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Summary

A new estimator is proposed for the parameter C¯ 4Nc, where N is the population size and c is

the recombination rate in a finite population model without selection. The estimator is an

improved version of Hudson’s (1987) estimator, which takes advantage of some recent theoretical

developments. The improvement is slight, but the smaller bias and standard error of the new

estimator support its use. The variance of the average number of pairwise differences is also

derived, and is important in the formulation of the new estimator.

1. Introduction

Under the neutral theory of molecular evolution, the

average number of pairwise nucleotide differences

among sequences in a random sample is independent

of the recombination rate. If only non-identical pairs

are considered, the expectation of this average is equal

to θ¯ 4Nu, where N is the effective population size

and u is the neutral mutation rate in an infinite-sites

model. The variance of pairwise differences, however,

does depend on the recombination parameter, C¯
4Nc, where c is the recombination rate. Nearly a

decade ago, Hudson (1987) made use of this fact and

introduced an estimator of C based on the sample

distribution of pairwise differences. Since that time,

Hudson’s estimator has become the most frequently

used of the available estimators. Some recent, related

theoretical results now suggest improvements to

Hudson’s original work.

Here, a new estimator of C is proposed which

differs from Hudson’s in that only non-identical pairs

of sequences are considered and because an unbiased

estimator of θ # is employed in its calculation. The

statistical properties of the new estimator are investi-

gated using computer simulations, and are compared

with those of Hudson’s estimator. The new estimator

is less biased and has a smaller standard error.
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2. The estimators

From a sample of n sequences we can calculate two

different averages of the numbers of pairwise dif-

ferences, which differ according to how many pairwise

comparisons are considered. If k
ij

is the number of

differences between two sequences, i and j, these are

π¯
2

n(n®1)
3
n−"

i="

3
n

j=i+"

k
ij

(1)

and

ka ¯
1

n#
3
n

i="

3
n

j="

k
ij
. (2)

Thus, π is computed using only non-identical pairs,

whereas ka counts each of these twice and includes the

n zero values obtained when each sequence is

compared with itself. In a population of constant size

with neutral, infinite sites mutation, the expectation of

π is θ (Watterson, 1975; Tajima, 1983). Since (2) can

be rewritten as π(n®1)}n, the expectation of ka is equal

to θ(n®1)}n.

Corresponding to (1) and (2), two variances can

also be calculated:
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When there is no recombination, the expectation of S#
π

is given by

E(S#
π)¯ 92(n®2)

3(n®1): θ­9(7n­3) (n®2)

9n(n®1) : θ # (5)
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(Wakeley, 1996). Since (4) can be rewritten as

S#
k
¯ 0n®1

n 1S#
π­0n®1

n#
1π#, (6)

the expectation of S#
k

becomes

E(S#
k
)¯9(n®1) (2n®1)

3n#
: θ­9(n®1) (7n#­7n®6)

9n$
: θ #.

(7)

Equation (7) follows from the substitution into (6) of

expression (5) and the expression for E (π#) employed

by Tajima (1993) to develop an unbiased estimator of

the variance of π when there is no recombination.

Hudson (1987) derived the expectation of S#
k

when

there is recombination. His expression can be written

E (S#
k
)¯ 9(n®1) (2n®1)

3n#
: θ­g

k
(C, n) θ #. (8)

The expression for g
k
(C, n) is reproduced in the

Appendix in a different format from that of Hudson

(1987). The limit of g
k
(C, n) as C approaches zero is,

then, equal to the term multiplying θ # in (7). Hudson

(1987) proposed the estimator, here called Cq
k
, that

solves
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where h
j
is the heterozygosity at site j in a sample of

DNA sequences. Thus, Hudson’s estimator involves

using 3 h
j
®3 h#

j
to estimate the first term on the

right-hand side of (7) and [3 h
j
n}(n®1)]# to estimate

θ #, then solving for the value of C that equates the

expectation of S#
k

most closely to its observed value.

The variance of π with recombination can also be

obtained. From (6),
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and since E (S#
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)®Var (π) (Wakeley, 1996),
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Hudson (1983) derived an expression for Var (k
ij
),

given explicitly by Hudson (1990) ; Hudson (1987)

developed E (S#
k
), reproduced here as (8) ; and

Watterson (1975) gave the familiar result that

E (π)¯ θ. Then, Var (π) with recombination becomes

Var (π)¯ 9 n­1

3(n®1): θ­f(C, n) θ #, (12)

where f(C, n) is given in the Appendix. As C decreases

to zero, (12) approaches Tajima’s (1983) result.

Expression (12) was also recently derived by

Pluzhnikov & Donelly (1996), but for other purposes.

It follows, after some simplification, that

E (S#
π)¯ 92(n®2)

3(n®1): θ­gπ(C, n) θ #, (13)

where gπ(C, n) is given in the Appendix, is the ex-

pectation of (3) when there is recombination. Ac-

cordingly, as C approaches zero, (13) approaches (5).

Tajima (1993) noted that π# is a biased estimator of

θ #. Of course, this is true also of Hudson’s (1987)

estimator, [3 h
j
n}(n®1)]#, since expression (1) is

identical to 3 h
j
n}(n®1). Expression (12) can be used

to obtain an unbiased estimator of θ # :

θ n#¯
p#®[(n­1)}3(n®1)]π

f(C, n)­1
. (14)

Thus, the new estimator of C proposed here solves

S#
π ¯ 92(n®2)
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(15)

where π and S#
π are observed values, calculated from

a sample of DNA sequences using (1) and (3). This

estimator, called Cq π, differs from Hudson’s (1987)

estimator, Cq
k
, in two main respects : only the n(n®1)}2

unique pairwise comparisons among the n sequences

are made, and an unbiased estimate of θ # is employed.

3. Performance in simulations

Monte Carlo simulations, using the method of Hudson

(1983), were done to assess the statistical properties of

Cq π, and to compare its performance with that of Cq
k
.

Figure 1 compares estimates of the distributions of

Cq π}C and Cq
k
}C, where C is the true value of the

recombination parameter, for the same values of n, C

and θ used in figure 2 of Hudson (1987). Arrows used

to indicate the means of the estimated distributions

show that Cq π is less biased than Cq
k
. As n, C and θ

increase, the performances of the two estimators

become more and more similar. Not only is Cq π less

biased, its variance is smaller. For the three estimated

distributions in Fig. 1, Var (Cq π}C ) equals (a) 0±09, (b)

1±16 and (c) 1±82, and Var (Cq
k
}C ) equals (a) 0±10, (b)

1±24 and (c) 2±24. In addition, when n¯11 and C¯
θ¯ 25 (c), 4±7% of the distribution of Cq

k
}C lies above

4, compared with 3±2% for Cq π}C.

4. An application

Schaeffer & Miller (1993) used Cq
k

to estimate the

recombination rate in 99 sequences of a C 3±5 kb

region containing the alcohol dehydrogenase gene of

Drosophila pseudoobscura. Their data give 315 as an

estimate of C when Cq
k

is used, and 282 using Cq π.
Because of the assumption of infinite-sites mutation,

sites showing direct evidence of multiple mutations,

i.e. the 27 sites segregating more than two nucleotides,
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(a)

(b)

(c)

Fig. 1. The estimated distributions of Cq π}C and Cq
k
}C for

three different sample sizes and values of θ and C. Each
distribution is based on 10000 independent samples. The
means of the distributions are indicated with arrows. For
(a) the means are too similar to be distinguished this way;
they are 1±06 and 1±10 for Cq π}C and Cq

k
}C, respectively.

were ignored in these analyses. In addition, Hudson’s

(1987) simulation method of constructing an ap-

proximate 95% confidence interval gives [185, 484]

for Cq
k
, and [172, 453] for Cq π. Ten thousand replicates

per value of C were used to determine the lower

bounds and 5000 to determine the upper bounds for

these data. These results are consistent with the

Appendix. The portions of E (S#
k
), E (S#

π), and Var (π) that depend on C

g
k
(C, n)¯

(n®1)

n$C #
(®C(2n#®nC®4)®[n#®4n­14®C(n#®2)] I

"
­[49n#®52n­110­C(15n#®8n­2)]

I
#

o97*
gπ(C, n)¯

(n®2)

n(n®1)C #
(®2C(n­1)®[n®7®C(n­1)] I

"
­[49n®55­C(15n®1)]

I
#

o97*
f (C, n)¯

2

n(n®1)C #
(®2C®[2n(n­1)®7®C ] I

"
­[2n(n­1) (13­2C )®55®C ]

I
#

o97*
where

I
"
¯ log 9C #­13C­18

18 :
I
#
¯ log 9(13®o97­2C) (13­o97)

(13­o97­2C ) (13®o97):

simulation results reported above and in Fig. 1 : Cq π is

smaller, and presumably less biased, than Cq
k
, and the

error of Cq π may be somewhat less than that of Cq
k
.

5. Discussion

All the main conclusions of Hudson (1987) about Cq
k

hold also for Cq π, namely the performance of both

estimators approaches a satisfactory level only for

very large data sets, i.e. like those of the top panel of

Fig. 1 with n¯ 40 and θ¯C¯100. Since Hudson’s

(1987) original work, a few such data sets have been

generated. The data of Schaeffer & Miller (1993),

analysed above, are one example. Fig. 1 shows that it

may be better to use Cq π when data are less plentiful.

This is because Cq π is less biased than Cq
k
, and has a

smaller standard error. However, for smaller data sets

neither of these estimators is expected to be very

accurate, so better estimators should be developed. To

this end, Hey & Wakeley (1996) have recently

developed another estimator of C.

The theory presented above is valuable in one other

respect, and that is in quantifying error when π is used

to estimate θ. Tajima (1993) gives unbiased estimators

of the variance of π under two conditions : no

recombination and complete independence of sites.

An unbiased estimate of the variance of π under

intermediate levels of recombination can be derived

from (12) and (14) :

V llar (π)¯
(n­1)

3(n®1)
π­f(C, n) 9π#®[(n­1)}3(n®1)]π

f(C, n)­1 : .
(16)

For Schaeffer & Miller’s (1993) data, π¯ 31±7 and

C¯ 282, estimated using Cq π, so V lar (π) becomes 16±1.

This can be compared with V lar (π) estimated from

Tajima’s (1993) formulas: for complete linkage,

V lar (π)¯194±5, and under free recombination,

V lar (π)¯10±8. Because recombination is so frequent

in these sequences, the error of this estimate of θ is

very small.
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