. The following is a (2, 8, 8, 4)-RDS in Z4 © Z4: 

D={(0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 3), (3, 3)} 

where N = {(0, 0), (2, 0)}. Similarly, 

D' = {(0, 0), (0, *) , (0, 30, (1, 0), (1, x), (1, y), (2, x + y), 

(S,x + y)} 

is a (2, 8, 8, 4)-RDS in Z4 © EA (4) (with EA (4) = {0, x, y, x + y}). 

Using Proposition 3.10, it also becomes possible to decide the case a = 5 
in some hours without the use of a computer. D has to have the form 

D = ({0} X A) U ({1} XB)V ({2} X A) U ({3} X B) 

in Z4 © Zio and without loss of generality one may assume \A\ = 7 and 
\B\ = 6. As each difference with first coordinate 0 (except for (0, 0)) has 
to appear 10 times each, the differences from A plus those from Â plus 
those from B plus those from B have to contain each x ^ 0 (x Ç Z10) 
exactly 10 times. The 120 choices for A are in 12 orbits under Z i 0 and the 
210 choices for B in 20 orbits of 10 and 2 orbits of 5 sets. Clearly the 
difference distribution only depends on the orbits. Working this out only 
leaves 10 feasible orbit pairs (^4, B) all of which are then seen to be 
impossible by checking the differences with first coordinate 1. Thus we 
have 
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3.13 PROPOSITION. There is no abelian relative difference set with param­
eters (SA) for a = 5. 

We now turn our attention to the case k 9e n\. 

4. Constructions for Xi = 0, k ^ n\. In the case k = n\, cyclic relative 
difference sets are ruled out (with the exception of the (2, 2, 2,1)-RDS) by 
Proposition 3.1. In contrast to this, we will now obtain a large class of 
cyclic examples for k 7e rih. It may be remarked that there are non­
existence results for cyclic relative difference sets With k 9e n\, too, which 
go beyond the general conditions of 2.12. These have been obtained by 
Shrikhande [48]. 

4.1 THEOREM. Let 2 be the affine space AG(d, q) and p any point of 2. 
Then the incidence structure A obtained by removing p and all hyperplanes 
containing p from 2 is a symmetric divisible design with parameters 

(4.1) n = a - 1, m = (qd - l)/(q - 1), k = qd~\ X = qd~2 

admitting a cyclic Singer group G. 

Proof. We may assume without loss of generality that p = 0. It is 
well-known that A is a divisible design with parameters (4.1); this is 
easily checked realizing that the point classes are just the lines of 2 
through 0. Now the points of 2 may be identified with the elements of 
the field K = GF(qd). Let œ be a generating element of K*\ then the 
bijection x >—» cox of K onto itself is linear (where K is considered as the 
^-dimensional vectorspace over its subfield GF(q)) and thus induces an 
automorphism a of S of order qd — 1. As a fixes 0 and all hyperplanes 
through 0, G = (a) clearly is an automorphism group of A acting regularly 
on the point set. Now assume that al fixes a block B of A and let / be the 
order of a1. Then / | qd — 1 ; but as G is regular on the set of points, 
a1 has to permute the points of B in cycles of length /, and therefore also 
/ | qd~l. This implies / = 1 and thus G acts regularly on the blocks of A, 
too. Hence G is a Singer group for A. 

This proof imitates the proof of Singer's classical theorem on finite 
projective spaces (see [50]). The special case d = 2 is due to Bose [4]. 
Using Corollary 2.11, we therefore obtain a series of cyclic difference sets 
which for d = 2 are the affine difference sets of [4] which have also been 
studied by Hoffman [23]. The general case has first been obtained by 
Butson [11], Theorem 5.3 (for primes q) and then in general by Elliott 
and Butson [20], Theorem 5.1 with the aid of linear recurring sequences. 
Recently, Berman has given another proof in [3], Theorem 5.2 using 
co-circulant generalised weighing matrices. 

4.2 THEOREM. Let qbea prime power and d ^ 2. Then there exists a cyclic 
relative difference set with parameters (4.1). 
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Using Proposition 2.13 we have the following result: 

4.3 THEOREM. Let q = nt + 1 be a prime power and n, d ^ 2. Then there 
exists a cyclic relative difference set with parameters 

(4.2) n, m = (qd - l)/(q - 1), k = g*-1, X = ^ ~ 2 . 

It is worthwhile to state some individual cases separately. 

4.4 COROLLARY. Let q be an odd prime power. Then there exists a cyclic 
relative difference set with parameters 

(4.3) n = 21m = q + l,k = q,\=(q~ l ) / 2 . 

Delsarte, Goethals and Seidel have shown in [15], Theorem 5.1 that 
the existence of a cyclic relative difference set with parameters (4.3) is 
equivalent to that of a "negacyclic" conference matrix. They also con­
jectured that q always has to be a prime power. 

4.5 COROLLARY. Let q be an odd prime power. Then there exists a cyclic 
relative difference set with parameters 

(4.4) n = 2, m = q2 + q + 1, k = q\ X = {q2 - q)/2. 

Divisible designs with these parameters have been obtained by Seberry 
[45] by a considerably more involved method which yields no information 
on their automorphism group. It has the advantage, though, of working 
also for powers of 2. A cyclic RDS with parameters (4.4) for q = 2 is 
exhibited in Example 2.4 (iii). 

4.6 COROLLARY. Let q = nt + 1 be a prime power. Then there exists a 
cyclic relative difference set with parameters 

(4.5) w, m = q + 1, k = q, X = t. 

These difference sets yield generalised conference matrices which will be 
discussed in Sections 6 and 7. 

4.7 COROLLARY. Let q be a prime power and d ^ 2. Then there exists a 
cyclic relative difference set with parameters 

(4.6) n = q + 1, m = (q2d - I)/(q2 - 1), k = qM~2
} X = q2d~*(q - 1). 

These are obtained by replacing q by q2 in Theorem 4.3 and taking 
n = q-\-l,t = q— 1. In fact, these relative difference sets admit a 
rather nice interpretation within projective geometry: 

4.8 PROPOSITION. Let qbe a prime power, d ^ 2 and consider the projec­
tive space II = PG(2d — 1, q). Then II contains a symmetric divisible 
design with parameters (4.6) as a sub-structure admitting a cyclic Singer 
group. 
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Proof. First note that mn is the number of points resp. hyperplanes of 
II. We will construct the desired design A by omitting a suitable (2d — 3)-
dimensional subspace from each hyperplane. By the theorem of Singer 
[50], Zmn acts as a collineation group G of II regularly on both the point 
and hyperplane sets. As 2d is even, II contains GF(q2) as a line; from the 
proof of Singer's theorem it is clear that this line L consists of the images 
of the point p = GF(q) of II under the subgroup N of order q + 1 of G. 
Here we consider II as the collection of subspaces of the vector space 
GF(q2n) over GF(q). Choose any fixed hyperplane if of II. Then the points 
and hyperplanes of II can be uniquely represented in the form py resp. Hy 

with 7 £ G. It is well-known that the mapping py <-» H~y defines a polarity 
7T of II (see [16], 1.2.13); as L = \pa: a Ç N} is a line, its image L* = 
{Ha: a G N} is a pencil of hyperplanes, i.e., the intersection of these 
hyperplanes is a (2d — 3)-dimensional flat U of II and Z> contains all 
hyperplanes containing U. For y G G, LyT will be the pencil of hyperplanes 
determined by Uy. Thus the hyperplanes of II are partitioned into the m 
pencils of n each determined by the (2d — 3)-dimensional flats U13 with 
13 G B, where B is a system of coset representatives of N in G. Now omit 
W from each hyperplane in the corresponding pencil ; clearly then hyper- — 
planes of the same pencil do not intersect in the incidence structure A 
thus determined. But hyperplanes from distinct pencils intersect in a 
(2d — 3)-flat Win II, which intersects the corresponding f/^'s in (2d — 4)-
flats W\ and W2, which in turn meet in a (2d — 5)-flat. So these hyper­
planes will have 

2 = - 1 - ^ 2 Zjl + i Z L l = ( g - l ) g * - ' = X 
q - 1 q - 1 q - 1 

points in common (considered in A). Hence the dual A* of A clearly is a 
cyclic divisible design with parameters (4.6) and therefore the same holds 
for A itself by Theorem 2.10. (In fact, it is also quite easy to see that the 
point classes of A are the lines L^(l3 Ç B) of II.) 

This construction has been used by Berman [3], Section 5 in somewhat 
disguised form to obtain certain generalised weighing matrices; it is not 
clear from [3] whether or not these correspond to relative difference sets. 
Proposition 4.8 provides a nice interpretation but does not give anything 
really new compared with the affine space construction. It is in fact not 
too difficult to see how to obtain the design A of Proposition 4.8 from the 
design 12 constructed from AG(d, q2) as in Theorem 4.1: Consider both 
AG(d, q2) and PG(2d - 1, q) in the vector space GF(qu). Then a block 
class of S2 consists of the cosets of a (2d — 2)-dimensional (linear) sub-
space U\ factoring out the subgroup of order q — 1 of the cyclic group of 
order qm — 1 acting on 12 splits the block classes into q + 1 classes each 
(determined by the images of GF(q) in GF(q2)). Then a "small" class 
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together with U determines a hyperplane and so a block class of £2 yields 
a pencil of hyperplanes of PG(2d — 1, q). The assertion should now be 
obvious, as the blocks of 12 after all did not contain the subspaces U. Thus 
12 admits an epimorphism onto A, as was to be shown. 

We now construct the examples mentioned in Section 2 where condi­
tion (2.1) is not satisfied. 

4.9 PROPOSITION. Let II be the desarguesian projective plane of order q2 

and Ho a Baer subplane of II. Then removing the points and lines of Ho 
induces a divisible design A with parameters 

(4.7) n = q2 — qy m = q2 + q + 1, k = q2, A = 1. 

For q = 2, 3, 4, A admits a Singer group. 

Proof. The first part of the assertion is well-known (see [16], 7.1.14). 
By Singer's theorem, II may be represented as dev D, where D is a 
difference set in Z: = Zfl4+.ff2+1; then D will contain a subset Do which 
forms a difference set for a Baer subplane n 0 in the subgroup H of order 
q2 + q + 1 of Z. Also, we may assume that both D and D0 are fixed by 
the multiplier p, where q = pT, p a prime (for the notion and results on 
multipliers, the reader may consult [1] and [22]). Now removal of n 0 

yields A, where the points are now the elements of Z\H, the blocks are 
the sets (D + x)\H (x G Z\H), the point classes are the sets (D\D0) + h 
(h Ç H), and similarly for the block classes. Now H clearly acts semi-
regularly on the points resp. blocks of A and any orbit contains in fact 
precisely one element from each point resp. block class. We now try to 
find an automorphism group N of A acting regularly on the elements of 
some class; we also want H to be normal in G: = (H, N) as this will 
ensure that G will not become too large. This last condition will be met 
by any subgroup of the group P generated by the multiplier p\ here P 
clearly is an automorphism group of A, as P fixes both D and Do. We now 
use the tables of [1] to settle the cases q = 2, 3, 4. For q = 2, D = 
{3, 6, 7, 12, 14}, Do = {7, 14} and N = (p*) = (8) is regular on {7, 14}. 
As multiplication by 8 and addition of 3 in fact commute in Z = Z2i, A is 
cyclic in this case. For q = 3, we may take 

D = {0, 1, 3, 7, 9, 27, 49, 56, 61, 77, 81} and D0 = {0, 49, 56, 77} ; 

the multiplier 3 has order 6 and (3) is regular on the point class D\D0. 
But as G is clearly not abelian in this case, N = (3) cannot be normal in 
G (as H is normal in G). A similar argument works for q = 4, where 
we have 

D = {1, 2, . . . , 211, 91, 182, 117, 234, 195} 

with the last 5 entries forming Do ; 2 has order 12 in Z273. 

https://doi.org/10.4153/CJM-1982-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-018-x


DIVISIBLE DESIGNS 277 

It is easy to see that this construction cannot work for q > 4, as then 
the multiplier group of D is too small: q2 has order 3 modulo q* + q2 + 1 
and so p has order 6r modulo q4 + q2 + 1 (recall g = £r)« So we need 
6r ^ pr(pr - I) which implies £ r ^ 4. But from the orders of PGL(3, g2) 
resp. PGL(3, g) it seems conceivable that A nevertheless always has a 
Singer group. We show that this is not true and that in fact our construc­
tion is the only possible one whenever q2 + q + 1 is a prime (e.g. for 
q = 2, 3, 5, 8, 13, . . .). By a result of [1.6], p. 317 A allows the reconstruc­
tion of II in a unique way (see also [51] for a proof of an in fact consider­
ably stronger statement). Then it is easy to see that each automorphism 
of A has to extend to an automorphism of II fixing n0 as a whole (using 
that the point classes are respected). Note for this, that the blocks of n 0 

may be viewed as the point classes of A and the points of n0 as block 
classes of A or alternatively as pencils of q + 1 point classes of A; and that 
a block class and a pencil of point classes determine the same point of n 0 

if and only if each of the blocks misses all these point classes in A. Thus 
any Singer group G of A (of order (q2 — q) (q2 + q + 1)) acts on n0, too. 
But as q2 + q + 1 is a prime, G contains a unique normal subgroup of this 
order (by the Sylow theorems), say H. Then if is a (cyclic) Singer group 
for IIo; also the group N of Proposition 2.2 has order q2 — q and is a 
complement for H in G. As N normalises H, N is a subgroup of the 
multiplier group of H by [9], Theorem 3.1 and thus a subgroup of Aut H 
= TJ^+Q. Hence q2 — q = |iV| divides |Aut H\ = q2 + q which implies 
q — 2 or 3. This argument in fact works also if II is not desarguesian. 

Applying Theorem 2.7 to Proposition 4.9, we note 

4.10 COROLLARY. There exist relative difference sets with parameters (4.7) 
for q = 3 and q = 4: in the semidirect product of Z?2+(?+1 with Zff2_ç, relative 
to a non-normal subgroup. 

We return once more to the proof of Proposition 4.9 and observe that 
for q = 3 resp. q = 4 multiplication by 33 and addition of 7 resp. multipli­
cation by 26 and addition of 13 commute; hence (33) resp. (26) are normal 
subgroups of G contained in N in this situation and application of Propo­
sition 2.13 to Corollary 4.10 also yields 

4.11 COROLLARY. There exist relative difference sets with parameters 

(4.8) n = (q2 - q)/2, m = q2 + q + 1, k = q2, X = 2 

for q — 3 or 4 (relative to a non-normal subgroup). 

5. Constructions for Xi ^ 0. We now give constructions for Xi ^ 0 
and begin with a trivial one: 

5.1 LEMMA. Let D be an ordinary (v, k, X)-difference set in a group N and 
let G be any group containing N as a subgroup of index m. Then D is a 
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(v, w, k, X, 0)-RDS in G relative to N; all relative difference sets with X2 = 0 
are obtained in this way. 

Of course, the situation of Lemma 5.1 is completely uninteresting, as 
it just means taking m disjoint copies of a symmetric design with a 
Singer group. The next construction is a generalisation of Theorem 3.7. 

5.2 THEOREM. Let Dxbe an ordinary (w, a, X)-difference set in a group N 
and let D2 be a difference set with parameters (3.2) in a group H. Then 
D: = (D1 X D2) W (Di X D2) is a relative difference set with parameters 

(5.1) n,m = 4:U2, k = 2u2n + 2au — un, Xi = (2u2 — u)(n — 2a) + 4tU2\ 

and X2 = u2n — un + 2au 

in G = N © H relative to N. 

Proof. First note that Dx is an (n, n — a, n — 2a + X)-difference set in 
N and that D2 is a (4w2, 2u2 + u} u2 + u)-difference set in H. From this 
it is easily checked that elements of the form (x, 0) with x ^ 0 of G 
occur precisely 

\(2u2 + u) + {n - 2a + \)(2u2 - u) = Xi 

times from D; that elements of the form (0, y) with y ^ 0 of G occur 
precisely 

a(u2 + u) -\- (n — a)(u2 — u) = X2 

times as differences from D; and that elements (x, y) with x, y ^ 0 
occur precisely 

\(u2 + w) + (w - 2a + X)(w2 - u) + 2(a - X)u2 = X2 

times. It is trivial to check the value for k. 

It can in fact be shown along similar lines that (Di X D2) \J (Dx X D2) 
(where Dly D2 are ordinary difference sets) will be a relative difference set 
if and only if one of them has parameters (3.2) and an ordinary difference 
set if and only if both of them have parameters of the type (3.2) ; the last 
assertion is due to Menon [40]. We note that Theorem 3.7 is the special 
case TV = Z2, Dx = {0} (so a = 1, n = 2, X = 0). We note some further 
consequences: 

5.3 COROLLARY ([40]). The existence of difference sets with parameters 
u = U\ and u = u2 in (3.2) implies the existence of a difference set with 
parameters (3.2) for u = 2uxu2. 

5.4 COROLLARY. The existence of an (n, a, X)-difference set implies that 
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of normal relative difference sets with parameters 

(5.2) », m = 4, k = n + 2a, Xi = » — 2a + 4X, X2 = 2a; 

(5.3) », m = 16, k = 6» + 4a, Xx = 6» - 12a + 16X, X2 = 3» + 4a; 

(5.4) n, m = 36, k = 15» + 6a, Xx = 15» - 30a + 36X, X2 = 6» + 6a. 

In particular, these series always exist for », » — 1,» —2;{ad — l ) / (g — 1), 
(qd-\ _ i)/(tf — l ) , (tftf-2 _ l ) / (g — I) for prime powers q and d ^ 3; 
(4/ — 1,2/ — 1, t — 1) /or prime powers 4/ — 1 and for values 4/ — 1 = 
g (a + 2) w&ere both q and q + 2 ar# prime powers. 

This follows from 5.2 by taking w = 1, 2, 3 and choosing known series 
of difference sets (cf. [22], [40]). We now use uniform Hjelmslev matrices 
in a further construction. We first recall 

5.5 Definition. A uniform c-(t, r)-Hjelmslev matrix over a group N of 
order t2/c is a collection of r + 1 subgroups ^40, . • . , AT of order t of iV 
satisfying: 

(5.5) For i ^ j (i, j £ {0, . . . , r}) the set of all differences at — at 

(at G A i, a,j G ^4;) contains each element of N precisely c times; 

(5.6) The differences a, — bt (au bt £ Ait at ^ bu i = 0, . . . , r) 
contain each non-zero element of N precisely t\x times for some 
constant \x. 

Of course, /* is determined from the equation 

t { t - l ) ( r + l) = / M ( ( / 2 A ) - 1). 

5.5 is an adaptation of the definitions in [19], Sections 7 and 8. "Hjelmslev 
matrices" have first been introduced by the author in [31] to study and 
construct projective Hjelmslev planes with particularly pleasant Singer 
groups. 

5.6 THEOREM. Assume the existence of an ordinary difference set Dx with 
parameters (m, r + 1, X) in a group H and of a uniform c-(t, r)-Hjelmslev 
matrix in N. Then there exists a normal relative difference set D with 
parameters 

(5.7) » = t2/c, m, k = t(r + 1), Xi = t\x and X2 = c\ 

in G = H © N relative to N. 

Proof. Let Dx = {d0, . . . , dr\ and let A0j . . . , Ar be the components of 
the matrix. Put 

r 

D: = U \di) XAÙ 

the assertion is then easily checked. 
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Theorem 5.6 is implicit in the (much more general) work of [19]. An 
analogous construction for symmetric divisible designs without the use of 
Singer groups has been given in [18]. To apply Theorem 5.6 we need 
examples of uniform c-Hjelmslev-matrices. The following Lemma is due 
to [19], Proposition 8.3. 

5.7 LEMMA. Let q be a prime power and d a non-negative integer. Then 
there exists a uniform qd — (qd+l, qd+1 + qd + . . . + q)-Hjelmslev matrix 
in N = EA (qd+2). Here /x = qd + . . . + q + 1. 

Sketch of proof. Consider N as the (d + 2)-dimensional vector space 
over GF(q) and choose as the components of the matrix all (d + 1)-
dimensional subspaces. 

We remark that it has been shown conversely in [33], Theorem 5.4 that 
all uniform c-(/, r)-Hjelmslev matrices in an abelian group N have the 
parameters stated in 5.7 and are defined in an elementary abelian group. 
We note some corollaries of 5.6 and 5.7: 

5.8 COROLLARY ([39]). Let q be a prime power, d a non-negative integer 
and H any group of order qd+1 + qd + . . . + q + 2. Then there exists an 
ordinary difference set with parameters 

(5.8) v = <f+\tf+l + (f + . . . + a + 2), k = qd+i(qd+i + . . . + q + 1) 

and 

X = qd+l(qd + ...+q + l) 

in G = H ® EA (qd+2). 

Proof. Use 5.7 in Theorem 5.6 for the trivial (m, m — 1, ra — 2)-
difference set in H. 

5.9 COROLLARY. Let q be a prime power. Then there exists a relative 
difference set with parameters 

(5.9) n = q2, m = q2 + q + 1, k = q{q + 1), Xx = q and X2 = 1 

in G = Zç2+(7+1 © EA (q2) relative to EA (q2). 

Proof. Use 5.7 with d = 0 in Theorem 5.6 for the Singer difference sets 
of desarguesian projective planes (see [50] or [22]). 

This series in fact already appears in [31] and corresponds to uniform 
Hjelmslev planes. In fact, any normal relative difference set with param­
eters (5.9) and q T6 2 corresponds to a uniform Hjelmslev plane by 
Theorem 2.7 and [32]. This implies 

5.10 PROPOSITION. If D is a relative difference set with parameters (5.9) in 
an abelian group G = H © N relative to N and if q > 2, then q is a prime 
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power and N = EA (g2). Also, the set of d £ H for which there is an n £ N 
with (d, n) 6 D forms an ordinary difference set for a projective plane of 
order q. 

Proof, dev D then is a Hjelmslev plane which is "regular" in the sense 
of [31]. The assertion follows from [31], Section 2 and [34], Theorem 3.1. 

There are counter-examples to Proposition 5.10 for q = 2, due to [32]. 
We give them here: 

5.11 Examples. The sets 

Dx = {(0, 1), (0, a), (0, 1 + a), (1, 0), (2, 0), (4, 0)) 

and 

D2= {(0,1), (0,2), (0,3), (1,0), (2,0), (4,0)} 

are relative difference sets with parameters (5.9) for q = 2 in Z7 0 EA (4) 
resp. in Z^ 0 Z4 which do not correspond to a uniform Hjelmslev plane. 

Using [9], page 475 in the same construction as in 5.9, we also obtain: 

5.12 PROPOSITION. Let q be a prime power = 1 mod 3. Then there exists 
a relative difference set with parameters (5.9) in a group G = H © EA (q2), 
where H is non-abelian. 

We now generalise the construction in 5.9 by using a Singer difference 
set for the projective space PG(d, q) together with a uniform qd~2-
(<Zd~\ 3d _ 1 + . . . + g)-#-matrix and obtain 

5.13 COROLLARY. Let q be a prime power and d a positive integer with 
d ^ 2. Then there exists a relative difference set with parameters 

(5.10) n = qd, m = qd + . . . + q + 1, k = qd-l{qd~l + . . . + q + 1), 

\x = qd-i(qd-2 + m _ _ ) _ q _|_ i) and x2 = ^-2(^-2 + _ . 

+ <Z + 1) 
i»Zffd+...+fl+i 0 EA (qd). 

We give 5 more examples using the known difference sets with k ^ 10 
and X > 1 (see Appendix I in [22]): 

5.14 Examples. There are abelian (16, 11, 20, 4, 2)-, (25, 16, 30, 5, 2)-, 
(8,15, 28,12, 6)-, (64, 37, 72, 8, 2)- and (64,19, 72, 8, 4)-relative difference 
sets. 

The examples constructed up to now in this section all yield regular 
divisible designs. We have exhibited two relative difference sets yielding 
semi-regular divisible designs in Examples 2.4 (v) and (vii). Using 
Theorem 5.6 for a trivial (m, m, m)-difference set and Lemma 5.7, we get 
a family of examples: 

https://doi.org/10.4153/CJM-1982-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-018-x


282 DIETER JUNGNICKEL 

5.15 COROLLARY. Let qbe a prime power and d a positive integer. Then 
there exists a normal relative difference set with parameters 

(5.11) n = qd+\ m = qd + ...+q + l,k = qd(qd + . . . + q + 1), 

Xi = qd(qd~l + . • • + q + 1) and X2 = qd~l(qd + . . . + q + 1) 

in H 0 EA (qd+1), Ti^ere fl" is an^ gr^w^ of order m. 

To the knowledge of this author, this is the first series of symmetric 
semi-regular divisible designs with Xx ^ 0 in the literature. An example 
of a semi-regular design with parameters (5.11) for q = 2 and d = 1 is 
No. 1 on page 187 of [7]. In view of the preceding comment, it seems 
worthwhile to exhibit some more series of symmetric semi-regular divisible 
designs (which may be constructed with the aid of projective spaces), 
though this will not yield any more relative difference sets. 

5.16 THEOREM. Let U be the projective space PG(d, q), where d ^ 3, and 
let a be a positive integer ^ (d — l ) / 2 . Then the incidence structure A 
obtained from II by discarding an a-flat U with all its points and also all 
hyper planes through a fixed (d — a — \)-flat S C U is a symmetric semi-
regular divisible design with parameters 

(5.12) n = qd~a, m = qa + qa~l + . . . + q*«-*+\ k = qd~l + . . . + qa, 

\x = qd-2 + m m m + qa and x2 = qd-2 + . . . + qa~\ 

So v = qd + . . . + qa+1 and c = qd~a~l, where c has the meaning of (1.7). 

Proof. Note first that S Ci U is possible in view of the restriction on a. 
Let H be any block of A; then H meets U in II in exactly qa~l + . . . 
+ q + 1 points, as H does not contain U (otherwise it would have been 
discarded). This observation yields the value of k. We now define a point 
class to consist of all those points which together with 5 span the same 
(d — a)-flat T, where S C T (£_ U. Clearly each point class has 
(qd-a + . . . + q + 1) - (g*-*-1 + . . . + q + 1) = n elements. Also, 
the number of (d — a)-flats of II through 5 is qa+l + . . . + q + 1; 
exactly g2a_d + . . . + g + 1 of these are contained in [/, which yields 
the value of m. Now the number of hyperplanes of II containing a given 
(d — a)-flat T (T as above) is qa~l + . . . + q + 1 which yields Xi, as 
any two points of II are on qd~2 + . . . + q + 1 common hyperplanes. 
Finally, points in distinct classes span (together with S) a (d — a + 1)-
flat W of II; the number of hyperplanes of II containing W is qa~2 + . . . 
+ q + 1 which yields X2. Hence A is a semi-regular divisible design with 
parameters (5.12). If we define a block class of A to consist of all those 
blocks meeting U in a given (a — l)-flat V with S (£ V, then the cor­
responding assertions for blocks may be verified dually. Thus A is 
symmetric. 
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Note that for a = d — 1 we discard an incident point-hyperplane pair 
which is a well-known construction for a symmetric transversal design 
ST (q, qd~2). Note also that replacement of d in (5.12) by 2d + 1 and of 
a by d yields the parameters (5.11). We conclude this section with the 
following consequence of Theorem 5.16: 

5.17 COROLLARY. Let q be a prime power and d and a positive integers 
satisfying d ^ 3 and a ^ (d — l ) /2 . Then there exists a semi-regular 
divisible design with parameters 

(5.13) n = qd~\ m S qa + qa~l + . . . + g2a^d+1, 

k = mqd-a~\ À! = qd~2 + . . . + qa and A2 = qd~2 + . . . + qa~l. 

For m = qa, we obtain an affine resolvable semi-regular divisible design 
{i.e., the design is resolvable and any two non-parallel blocks intersect in the 
same number of points, here in fact in qd~2 points). 

Proof. It is clear from (1.7) that removal of some point classes of a 
semi-regular divisible design again yields a semi-regular divisible design; 
apply this to Theorem 5.16 to obtain (5.13). Now it is known (see e.g. [43] 
8.5.10.1) that a semi-regular divisible design is affine resolvable if and 
only if 6 = v — m -\- r and k2/v is an integer; both conditions are satisfied 
for m = qa. (In fact, if one discards all point classes of a fixed hyperplane 
of A the resulting semi-regular divisible design is contained in the affine 
space AG{d, q) and the remaining blocks of A are hyperplanes of this 
affine space, from which the assertion is geometrically obvious.) 

One may try to use the method of Proposition 4.9 to obtain Singer 
groups for the divisible designs of Theorem 5.16; this then forces d to be 
odd and a to be (d — l ) / 2 (which yields the parameters (5.11), as 
already mentioned). In fact, the multiplier group will again be too small 
to yield examples in general. Also, the parameters would not be new 
anyway, so that a detailed discussion of this situation seems not too 
interesting. 

6. Class regular divisible designs and partial difference matrices. 
Consider a symmetric transversal design with a normal Singer group G; 
we have seen in Proposition 2.2 that G has a normal subgroup N acting 
regularly on each point class and (as seen in the proof of Proposition 2.8) 
also on each block class. This situation has already been considered by 
the author in [30] where such a symmetric transversal design has been 
called "regular" (with respect to N). We will change this term to ''class 
regular" here to avoid a collision with the terminology of Definition 1.3 
and will actually generalise the concept of [30] to arbitrary divisible 
designs with Xi = 0. We have shown in [30] that class regular symmetric 
transversal designs are equivalent to generalised Hadamard matrices; 
in the more general case of class regular symmetric divisible designs we 
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will obtain the equivalence with generalised balanced weighing matrices. 
But we will also briefly consider the non-symmetric case. In this section, 
a divisible design with parameters n, m, k, X will denote (in the old 
terminology) one with parameters n, m, k, Xi = 0 and X2 = X. 

6.1 Definition. Let A be a divisible design with parameters n, m, k, X 
and let N be an automorphism group of A acting regularly on each point 
class. Then A is called class regular (with respect to A). 

As already remarked, this definition has been given in the special case 
of transversal designs in [30] where we asked in addition that N should 
act semiregularly on the block set of A. This is in fact redundant, as S. S. 
Sane has pointed out: 

6.2 LEMMA. Let A be a divisible design that is class regular with respect 
to N. Then N acts semiregularly on the block set of A. 

Proof. Let B and C = Bn be two blocks in the same orbit of N and 
assume the existence of a point p IB, C. Now pn I C is a point in the 
class of p and thus p = pn, as C meets each point class at most once 
(recall Xi = 0). Thus n is the identity automorphism and B = C, as A 
acts regularly on each point class. 

The combinatorial equivalent of class regular divisible designs is as 
follows: 

6.3 Definition. Let TV be a group of order n. A partial difference matrix 
with parameters n, m, k, X over TV is a matrix D = (dif) with m rows, 
/3 columns and entries from N VJ {oo } satisfying the following conditions: 

(6.1) Each column of D has precisely k entries ^ oo . 

(6.2) For any two distinct rows i and j of D, the differences dih — djh 

(h — 1, . . . , jS) contain each element of A exactly X times (here 
oo — x = x — oo = oo ). 

If k = m (i.e., if no entry of D is oo ), D is called a difference matrix or 
an (n, k, X, A)-difference matrix. 

6.4 LEMMA. Let D be a partial difference matrix with parameters n,m, k,\ 
over N. Then replacing each entry oo of DbyO and each entry 9^ 00 of D by 1, 
yields the incidence matrix of an (m, k, n\)-block design. Thus 

(6.3) each row of D contains exactly r = (m — l)n\/(k — 1) entries 
9^ 00 . 

(6.4) 0 = m(m - l)n\/k(k - 1). 

This follows immediately from (6.1) and (6.2) and well-known proper­
ties of block designs. Note that the symmetric case (m — /3) of our partial 
difference matrices is equivalent to the ''orthogonal configurations over a 
group" of Delsarte (see [12], Section 3) and to the "generalised balanced 
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weighing matrices" of Seberry [46]. A generalisation of partial difference 
matrices (where the entries oo are replaced by symbols Xi, . . . , xs) with 
À = 1 has been used in the construction of mutually orthogonal Latin 
squares (see [8] and [54]); difference matrices with X = 1 are equivalent 
to sets of mutually orthogonal Latin squares with the group N acting in 
a certain way (see [29]) and have also been used for the construction of 
such squares (see [28] and [42]). Hadamard matrices are partial difference 
matrices with parameters 2, 2X, 2X, X; conference matrices have param­
eters 2, 2X + 2, 2X + 1, X; and balanced weighing matrices have n = 2. 
Accordingly, we use the following terminology: 

6.5 Definition. Let D be a partial difference matrix with parameters 
n, m, k, X over N and assume that r = k. Then D is called a generalised 
balanced weighing matrix GBW (n, m, k). (Note that X is determined from 
(6.3)) ; if furthermore m = k, D is called a generalised Hadamard matrix 
GH (n, X) and if m = k + 1, a generalised conference matrix GC (n, X). 

6.6 LEMMA. The existence of a partial difference matrix with parameters 
n, m, k, X over N implies that of a partial difference matrix with parameters 
n/s, m,k,\s over N/M, whenever Mis a normal subgroup of N of order s. 

This follows trivially by taking the image of D under the natural 
epimorphism from N onto N/M. 

6.7 THEOREM. Let D be a partial difference matrix with parameters n, m, 
k, X over N. Then: 

(6.5) m ^ 0; 

(6.6) m = jS implies that D* = —DT is also a partial difference matrix 
with parameters n,myk,X. 

Proof. By Lemma 6.4, D determines an (m, k, nX)-block design. Nowr 

if r = Xn(m — l)/(k — 1) > n\, then the Fisher inequality ub ^ v" 
applied to this design yields (6.5). But if r = nX, then every point of the 
block design is incident with every block and thus in particular k = m. 
So D is a difference matrix then and the assertion follows from [30], 
Theorem 2.2. Finally, (6.6) is [12], Theorem 3.3; an alternative proof 
using 6.8 below is given in [35]. 

6.8 THEOREM. The existence of a partial difference matrix with param­
eters n, m, k, X over N is equivalent to that of a class regular divisible design 
with parameters n, m, k, X (with respect to N). 

Proof. Let D be a partial difference matrix with parameters n, m, k, X 
over N and define an incidence structure A as follows: The point set of A 
is the union of the point classes ^ i , . . . , &m where 

SP {. = {(i,x): x Ç N] fori = 1, . . . , n. 

https://doi.org/10.4153/CJM-1982-018-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1982-018-x


286 DIETER JUNGNICKEL 

The block set of A is the union of the classes J*i, . . . , 3ê $ with 

&,= {Bfx:x£ N\ ( j = 1 p), 

where 

BJX = {(jidij + x):j = I, ... ,m,dtj 5* co}. 

Incidence is given by the membership relation. Then clearly points in 
the same class are not joined. Consider points (i, x) and (j, y) with i ^ j \ 
there are precisely X indices k with dik — djk = x — y. But then (i, x) 
and (j, y) are on the blocks Bk_d.k+X for all these k. Conversely, it is 
easily seen that (i, x), (j, y) £ Bku implies dik — djk = x — y. Thus A is 
a divisible design with parameters n, m, k,\ which is clearly class regular 
with respect to TV by letting g Ç N act on A by 

(6.7) {i, x) »-> (i, x + g) and 5^, i-> BjtV+g. 

Now assume that A is any divisible design with parameters n, m, k, X 
that is class regular with respect to N. In each point class SP i {i — 1, . . . , 
m) choose a "base point" pt and coordinatise the point q £ &i as (i, x) 
if x is the unique element of N mapping p onto q (which is well-defined 
by the regularity of JV on point classes). By Lemma 6.2, N acts semi-
regularly on the block set of A; hence there will be b/n = ft orbits under N. 
In each of these orbits 3$$ (j = 1, . . . , 0) choose a "base block" Bj0 and 
coordinatise the block C of 38 $ as Bjy if y is the unique element of N 
mapping Bj0 onto C. Define D as follows: If BjQ contains no point of 3P u 

put dtj = oo ; if it contains the point (i, x), put dtj = x. It is then easily 
checked that D is a partial difference matrix with parameters n, m, k, X 
over N. 

6.9 COROLLARY. Let A be a class regular divisible design with parameters 
n, w, k, X. Then b ^ */; an^ if A û actually square, then it is in fact sym­
metric. 

Proof. Use Theorems 6.7 and 6.8. 

Theorem 6.8 is in complete analogy to [30], Theorem 1.5 where the case 
of transversal designs has been considered. We note: 

6.10 PROPOSITION. If \N\ ^ 2, then the existence of a generalised Hada-
mard matrix GH(n, 1) over N is equivalent to that of a projective plane of 
order n of Lenz type at least II having N as the group of all (p, L)-dations 
for some flag (p, L). Also, the existence of a generalised conference matrix 
GC (n, 1 ) over N is equivalent to that of a projective plane of order n + 1 
having N as the group of (py L)-homologies for some antiflag (p, L). 

Proof. The first partis [30], Proposition 1.6. The second part is similar 
and we only sketch one direction: Given the projective plane, discard p 
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(together with all lines through p) and L (with all points on L). This gives 
a symmetric divisible design with parameters n, n + 2, n + 1,1 which is 
class regular with respect to N. Then apply Theorem 6.8. These steps can 
be reversed to yield the converse. 

We conclude this section by listing the known generalised balanced 
weighing matrices. 

6.11 Examples. The following generalised balanced weighing matrices 
are known to exist: 

(i) Generalised Hadamard matrices GH(n, X) for: 
a) n = 2: Ordinary Hadamard matrices, cf. [52]. 
b) n = p\\ = p\ N = EA (p*) where p is a prime, i > 0, j ^ 0 

([17], Corollary 1.9); 
c) n a prime power, X = 2, N = EA (n) ([30] Theorem 2.4; for 

w a prime, this is already in [10]) ; 
d) n and X = n — 1 both prime powers, N = EA (w) ([44], see 

also [47]); 
e) The existence of GH (n, X) and GH (n, X') over N implies that 

of GH(n, nXX') over N ([49]) ; 
(ii) Generalised conference matrices GC (n, X) for: 

a) « = 2: ordinary conference matrices, see [15], [21] and [37]; 
b) rih + 1 a prime power, N = Zn ([14], [46]); 

(iii) Generalised balanced weighing matrices GBW (n, k, X) for: 
a) n = q - 1, m = (qd - l ) / (g - 1), & = qd~\ N = Zn for q a 

prime power and i è 2 ([3]) and images as in Lemma 6.6; 
b) n = 6, m = 13, k = 9, N = 53 the symmetric group on 3 ele­

ments (see [46]). 

To the author's knowledge, this list is complete. It should be remarked 
that Berman's "Generalised weighing matrices'' are a much wider class 
than the GBW-matrices considered here (though Berman only considers 
cyclic groups) ; it can be seen from his proofs that the only matrices of 
Berman which are balanced in our sense are those given in (iii)a) above 
and, of course, images according to Lemma 6.6. 

In view of Définition 6.5 and Theorems 6.7 and 6.8 we will call any 
symmetric divisible design with parameters n, m, k, X where m = k + 1 
(equivalently, k — n\ + 1) a conference design; note that in fact by (1.15) 
any square design with k = nX + 1 is symmetric. Using this terminology 
and the observation that the transversal designs are characterised by 
k = n\ (from (1.4)), we may restate (1.19) as 

6.12 LEMMA. Let A be a symmetric divisible design with parameters 
n,m, k,\. Then A is a transversal design or a conference design or 

(6.8) n\ ^ k - y/k. 
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Similarly, a generalised balanced weighing matrix is a generalised Hadamard 
matrix or a generalised conference matrix or satisfies (6.8). 

We already observed at the beginning of this section that divisible 
designs with a normal Singer group are class regular. In the next section 
we will study the relations between normal relative difference sets and 
generalised balanced weighing matrices. 

7. Relative difference sets and generalised balanced weighing 
matrices. We repeat our observation about normal divisible designs. 

7.1 LEMMA. Any divisible design with Xi = 0 and a normal Singer group G 
is class regular with respect to the subgroup N of G acting regularly on each 
point class. 

7.2 COROLLARY. The existence of a relative difference set with parameters 
n,m, k,\inG relative to the normal subgroup N implies that of a generalised 
balanced weighing matrix GBW (n,m,k) over N. 

This follows immediately from Theorems 2.7 and 6.8 together with 
Lemma 7.1. Note that application of 7.2 to our results in Sections 3 and 4 
yields Examples 6.11 (i)b, (ii)b and (iii)a) as well as some of (i)(a) and 
(ii)a. Here we again omit the parameters Xi = 0. Also note that Corollary 
4.3 yields three examples not covered by Examples 6.11. We now study 
those generalised balanced weighing matrices that come from a relative 
difference set in more detail. We will give a necessary and sufficient condi­
tion for this to happen in tw7o important special cases. A general criterion 
can be obtained, but it is so awkward that it does not seem worthwhile 
stating it. The first criterion is for the case where G splits over N. We first 
need a definition. 

7.3 Definition. Let M be a generalised balanced weighing matrix 
GBW (n, m, k) over TV and let H be any group of order m. M is called 
H-invariant if the columns and rows of M may be labelled by the elements 
of H in such a way that mfQ = mf+Jl<g+h for all / , g, h £ H. 

If H is cyclic this means that M may be put into circulant form. We 
then have: 

7.4 THEOREM. Let H and N be groups of orders m resp. n. Then there 
exists an H-invariant generalised balanced weighing matrix GBW (n, m, k) 
over N if and only if there exists a relative difference set with parameters 
n,m,k,\inG = H © N relative to N. 

Proof. Assume first that D = {(hi, n\), . . . , (hk, nk)} is a relative 
difference set as described above. Consider the divisible design dev D of 
Theorem 2.7 which is symmetric by Theorem 2.10. Its block classes then 
may be represented by the blocks D + h (h Ç H). Now construct M from 
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dev D as in Theorem 6.8, choosing the D + h as the "base blocks". Then 
the element nt of TV will appear precisely in the cells (ht + h, h) of 
M (i = 1, . . • , k) and all remaining entries will be oo . Thus M is clearly 
//-invariant; it is a GBW (n, m, k) by Theorem 6.8. Conversely, let M be 
an //-invariant GBW (n, m, k) and consider the divisible design A con­
structed from M as in Theorem 6.8. Let 

D: = {(g, mOt0): g G / / , rnç,0 ^ oo} . 

Then the block class belonging to column h of M may be represented by 

D + h = {(g + h, mg>0): g £ H, mg<0 ^ oo } 

as M is //-invariant. But then it is easily seen that the mapping 

(g, x) ^ (g + h, x + n) and D + (f,y) *-+D + (f + h, y + n) 

is an automorphism of A for all (h, n) Ç H © N. Thus G — H © N is a 
normal Singer group for A and the assertion follows from Theorem 2.7. 

We remark that //-invariant generalised balanced weighing matrices 
are "regular" in the sense of [12], i.e., the number of entries n (for a 
given n G N) is the same in each column (and also in each row). We give 
some corollaries of Theorem 7.4 and results of Sections 3 and 4. 

7.5 COROLLARY. The existence of a circulant generalised balanced weighing 
matrix GBW (n, m, k) over N is equivalent to that of an (n, m, k, X)-RDS 
in Zm © N. 

7.6 COROLLARY. There exist H-invariant generalised Hadamard matrices 
GH («, X) with n = p \ \ = p\ N = EA (p*), H = EA (pt+j) for all 
primes p 9e 2 and positive integers i and non-negative integers j . There exist 
H-invariant Hadamard matrices of order 4tu2 for all values u = 2s3r with 
s g: r — 1 for those H described in Corollary 3.8. 

7.7 COROLLARY. There exist circulant generalised balanced weighing 
matrices GBW (n, m, k) over Zn for all values m = (qd — l ) / (g — 1), 
k = qd~1 for which q is a prime power = 1 modulo n and for which (n, m) 
— 1. In particular, there exist circulant generalised conference matrices 
GC (w, X) whenever n\ + 1 is a prime power and n > 2. 

7.8 COROLLARY. There exists a (6, 13, 9, 1)-RDS in Zu © S%. 

Proof. Use Corollary 7.5 and Example 6.11 (iii)b. 

We next consider the case of cyclic relative difference sets. The follow­
ing definition is due to Berman [3] and generalises that of "negacyclic" 
matrices of [15]. 

7.9 Definition. Let i f be a generalised balanced weighing matrix 
GBW (w, m, k) over Zn and let l G Zn. M is called l-circulanl if it satisfies 
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Wf+u+i = mitj whenever i T6 m - 1 and w0(J+i = mm-,itj + t. Here we 
assume that the rows and columns of M are labelled by the elements 
of Zm. 

The following result generalises Theorem 5.1 of [15]; one of its parts 
has been proved in a special case by [3], Theorem 4.2. 

7.10 THEOREM. The existence of a cyclic (n, m, k, X)-RDS is equivalent 
to that of a l-circulant generalised balanced weighing matrix GBW (w, m, k) 
over Z„. 

Proof. Assume first that the cyclic relative difference set D = {du . . . ,dk\ 
is given. Then D is relative to N = {mi: i = 0, . . . , n — 1} = Z„. 
Consider the symmetric divisible design dev D\ its point classes are 
N, N + 1, . . . , N + m — 1 and its block classes may be represented by 
the sets D + j (J = 0, . . . , m — 1). We construct the GBW (n, m, k) over 
N as in the proof of Theorem 6.8, using the D + j as the "base blocks". 
Now 

D+j = { d 1 + j , . . . , d i f c + j } ; 

for h = 1, . . . , k, put dh + j = ma/j + rh, where rh G {0, . . . , w — 1}. 
Then set w^ = raa/j if and only if rh = i, and m^ = oo otherwise. But 
column j + 1 of M is constructed from D + j -\- 1 and clearly dh + j + 1 
= wa,, + rh + 1. Thus 

mf+i)7+i = mah = w ^ <=>r̂  = i < w — 1; 

mi+if</+i = oo = w z ; $=> i ?£ rh for all /z; 

and 

m0(;+i = w(a^ + 1) <=> rh = m — 1 and = oo otherwise. 

Thus M may be considered as a l-circulant matrix over Zn. Conversely, 
assume that i f is a l-circulant GBW (n, m, fe) over N, where Zn = N 
C Zmn as above. Consider the divisible design A determined by M as in 
Theorem 6.8 and identify the point (i, x) of A with mx + ^ G ZOTn. By 
Theorem 2.7 it will be sufficient to show that the mapping mx + i y—> 

mx + i + 1 is an automorphism of A. Consider one of the "base blocks" 
Bj\ then we have 

Bj = {mmij + i: m^ ^ oo } 

and as M is l-circulant, 5 m = B j -\- 1. As the block classes are the sets 
Bj -\- a (a £ N), the assertion follows immediately. 

Our proofs of Theorems 7.4 and 7.10 utilize the geometric interpreta­
tions of Theorems 2.7 and 6.8. In our opinion these proofs are much more 
transparent than direct proofs (avoiding the corresponding divisible 
design) would be. We now note a corollary of Theorem 7.10: 
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7.11 COROLLARY. There exist 1-circulant generalised balanced weighing 
matrices GBW (n, m, k) over Zn for all values m = (qd — 1)/(<Z ~ 1), 
k = qd~l for which q is a prime power = 1 modulo n. In particular, there 
exist 1-circulant generalised conference matrices GC (w, X) whenever n\ + 1 
is a prime power. 

We conclude this section with a remark. If Theorem 4 of [46] is true, 
then the existence of the GBW (q - 1, (qd - l ) / (g - 1), qd~l) would 
imply the existence of the series of symmetric block designs with param­
eters fl = q(qd — 1) + 1, k = qd and X = qd~l, strongly generalising results 
of [2] and [44]. Unfortunately, her proof uses the existence of a GH (d, 1) 
in Zd which is only known if d is a prime (meaning in this situation, that 
q — 1 is a prime). The author has been unable to find an alternative proof 
of the result in question. 

8. Some applications to divisible semisymmetric designs. In this 
section, we follow a suggestion of D. R. Hughes and consider some basic 
properties of semisymmetric designs, which generalise his semibiplanes 
(see [25]). We then apply the results of this paper to obtain some existence 
results for divisible semisymmetric designs. 

8.1 Definition. An incidence structure A is called a semisymmetric design 
of index X if it satisfies: 

(8.1) [p, q] = 0 or X for any two points p, q; 

(8.2) [G, H] = 0 or X for any two blocks G, H; 

(8.3) A is connected. 

In case of X = 1, we additionally require 

(8.4) There is a constant k with [p] = [G] = k for all points p and all 
blocks G. 

8.2 LEMMA. Any semisymmetric design is a tactical configuration with 
r = k (so b = v). 

Proof. This is obvious for X = 1 in view of (8.4). Now let X > 1 and 
consider any flag (p, G). Count all flags (q, H) with plH and qlG in two 
ways to obtain the equation 

( & > ] - l ) ( X - l ) = ( [ G ] - 1 ) ( X - 1 ) , 

so [p] — [G] for any flag (p, G). As A is connected, this gives the assertion. 

In view of Lemma 8.2, let k denote the constant block size of the semi-
symmetric design and v the number of points. Then we call v, k} X the 
parameters of the design. 
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8.3 Definition. A semisymmetric design is called divisible if it is simul­
taneously a divisible design and if there are points not joined. In this case, 
we use parameters n, ft, X instead of v, ft, X (cf. (8.5) below). 

8.4 PROPOSITION. Let Abe a semisymmetric design with parameters v, ft, X. 
If A is divisible, then necessarily Xi = 0 and X2 = X. Also then 

(8.5) v = n + ft (ft - 1)/X, m = 1 + ft (ft - l)/n\, 

so that a necessary condition for divisibility is n\\k{k — 1). Furthermore, a 
divisible semisymmetric design is symmetric in the sense of Definition 1.1, 
i.e., the dual design is also divisible. 

Proof. Assume that A is divisible; then by definition, either Xi = 0, 
\2 — X or Xi = X, X2 = 0. But as there are points not joined, the last case 
would mean that A is not connected, contradicting (8.3). Now it is easily 
seen that for any given point p there are precisely ft (ft — 1)/X points 
joined to it; this gives (8.5). By the same counting, it is seen that for any 
given block B there are precisely ft (ft — 1)/X blocks C meeting it and 
precisely v — 1 — ft(ft — 1)/X blocks D not meeting it. Now consider 
two blocks Bx, B2 that do not meet. Bx contains precisely 1 point of each 
of ft point classes and B2 contains at most 1 point of each of these ft point 
classes determined by B\. Thus the number of blocks C intersecting both 
Bi and B2 is at least ft (ft — 1)X/X2 = ft (ft — 1)/X which is the number of 
blocks meeting B\ and also the number of blocks meeting B2\ thus each 
of the remaining n — 2 blocks has to miss both Bx and B2, which proves 
the assertion. 

8.5 PROPOSITION. Let A be a divisible semisymmetric design with param­
eters n, k, X. Then A is a (symmetric) transversal design if and only if k = 
n\ and A is a conference design if and only if k = n\ + 1. In all remaining 
cases, A satisfies 

(8.6) 2 ^ n ^ (ft - \ / f t ) / X . 

Furthermore, any semisymmetric design with v — 2 + ft (ft — 1)/X is 
divisible (withn = 2). 

Proof. The assertions are just a restatement of Lemma 6.12. Finally, 
if v = 2 + ft (ft — 1)/X, then for each point there is a unique other point 
not joined to it. It is clear that this then defines a divisible design with 
» = 2. 

Using some of the existence results of the previous sections, we get: 

8.6 COROLLARY. There exists a divisible semisymmetric design with 
parameters n,k,\inat least the following cases: 

(i) X = px and ft = pj for some prime p with] > i, n = pj~U 
(ii) ft a prime power = 1 modulo X, n = (ft — 1)/X; 
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(iii) X = tqd~l and k — qd (where q is a prime power and t a divisor of 
q- l ) , n = (q- l)/t. 
In all these cases, we may also assume the existence of a Singer group. 

We state the case of semibiplanes (X = 2) individually (cf. [25]): 

8.7 COROLLARY. There exists a divisible semibiplane with block size k on 
v points in at least the following cases: 

(i) k = 2\n = 22"1; 
(ii) (n, k) = (3, 9) or (6, 16); 

(iii) kaprimepower = lmodulo2,n = (k — l ) / 2 ; 
(iv) k = 2q where q is an odd prime power, n = q. 

In cases (i) to (iii), we may assume the existence of a Singer group; in case 
(iv), we may assume class regularity. 

We remark that our results give quite a lot of information on the 
existence problem for divisible semibiplanes, if one makes use of Proposi­
tions 8.4, 8.5 and 1.8. We give two examples. 

8.8 Example. The only pairs (n, k) with k < 20 for which the existence 
of a divisible semibiplane with parameters (n, k) is in doubt are (2, 9), 
(3, 10), (3, 12), (6, 12), (2, 13), (3, 13), (3, 15), (7, 15), (2, 16), (3, 16), 
(4, 16), (5, 16), (6,16). 

8.9 Example. Let A be a divisible semibiplane with parameters (n, k) 
where k = 2 mod 4 is not the sum of two squares and wrhere k < 330. 
Then either A is a transversal design or a conference design, or (k, n) is 
one of the following pairs: 

(42,3) (110,5) (190,45) (238,21) 
(46,5) (118,9) (206,5) (246,105) 
(54,9) (126,45) (210,7) (266,35) 

(66,15) (150,25) (210,55) (294,49) 
(78,21) (166,33) (222,13) (326,65). 

Proof. As k = 2 mod 4 one sees from (8.5) that n must be odd while m 
must be even; thus Proposition 1.8 implies 

(8.7) m = 0 mod 4 

as k is not the sum of two squares. Now (8.5) implies that 2v = 2nm = 
2n + k2 — k, so 

(8.8) 2n = k - (k2 - 2nm). 

By Proposition 1.8 k2 — 2nm is a square, so k2 — 2nm = 4 mod 8 (using 
(8.7) and& = 2 mod 4). Then 

(8.9) k2 - 2nm = 4(2/ + l ) 2 
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for some integer t. Conditions (8.8) and (8.9) yield 

(8.10) 2n = ft - 4(2* + l)2 , 

so (8.5) implies that 

(8.11) ft - 4 ( 2 / + iy\k(k - 1). 

Assume t = 0. Then ft — 4 | ft (ft — 1). Then every prime power factor of 
ft — 4 divides ft or ft — 1 (as well as ft — 4), so ft — 4 | 12. By hypothesis, 
we now get 

2 = ft = 4 + 2*3'mod 4, 

so i is odd, hence i = 1. Then ft — 4 is 2 or 6, and ft is 6 or 10. If ft = 6, 
condition (8.10) would imply n = 1, contradicting (8.6). If ft = 10 our 
hypothesis is contradicted. Then t ^ 0. 

lit = 1, condition (8.11) implies that ft — 36 divides ft (ft — 1). Arguing 
as before one sees that ft — 36 = 2.3'5 ;7r where i g 2 and j , r g 1. 
Using the fact that ft is not the sum of two squares, one sees that there are 
only 7 possible pairs (ft, n) for t = 1; namely, (ft, n) = (42, 3), (46, 5), 
(54, 9), (66, 15), (78, 21), (126, 45), (246, 105). If* ^ 4, conditions (8.8) 
and (8.9) imply 

ft - 2n = ft2 - 2nm ^ 324. 

Since n ^ 2, ft ^ 328, hence ft ^ 330, a contradiction. Treating the cases 
/ = 2, 3 as we treated the case / = 1, we obtain the result stated above. 

We finally remark that a detailed study of semibiplanes is in [53] and 
that semisymmetric designs are also studied in [26]. 

Note. After finishing this research, the author has obtained a copy of 
Delsarte's unpublished paper [14]. There is some overlap between his 
results and Chapters 6 and 7 of this paper. In particular, his paper con­
tains a result similar to our Theorem 6.8 and also Corollary 7.7. 
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Notes added in proof. 1) Topics related to those in the present paper are 
also discussed by H. P. Ko and D. K. Ray-Chaudhuri in their paper 
"Intersection theorems for group divisible difference sets" (Discr. Math. 
39 (1982), 37-58). 
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2) Dina Ghinelli Smit has considered non-existence results for auto­
morphism groups of divisible designs which in particular include a 
strengthening of the Bose-Connor theorem for symmetric divisible designs 
and also apply to relative difference sets (see her paper ''Automorphisms 
and generalized incidence matrices of point-divisible designs", to appear 
in the Proc. of the Int. Conf. on Combinatorial Geometries and their 
applications (Annals of Discr. Math.), and her Ph.D. thesis (University 
of London, 1982)). 

3) After submitting this paper the author has become aware of the fact 
that certain families of relative difference sets (with respect to a normal 
subgroup) have been studied from the point of view of quasiregular 
collineation groups of projective planes, see e.g. F. C. Piper, "On relative 
difference sets and projective planes", Glasgow Math. J. 15 (1974), 
150-154, and M. J. Ganley and E. Spence, "Relative difference sets and 
quasi-regular collineation groups", J. Comb. Th. A 19 (1975), 134-153. 
In particular, it has been shown by C. W. H. Lam (using rather involved 
arguments and a computer search) that no normal relative difference set 
with parameters (4.7) can exist for q = 4 or 5 (see his paper "On relative 
difference sets", in Proc. Seventh Manitoba Conference on Numerical 
Math, and Computing 1977, pp. 445-474) ; note that the remarks given 
after the proof of Proposition 4.9 immediately rule out the case q = 5 
even for relative difference sets with respect to a not necessarily normal 
subgroup. 
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