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It is well-known that in a Hausdorff space, a sequence has
at most one limit, but that the converse is not true. The con-
dition that every sequence have at most one limit will be called the
semi-Hausdorff condition. We will prove that the semi-Hausdorff
condition is strictly stronger than the T1-axiom and is thus be-

tween the 'I’1 and T2 axioms. In this note, we investigate into

some properties of the spaces satisfying the semi-Hausdorff con-
dition.
DEFINITION 1. A topological space X 1is said to be

semi-Hausdorff if and only if every sequence in X has at most
one limit.

THEOREM 1. Every Hausdorff space is semi-Hausdorf{f,
but not conversely.

The first part is too well-known to need a proof. The
second is proved by considering an uncountable set with the
countable complement topology.

THEOREM 2. Every semi-Hausdorff space is T1 , but

not conversely.

Proof. Let X be semi-Hausdorff and x,y ¢ X be
distinct points. The sequence (x, X, X, ...) converges to x

and hence cannot converge to y. Hence there exists a neigh-
borhood UY which does not contain x.

For the second part, let X be an infinite set, with the
finite complement topology. This space is Ti’ but every
sequence of distinct points converges to every point in the space.

THEOREM 3. The semi-Hausdorff property is heredi-
tary.
Proof. Obvious.
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THEOREM 4. The semi-Hausdorff property is invariant
under every one-one onto open mapping.

Proof. Let f:X->Y be a 1-1 onto open mapping, with
X semi-Hausdorff. Suppose (yn) is a sequence in Y con-
. . -1 . .
verging to y' and y'" . Since f is continuous, the sequence

-1 -1 -
(f (y )) converges to f "(y') and f 1(y"). This implies
n
-1 -1
f (y")=£f (y") and hence y'=y".

COROLLARY 4.1. The semi-Hausdorff property is a
topological invariant.

THEOREM 5. The semi-Hausdorff property is pro-
ductive and projective.
Proof. Let X =XX be the product of non-empty
E— o
spaces X . Suppose each X is a semi-Hausdorff space, and
@ o
let (f ) be a sequence in X converging to distinct limits f and
n

g. Then there exists an index B such that £(B) # g(p). I p is
the projection from X to X[3 , it follows from the continuity of

p that the sequence (fn(j3)) has distinct limits f(p) and g(B), a

contradiction.

Conversely, let X be a semi-Hausdorff space. Each X
o

is homeomorphic with a subspace of X. By Theorem 3 and
Corollary 4.1, X is semi-Hausdorff.
o

COROLLARY 5.1. If Y is semi-Hausdorff, so is Yx
with the pointwise convergence topology.

The semi-Hausdorff property is not divisible, in fact not
invariant even under open quotient mappings. Let X be the
real space (with the usual topology) and R = {(x,y) | x-y
rational} . Then X/R is an indiscrete space and hence not
semi-Hausdorff.

THEOREM 6. Every first countable semi-Hausdorff
space is Hausdorff.
Proof. Let x and y be distinct points of a first-
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countable semi-Hausdorff space X. Let U1 ) UZ D U3 D...

be a local basis at x, and V1 D V2 D V3 D ... be alocal basis

at y. Suppose that Ui intersects V_ for every i. Choose
i
X, € Uiﬂ Vi' i=1,2,3,... . The sequence (xn) then converges
i
to both x and y, which is a contradiction. Hence U, N Vi =0
1
for some 1.
DEFINITION 2. Let X be a topological space and
SCX. S is sequentially compact if and only if every sequence
in S has a subsequence converging to a pointin S. S is se-

quentially closed if and only if no sequence in S converges to a
point in X - S.

THEOREM 7. In a semi-Hausdorff space, every set
which is sequentially compact is sequentially closed.

Proof. Let S be sequentially compact and suppose
there is a sequence (xn) in S converging to x ¢ S. Then (xn)

has a subsequence (x ), converging to a point y ¢ S. But as a
subsequence of a convergent sequence, (x_ ) -=x. Contradiction.
Hence S is sequentially closed.

We conclude with two characterizations of semi-Hausdorff
spaces.

THEOREM 8. A space X is semi-Hausdorff if and
only if the diagonal set A is sequentially closed in X X X.

Proof. If X is semi-Hausdorff and a sequence
(x ,x ) in A converges to (x,y) ¢ A, then x —-x, x =y,
n n n n

x 3y, which is a contradiction. Hence A is sequentially
closed.

Conversely, if A is sequentially closed and X is not
semi-Hausdorff, then there exists a sequence (xn) in X such

that x —x, x vy, x% y. Then (x ,x ) converges to (x,y) ¢ A.
n n n n

Contradiction. Hence X is semi-Hausdorff.

THEOREM 9. Let f: XY and g: X—+Y be se-
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quentially continuous functions. If Y is semi-Hausdorff, then
the set A = {x| f(x) = g(x)} is sequentially closed. Conversely,
if A is sequentially closed for all X, f and g, then Y is
semi-Hausdorff.

Proof. Let Y be semi-Hausdorff and suppose there is
a sequence (xn) in A converging to x ¢ A. Then f(x ) f(x)
n

and g(x )= g(x). Hence f(x)= g(x) and x ¢ A. Contradiction.
n

The converse follows trivially from Theorem 8 on taking
X =Y XY and f,g to be the projections.
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