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SELFADJOINT METRICS ON ALMOST TANGENT
MANIFOLDS WHOSE RIEMANNIAN
CONNECTION IS ALMOST TANGENT

BY
D. S. GOEL

1. Let M be a differentiable manifold of class C*, with a given (1, 1) tensor
field J of constant rank such that J2=AI (for some real constant A). J defines a
class of conjugate G-structures on M. For A>0, one particular representative
structure is an almost product structure. Almost complex structure arises when
A<0. If the rank of J is maximum and A=0, then we obtain an almost tangent
structure. In the last two cases the dimension of the manifold is necessarily even.
A Riemannian metric S on M is said to be related if one of the conjugate structures
defined by S has a common subordinate structure with the G-structure defined by
J. It is said to be J-metric if the orthogonal structure defined by S has a common
subordinate structure. On an almost complex manifold a metric is a J-metric if
and only if it is Hermitian. A linear connection V on M is a J-connection if

1.1 VxJ =0
for all vector fields X in M, where V x is the absolute derivation defined by V.
It is known that the Hermitian connection defined by the Hermitian metric on a
Hermitian manifold is almost complex if and only if the fundamental 2-form is
closed.

In this paper we shall study a similar problem for the Riemannian connection
of a selfadjoint metric (which is a related metric) on an almost tangent manifold.
Since the Riemannian connection is symmetric and if

then the Nijenhuis tensor is zero which implies that the almost tangent structure is
integrable [2]. Hence a necessary condition for the Riemannian connection to be a
J-connection (almost tangent) is that the almost tangent structure is integrable.
First we shall find necessary and sufficient conditions for the Riemannian connec-
tion of a selfadjoint metric on an integrable almost tangent manifold to be almost
tangent and then characterise such metrics on the tangent manifold.

2. A metric S on an almost tangent manifold M is called selfadjoint [1] if

.1 (X-JY)=0UX"-Y)
for all vector fields X, ¥ in M, where (*) is the inner product defined by S.
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The condition (1.1) can be expressed in terms of the following (0, 3) tensor
field K defined by
@.2) K(X, Y,2) = (V¢))Z - X)+(V2)X - Y)=((Vx))Y - 2)
where X, Y, Z are vector fields in M.

LemMma 2.1. V is an almost tangent connection if and only if K=0.

Proof. The condition is clearly necessary. It is sufficient since from (2.2) we
have
23) 2(Vx)Y-Z) = K(Y, Z, X)+K(Z, X, Y)
forall X, Y,Zin M.

LemMA 2.2. Using the Riemannian connection of a selfadjoint metric S on an
almost tangent manifold we get
24 KX, Y,2)=JX(Y Z2)—X(Y - JO)+(UIX, Y]-[JX, Y] - Z)

Proof. Since V is the Riemannian connection
2(VxY) Z) = X(Y - 2)+Y(X - 2)—Z(X - Y)+([X, Y], Z)

+([Z, X]- V)—(IY, Z] - X)
and since S is selfadjoint
X-JY)=UX"-Y)
These two relations together with
((VxNY - 2) = ((VxIY) - 2)-(J(VxY) - Z)

lead to (2.4).

Lemma 2.3. [1]. A metric S on an almost tangent manifold M is selfadjoint if
and only if the value of S on every adapted moving frame has the form

@.5) [g g]

where Q, T are symmetric nXn matrices and det Q0.
Using above lemmas and the integrability being a necessary condition we obtain.

THEOREM 2.1. S is a selfadjoint metric on an integrable almost tangent manifold
M of dimension 2n. If the components of S, relative to the moving frame o associated
with an adapted chart x, are of the form (2.5) then the Riemannian connection V
of S is almost tangent if and only if

aQab
. =0
(2 6) axc+n
(2.7) aT:zb — aQab

axc+n axc

(a,b,c=1,...,n).
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Proof. From lemma 2.2 it follows that the value of the tensor field K on ¢ is
zero if and only if, for @, b, c=1,...,n

0 (0 0
Jax°(ax" ax”+") =0

IZ(22) - 220
0x°\0x® 0x° ox°\oxe oxttn)

Therefore the tensor field X is zero if and only if (2.6) and (2.7) hold.

The tangent manifold T.# of a differentiable manifold .# admits an integrable
almost tangent structure in a natural way. Let II be the natural projection IT: 7.4 —
# which takes a vector at the point m €  to the point m. Corresponding to any
chart x on a neighbourhood U of a point m € .# we can define a standard chart
on II7U which we denote by (x, y). Let g be a Riemannian metric on . with
components g, relative to the chart x defined on a coordinate neighbourhood U.
Then the complete lift g¢ of g to T.# with components

9a 4
(2.8) l:axd y gab}
8av 0

on JI71U relative to the chart (x, y) is a selfadjoint metric on T.# [2, 3]. Let h be
a symmetric (0, 2) tensor field on .# whose components relative to a chart x
are h,. The vertical lift A° of A is a symmetric (0, 2) tensor field on T.# with
components

2.9) [h(';b g}

relative to the standard chart (x, y) on T.# [3].

and

THEOREM 2.2. Let S be a selfadjoint metric on T#. A necessary and sufficient
condition for the Riemannian connection V of S to be almost tangent is that

(2.10) S = g°+hn’
where g is a Riemannian metric on # and h is a symmetric (0, 2) tensor field on M.

Proof. If S'is of the form (2.10) then the value of S on the natural moving frame
associated with a chart (x, y) on T.# is

agab
[Tx" Ythe gab]
gab 0

It is easy to see that the conditions of theorem 2.1 are satisfied. Hence the Rieman-
nian connection of S is almost tangent.
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Suppose that S is a selfadjoint metric on T.# whose Riemannian connection V
is almost tangent. Let (x, y), (%, y) be charts on T.# with intersecting domains
and o, & the associated moving frames. If

So o = T 9 and So ¢ = r Q
o o] 2 9]

Q 0 0 0
then
Q=404
(2.11) T =ATA+BQA+A'QB ]
where

0x° 0%x®
4= p= 5l
[axb} [axb oz’ ]

and A4’ denotes the transpose of the matrix 4. The conditions of theorem 2.1
imply that Q,, are functions of x’s only and that

0

’I:zb = _Qibyc-i-Hab(xl’ ] xﬂ)

0x°
There exist functions g,, and A, on # such that g,, o I=0Qy, kg o Il=H,,.
Using equations (2.11) it can be shown that functions g, A,, are components of
symmetric (0, 2) tensor fields. Since Q is non-singular so is g=[g,,]. Therefore g is
a Riemannian metric on .#. The value of S on o is of the required form (2.10).

3. Remark. The previous technique can be applied to other G-structures. For
example suppose that S is a positive-definite almost product metric on an integ-
rable almost product manifold. The Riemannian connection of S is almost
product if and only if its components relative to any adapted chart have the form

A 0
0 B
where A4 depends on Xy, ..., x, and B depends on x,,4, ..., X,.
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