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Abstract We investigate whether differential polynomials in real transcendental meromorphic functions
have non-real zeros. For example, we show that if g is a real transcendental meromorphic function,
c ∈ R\{0} and n � 3 is an integer, then g′gn − c has infinitely many non-real zeros. If g has only finitely
many poles, then this holds for n � 2. Related results for rational functions g are also considered.
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1. Introduction and results

Our starting point is the following result due to Sheil-Small [15], which solved a long-
standing conjecture.

Theorem A. Let f be a real polynomial of degree d. Then f ′ + f2 has at least d − 1
distinct non-real zeros which are not zeros of f .

In the special case where f has only real roots this theorem is due to Prüfer (see [14,
Chapter V, p. 182] and [15] for further discussion of the result).

Theorem B below is an analogue of Theorem A for transcendental meromorphic func-
tions. Here ‘meromorphic’ will mean ‘meromorphic in the complex plane’ unless explic-
itly stated otherwise. A meromorphic function is called real if it maps the real axis R to
R ∪ {∞}.

Theorem B. Let f be a real transcendental meromorphic function with finitely many
poles. Then f ′ + f2 has infinitely many non-real zeros which are not zeros of f .
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Theorem B is a special case of [4, Theorem 1.3]. The result that f ′ + f2 has infinitely
many non-real zeros if f is a real entire transcendental function follows from the main
theorem of [3].

A corollary of Theorem A is the following result.

Corollary 1.1. Let f be a real polynomial of degree d and m � 2 an integer. Then
f ′ + fm has at least d(m − 1) − 1 distinct non-real zeros which are not zeros of f . In
particular, f ′ + fm has at most d + 1 real zeros.

In fact, putting g(z) = f(w)m−1, where w = z/(m − 1), we have

g′(z) + g(z)2 = f(w)m−2(f ′(w) + f(w)m)

so that Corollary 1.1 follows from Theorem A applied to g, since g has degree d(m − 1).
The same argument yields the following corollary to Theorem B.

Corollary 1.2. Let f be a real transcendental meromorphic function with finitely
many poles and m � 2 an integer. Then f ′ +fm has infinitely many non-real zeros which
are not zeros of f .

We note that Theorem B does not hold for meromorphic functions with infinitely many
poles, a simple example being f(z) = − tan z. Similarly, Theorem A fails for rational
functions.

In this paper we consider to what extent Corollary 1.1 holds for rational functions,
and Corollary 1.2 for meromorphic functions f with infinitely many poles. The following
theorem summarizes results on zeros of the differential polynomial f ′ + fm in the plane.

Theorem C. Let f and g be non-constant and meromorphic and let m � 3 and n � 1
be integers. Then

(i) f ′ + fm has at least one zero which is not a zero of f , and infinitely many if f is
transcendental;

(ii) if c is a non-zero complex number, gng′ − c has at least one zero, and infinitely
many if g is transcendental.

Hayman [6, Corollary to Theorem 9] proved that if f is a transcendental meromorphic
function and m � 5, then f ′ + fm has infinitely many zeros, and his proof shows that
f ′ + fm has infinitely many zeros which are not zeros of f . Mues [11] showed that
Hayman’s result remains valid for m = 4, and the first and second author [2] proved that
this also holds for m = 3. In fact the transformation

w = cz, g(z) =
1

f(w)
, f ′(w) + f(w)m = c−1g(z)−m(c − g(z)m−2g′(z)) (1.1)

shows that part (i) of Theorem C may be deduced from part (ii), and part (ii) was proved
for transcendental g and n � 1 in [2]. The assertion of part (ii) for non-constant rational
functions g follows easily from a consideration of the behaviour of g and gng′ − c at
infinity.
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Theorem 1.3. Let f be a real rational function of degree d and m � 5 an integer.
Then f ′ + fm has at least (m − 4)d distinct non-real zeros which are not zeros of f . In
particular, f ′ + fm has at most 4d real zeros.

If m is odd, then f ′ + fm has at least (m − 3)d distinct non-real zeros which are not
zeros of f so that f ′ + fm has at most 3d real zeros.

Theorem 1.4. Let f be a real transcendental meromorphic function and m � 5 an
integer. Then f ′ + fm has infinitely many non-real zeros which are not zeros of f .

Theorem 1.4 improves Hayman’s result in the case that f is real. We will show by
examples that the restriction m � 5 in this theorem is best possible.

Using the transformation (1.1) we obtain the following results from Theorems 1.3
and 1.4.

Corollary 1.5. Let g be a real rational function of degree d and n � 3 an integer.
Then for every real c �= 0 the equation gng′ = c has at least d(n − 2) distinct non-real
solutions.

Corollary 1.6. Let g be a real transcendental meromorphic function and n � 3 an
integer. Then for every real c �= 0 the equation gng′ = c has infinitely many non-real
solutions.

The condition n � 3 is best possible in order to conclude that there are non-real solu-
tions. However, for polynomials and transcendental meromorphic functions with finitely
many poles we have the following theorem.

Theorem 1.7. Let g be a real polynomial of degree d and n � 2 an integer. Then for
every real c �= 0 the number of distinct non-real solutions of the equation gng′ = c is at
least d(n−1)−1 if n is even and at least d(n−1) if n is odd. In particular, this equation
has at most 2d real solutions.

Theorem 1.8. Let g be a real transcendental meromorphic function with finitely
many poles and n � 2 an integer. Then for every real c �= 0 the equation gng′ = c has
infinitely many non-real solutions.

Examples show that if n = 1, then the equation gng′ = c need not have non-real
solutions.

For our last result, we return to the value distribution of f ′ + fm. Hayman [6] proved
not only that if f is a transcendental meromorphic function and m � 5 then f ′ + fm has
infinitely many zeros, but that under these conditions f ′ + fm + c has infinitely many
zeros for any c ∈ C. Examples show that when m is 5 or 6 and c ∈ R\{0} then f ′+fm+c

may fail to have non-real zeros, with f real, transcendental and meromorphic.

Theorem 1.9. Let f be a real meromorphic function and set G = f ′ + fm + c, where
c ∈ R \ {0} and m ∈ N.

Suppose that f is transcendental. If m � 7 then G has infinitely many non-real zeros
which are not zeros of f . The same conclusion holds for m � 4 if N̄(r, f) = o(T (r, f))
and thus in particular if f has finitely many poles.
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Suppose finally that f is a non-constant rational function with f ′ �≡ −c. If m � 6 then
G has at least one non-real zero which is not a zero of f , and the same conclusion holds
for m � 3 if f is a polynomial.

2. A result from complex dynamics

One of our main tools is a result from holomorphic dynamics. Recall that the Fatou set of
a nonlinear meromorphic function f is the set where the iterates f◦n of f are defined and
form a normal family. We say that ζ ∈ C is a multiple fixed point of f (of multiplicity µ)
if f(z) − z has a multiple zero (of multiplicity µ) at ζ. This has to be slightly modified if
ζ = ∞. We say that ∞ is a multiple fixed point of f (of multiplicity µ) if 1/f(1/z) has
a multiple fixed point (of multiplicity µ) at 0.

Lemma 2.1. Let f be a nonlinear rational or transcendental meromorphic function
and let ζ be a multiple fixed point of f of multiplicity µ. Then there are ν := µ − 1
components U1, U2, . . . , Uν of the Fatou set of f satisfying f(Uj) ⊂ Uj , ζ ∈ ∂Uj and
f◦n(z) → ζ for all z ∈ Uj as n → ∞. Each Uj contains at least one singularity of f−1,
the inverse function of f .

In addition, the Uj can be labelled such that if z ∈ Uj , then

arg(f◦n(z) − ζ) → θj :=
− arg f (ν+1)(ζ) − π + 2πj

ν

as n → ∞ if ζ ∈ C, while if ζ = ∞ then, for some θ0 ∈ R,

arg(f◦n(z)) → θj :=
θ0 + 2πj

ν

as n → ∞.

The domains Uj appearing in Lemma 2.1 are called Leau domains. Note that the
singularities of f−1 are precisely the critical and asymptotic values of f . If f is rational,
then the only singularities of f−1 are the critical values. In fact, the domains Uj then
also contain critical points, but we do not need this result.

Lemma 2.1 is due to Fatou, and can now be found in every textbook on complex
dynamics. Excellent introductions to complex dynamics are [10, 16]; see [10, § 10] or
[16, § 3.5] for a proof and discussion of the results stated in Lemma 2.1. We note that
[10, 16] and most other textbooks on complex dynamics treat only the case where f

is rational, but the proofs extend to the case of transcendental meromorphic functions
(see also [1, § 4.3]).

To demonstrate how dynamics works we begin with a simple direct proof of Corol-
lary 1.1 found by the second author in 1989 after reading Sheil-Small’s paper. This
dynamical proof is also reproduced in [8].

Proof of Corollary 1.1. Let

F (z) = z − 1
f(z/(m − 1))m−1 . (2.1)
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Then F ′(z) = 0 gives f(w) �= 0 and f ′(w) + f(w)m = 0 where w = z/(m − 1). We have

F (z) = z + cz−d(m−1) + O(z−d(m−1)−1), z → ∞,

where c ∈ R \ {0}. This implies that ∞ is a multiple fixed point of f of multiplicity
µ = d(m−1)+2. Let U1, U2, . . . , Uµ−1 be the Leau domains at ∞ and let θ1, θ2, . . . , θµ−1

be as in Lemma 2.1. Each Uj contains a critical value and, as F is real, this critical value
and the corresponding critical point can be real only if θj is a multiple of π. This is the
case for at most two of the µ − 1 values of j, and thus F has at least µ − 3 = d(m − 1) − 1
non-real critical points.

As the total number of zeros of f ′ + fm is dm we obtain the result. �

The proof of Theorem 1.3 will use the same idea.

Proof of Theorem 1.3. Let f(z) = P (z)/Q(z), where P has degree p and Q has
degree q, so that d = max{p, q}. We consider again the function F defined by (2.1). If
q < p = d, then

F (z) = z + cz−(d−q)(m−1) + O(z−(d−q)(m−1)−1), z → ∞,

and the argument used in the proof of Corollary 1.1 shows that F has a multiple fixed
point at ∞ and that the Leau domains associated to this fixed point contain at least
(d − q)(m − 1) − 1 non-real zeros of F ′.

Let ζ1, . . . , ζk be the finite poles of f , with multiplicities s1, . . . , sk. Then ζj(m−1) is a
fixed point of multiplicity sj(m−1) of F . Lemma 2.1 now yields that of the sj(m−1)−1
Leau domains associated to ζj at most two can contain a real critical value, so at least
sj(m − 1) − 3 of these domains give rise to non-real zeros of F ′.

Overall this leads to
∑k

j=1 sj(m − 1) − 3 = q(m − 1) − 3k non-real zeros of F ′. If q = d

we thus have d(m−1)−3k � d(m−1)−3d = d(m−4) non-real zeros of F ′. If q < d, then
we obtain (d−q)(m−1)−1+q(m−1)−3k = d(m−1)−1−3k � d(m−1)−1−3(d−1) =
d(m − 4) + 2 non-real zeros of F ′.

If m is odd, then the number of Leau domains at each multiple fixed point is odd.
Lemma 2.1 shows that each of them, with at most one exception, contains a non-real
critical value. The above argument then shows that F ′ has at least d(m − 3) non-real
zeros. �

3. Proof of Theorem 1.4

Our second main tool is the following result of Pang [13], which has already found many
applications (see, for example, Zalcman’s survey [18]).

Lemma 3.1. Let f be a meromorphic function with unbounded spherical derivative,
and κ ∈ (−1, 1). Then there exist sequences zj ∈ C and aj > 0 such that

a−κ
j f(zj + ajz) → h(z), j → ∞, (3.1)
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uniformly on compact subsets of C, where h is a non-constant meromorphic function
with bounded spherical derivative. Furthermore, one can choose

zj → ∞ and aj → 0, j → ∞. (3.2)

The following result is an immediate consequence of the definition of the order of a
meromorphic function, using the Ahlfors–Shimizu form of the Nevanlinna characteristic.

Lemma 3.2. Let f be a meromorphic function with bounded spherical derivative.
Then f is of order at most 2.

Proof of Theorem 1.4. The proof is by contradiction, assuming that f ′ + fm has
only finitely many non-real zeros which are not zeros of f .

The first step is to reduce the result to the case of functions with bounded spherical
derivative. Suppose f has unbounded spherical derivative. We apply Lemma 3.1 with
κ = 1/(1 − m). Then κm = κ − 1 and we obtain

a−κm
j f(zj + ajz)m → h(z)m.

In C \ h−1({∞}) we have

a−κm
j f ′(zj + ajz) = a−κ+1

j f ′(zj + ajz) → h′(z)

and
h′(z) + h(z)m = lim

j→∞
a−κm

j (f ′(zj + ajz) + f(zj + ajz)m).

Suppose first that |Im zj/aj | → ∞. If h′ + hm has a zero at ζ then f ′ + fm has a
zero at ηj = zj + ajζj , where ζj → ζ. But then |ηj | � |zj | − o(1) → ∞, using (3.2), and
|Im ηj/aj | → ∞, so that ηj is non-real. Thus ηj is a zero of f and ζ is a zero of h. Hence
all zeros of h′ + hm are zeros of h, which contradicts Theorem C.

Thus |Im zj/aj | �→ ∞ and we may assume that Im zj/aj → s ∈ R. Putting xj =
Re zj = zj − i Im zj we find that

a−κ
j f(xj + ajz) = a−κ

j f(zj + aj(z − i Im zj/aj)) → h(z − is).

We may thus assume that zj ∈ R so that h is real, since otherwise we can replace zj by
xj and h(z) by h(z − is). We obtain a non-constant real meromorphic function h with
bounded spherical derivative. Suppose that ζ is a non-real zero of h′ + hm. Then again
f ′ + fm has a zero at ηj = zj + ajζj , where ζj → ζ, so that ζj is non-real for large j. But
this gives Im ηj = aj(Im ζj) �= 0, as well as |ηj | � |zj | − o(1) → ∞, using (3.2). Hence ηj

is a zero of f , and ζ is a zero of h. It follows that all non-real zeros of h′ + hm are zeros
of h. Theorem 1.3 implies that h is transcendental.

If f has bounded spherical derivative, then we put h = f . Again h is transcendental,
but h′ + hm may have finitely many non-real zeros which are not zeros of h.

As in the proof of Corollary 1.1 and Theorem 1.3 we consider the auxiliary function

F (z) = z − 1
h(z/(m − 1))m−1 ,
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and note that F ′ has finitely many non-real zeros and that poles of h give rise to multiple
fixed points of F of multiplicity at least m − 1. Lemma 2.1 implies that at least two of
the (at least three) Leau domains associated to such a fixed point contain a non-real
singularity of F−1.

Since F has finite order and finitely many non-real critical values, Theorem 1 from [2]
implies that all non-real asymptotic values correspond to logarithmic singularities of
the inverse function F−1. But according to the Denjoy–Carleman–Ahlfors Theorem [12,
§ 258], a function of order at most 2 can have at most four logarithmic singularities. Thus
F has only finitely many non-real critical and asymptotic values, so we conclude that h

has finitely many poles. We obtain a contradiction with Corollary 1.2. �

4. Proof of Theorems 1.7 and 1.8

Proof of Theorem 1.7. Without loss of generality we can assume that c = 1. We
consider the function

G(z) = z − 1
n + 1

g(z)n+1

and note that the critical points of G are exactly the solutions of g(z)ng′(z) = 1.
If ζ is a zero of g of multiplicity s, then ζ is a multiple fixed point of G of multiplic-

ity s(n + 1). Lemma 2.1 and an argument as in the proof of Corollary 1.1 yield that
the s(n + 1) − 1 associated Leau domains contain at least s(n + 1) − 3 non-real critical
values. If n is odd and thus the number s(n + 1) − 1 of Leau domains is odd, then we
even obtain s(n + 1) − 2 non-real critical values in these domains. Let ζ1, . . . , ζk be the
zeros of g, with multiplicities s1, . . . , sk. If n is odd then we find that G′ has at least
(n + 1)

∑k
j=1 sj − 2k = d(n + 1) − 2k non-real zeros. Since k � d this implies that G′

has at least d(n − 1) non-real zeros.
Now we consider the case that n is even. If ζ is a simple zero of g, then the pre-

vious argument based on Lemma 2.1 will only yield that n − 2 of the n associated
Leau domains contain a non-real critical value, which does not give any information
in the most interesting case where n = 2. We note, however, that if g′(ζ) < 0, then
G(n+1)(ζ) = −n!g′(ζ)n+1 > 0. With Uj as in Lemma 2.1 we find that if z ∈ Uj , then

arg(G◦�(z) − ζ) → θj :=
− arg G(n+1)(ζ) − π + 2πj

n
=

(2j − 1)π
n

as � → ∞. As n is even, (2j − 1)/n is never an integer and thus all n Leau domains at ζ

contain a non-real critical value in this case.
Let K be the number of real simple zeros ζ of g for which g′(ζ) > 0. Between two such

zeros there must be a real simple zero ζ satisfying g′(ζ) < 0 or a multiple zero of odd
multiplicity. Let L be the number of real simple zeros ζ of g for which g′(ζ) < 0 and let
M be the number of real multiple zeros of odd multiplicity. Then

L + M + 1 � K. (4.1)

https://doi.org/10.1017/S0013091504000690 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091504000690


286 W. Bergweiler, A. Eremenko and J. K. Langley

We denote by N the total number of multiple zeros of g and by P the number of non-real
simple zeros. Thus K + L + P is the total number of simple zeros of g. We find that

d � K + L + P + 3M + 2(N − M) = K + L + P + M + 2N. (4.2)

Denote by ξ1, . . . , ξN the multiple zeros of g, with multiplicities t1, . . . , tN . The above
considerations based on Lemma 2.1 show that there are at least (n + 1)tj − 3 non-real
critical values of G contained in the Leau domains associated to ξj . Also, for a non-real
simple zero of g each of the n associated Leau domains contains a non-real critical value
of G. Overall the number ν of non-real critical points of G thus satisfies

ν � (n + 1)
N∑

j=1

tj − 3N + K(n − 2) + Ln + Pn

= (n + 1)(d − K − L − P ) − 3N + K(n − 2) + Ln + Pn

= (n − 1)d + 2d − 3N − 3K − L − P.

Using (4.2) and (4.1) we obtain

ν � (n − 1)d + 2(K + L + P + M + 2N) − 3N − 3K − L − P

= (n − 1)d − K + L + 2M + N + P

� (n − 1)d − (L + M + 1) + L + 2M + N + P

= (n − 1)d − 1 + M + N + P.

The conclusion follows since M, N, P � 0. �

To prove Theorem 1.8 we cannot use the reduction to functions of finite order based on
Lemma 3.1, because there exists a non-constant real entire function, namely h(z) = z,
with the property that all solutions of the equation h′(z)h(z)2 = 1 are real. We need
instead a direct proof that g is of finite order.

Proof of Theorem 1.8. In view of Corollary 1.6 it is enough to consider the case
n = 2. We can assume without loss of generality that c = 1.

Suppose that the equation g′(z)g(z)2 = 1 has finitely many non-real solutions. First we
show that g has order at most 1. To accomplish this, we need the characteristic function
in the upper half-plane as developed by Tsuji [17] and Levin and Ostrovskii [9] (see
also [5]), and as used in [4]. For ψ meromorphic and non-constant in the closed upper
half-plane Im z � 0 and for t � 1 let n(t, ψ) be the number of poles of ψ, counting
multiplicity, in {z : |z − it/2| � t/2, |z| � 1}, and set

N(r, ψ) =
∫ r

1

n(t, ψ)
t2

dt, r � 1.

The Tsuji characteristic is

T(r, ψ) = m(r, ψ) + N(r, ψ),
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where

m(r, ψ) =
1
2π

∫ π−sin−1(1/r)

sin−1(1/r)

log+ |ψ(r sin θeiθ)|
r sin2 θ

dθ.

We refer the reader to [4,5,9,17] for the fundamental properties of the Tsuji character-
istic, but note in particular that the lemma on the logarithmic derivative [9, p. 332] (see
also [5, Theorem 3.2, p. 141]) gives

m(r, ψ′/ψ) = O(log r + log+
T(r, ψ)) (4.3)

as r → ∞ outside a set of finite measure.
The following lemma is a direct analogue for g of a result of Hayman from [6].

Lemma 4.1. We have

T(r, g) = O(log r), r → ∞.

Proof. We follow Hayman’s proof as in [6], but using the Tsuji characteristic and in
particular (4.3). Let

φ(z) = 1
3g(z)3.

Then φ has finitely many poles, and φ′ − 1 has finitely many zeros in the open upper
half-plane H, and so

N(r, φ) + N

(
r,

1
φ′ − 1

)
= O(1). (4.4)

Milloux’s inequality [7, Theorem 3.2, p. 57] translates directly in terms of the Tsuji
characteristic to give, using (4.3) and (4.4), outside a set of finite measure,

T(r, φ) < N

(
r,

1
φ

)
− N0

(
r,

1
φ′′

)
+ O(log r + log+

T(r, φ)) (4.5)

in which N0(r, 1/φ′′) counts only zeros of φ′′ which are not multiple zeros of φ′ − 1. But
all zeros of φ have multiplicity at least 3 and so are zeros of φ′′ but not zeros of φ′ − 1,
and consequently each such zero contributes 2 to

n

(
r,

1
φ

)
− n0

(
r,

1
φ′′

)

but at least 3 to n(r, 1/φ). Hence (4.5) becomes

T(r, φ) < 2
3N(r, 1/φ) + O(log r + log+

T(r, φ))

< 2
3T(r, φ) + O(log r + log+

T(r, φ)).

Thus 3T(r, g) � T(r, φ)+O(log r) = O(log r) initially outside a set of finite measure, and
hence without exceptional set since T(r, g) differs from a non-decreasing function by a
bounded term [17] (see also [4, p. 980]). �

Lemma 4.2. The function g has order at most 1.
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Proof. This proof is almost identical to [4, Lemma 3.2] and to corresponding argu-
ments in [9]. Lemma 4.1 and an inequality of Levin and Ostrovskii [9, p. 332] (see
also [4, Lemma 2.2]) give∫ ∞

R

m0π(r, g)
r3 dr �

∫ ∞

R

m(r, g)
r2 dr = O

(
log R

R

)
, R → ∞, (4.6)

in which
m0π(r, g) =

1
2π

∫ π

0
log+ |g(reiθ)| dθ.

But g is real on the real axis and has finitely many poles and so

T (r, g) = m(r, g) + O(log r) = 2m0π(r, g) + O(log r)

and (4.6) now gives, as R → ∞,

T (R, g)
R2 � 2

∫ ∞

R

T (r, g)
r3 dr � 4

∫ ∞

R

m(r, g)
r2 dr + O

(
log R

R2

)
= O

(
log R

R

)
,

from which the lemma follows. �

The rest of the proof is similar to the proof of Theorem 1.7. However, the arguments
simplify considerably since we have restricted our attention to the case n = 2 and since
we do not have to count the number of non-real critical points as precisely as in the proof
of Theorem 1.7.

We put
G(z) = z − 1

3g(z)3.

Then the zeros of G′ are exactly the solutions of g(z)2g′(z) = 1, so all critical points of
G, with finitely many exceptions, are real. By Lemma 4.2 and the Denjoy–Carleman–
Ahlfors theorem, G has at most two finite asymptotic values. Thus the number of non-real
singularities of G−1 is finite.

The fixed points of G are all multiple and they coincide with zeros of g. If g has finitely
many zeros, then g(z) = p(z) exp(az), where p is a rational function and a ∈ R \ {0}.
For such g, it is easy to see that the equation g′(z)g(z)2 = 1 has infinitely many non-real
solutions.

Hence we may assume that g has infinitely many zeros. A non-real zero of g is a non-real
multiple fixed point of G, and Lemma 2.1 implies that the Leau domains associated to it
contain a non-real singularity of G−1. A multiple zero of g is a multiple fixed point of G

of multiplicity at least 6, and Lemma 2.1 yields that at least three of the associated Leau
domains contain a non-real singularity of G−1. As the number of non-real singularities
of G−1 is finite, we see that only finitely many zeros of g are non-real or multiple, and
thus all but finitely many of the zeros of g are real and simple. This implies that there
are infinitely many real zeros ζ of g with g′(ζ) < 0. As in the proof of Theorem 1.7
we see that there are at least two non-real singularities of G−1 contained in the Leau
domains associated to such a point ζ. Since the number of non-real singularities of G−1

is finite, we deduce that there are only finitely many real zeros ζ of g satisfying g′(ζ) < 0,
a contradiction. �
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5. Proof of Theorem 1.9

Let m � 3, let f , G and c be as in the hypotheses, and define g and H by

g =
f ′ + c

fm
, H =

g′

g + 1
.

Then

f ′ + c

G
=

g

g + 1
, f ′′ −

(
G′

G

)
(f ′ + c) =

g′G

(g + 1)2
=

fmg′

g + 1
= fmH, (5.1)

where the second equation in (5.1) is obtained by differentiating the first and multiplying
by G. The function g is non-constant, poles of g are zeros of f , and g(z) = −1 implies
G(z) = 0. We may assume that H �≡ 0, since H ≡ 0 implies that g is constant. Let
S(r, f) denote any quantity which is o(T (r, f)) as r → ∞ outside a set of finite measure.
The lemma on the logarithmic derivative then implies that m(r, H) = S(r, f).

Lemma 5.1. We have, as r → ∞,

(m − 1)m(r, f) = m(r, fm−1) � m

(
r,

1
H

)
− α log r + S(r, f), (5.2)

in which α = 0 if f is transcendental; α = 2 if f(∞) = ∞; α = 2 if f(∞) ∈ C \ {0} and
g(∞) �= −1; α = 1 otherwise.

Proof. For transcendental f we apply the method of Clunie’s lemma [7, Lemma 3.3,
p. 68]. We have |fm−1H| � |H| if |f | < 1 and (5.1) yields

|fm−1H| �
∣∣∣∣f

′′

f

∣∣∣∣ +
∣∣∣∣G

′

G

∣∣∣∣
(∣∣∣∣f

′

f

∣∣∣∣ + |c|
)

if |f | � 1. Thus

|fm−1H| � |H| +
∣∣∣∣f

′′

f

∣∣∣∣ +
∣∣∣∣G

′

G

∣∣∣∣
(∣∣∣∣f

′

f

∣∣∣∣ + |c|
)

in any case and hence

m(r, fm−1H) � m(r, H) + S(r, f) = S(r, f).

Now (5.2) follows on writing fm−1 = (fm−1H)/H.
Suppose now that f is rational. If f has a pole of multiplicity p ∈ N at ∞, then g has

a zero of multiplicity p(m − 1) + 1 and H a zero of multiplicity p(m−1)+2 at ∞, which
gives (5.2) with α = 2. If f(∞) ∈ C then m(r, f) = O(1) and H has at least a simple
zero at ∞, while if f(∞) ∈ C \ {0} and g(∞) �= −1, then the zero of H at ∞ is at least
double. �

From Jensen’s formula and (5.2) we obtain at once, since m(r, H) = S(r, f),

(m − 1)T (r, f) � (m − 1)N(r, f) − N

(
r,

1
H

)
+ N(r, H) − α log r + S(r, f).
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Now if f has a pole in C of multiplicity q, then g has a zero of multiplicity mq−q−1 � 1
and so H has a zero of multiplicity mq − q − 2 = (m − 1)q − 2. So the contribution to
(m − 1)n(r, f) − n(r, 1/H) from this pole is 2. Thus

(m − 1)N(r, f) − N

(
r,

1
H

)
= 2N̄(r, f) − N0

(
r,

g + 1
g′

)
,

where N0(r, (g + 1)/g′) counts zeros of g′/(g + 1) which are not poles of f . A pole of H

is simple, and must be a zero or a pole of g + 1, and poles of g are zeros of f . Thus

N(r, H) � N̄

(
r,

1
f

)
+ N̄1

(
r,

1
g + 1

)
,

where N̄1(r, 1/(g + 1)) counts zeros of g + 1 which are not zeros of f . Combining the last
three formulae yields

(m − 1)T (r, f) � 2N̄(r, f) − N0

(
r,

g + 1
g′

)
+ N̄

(
r,

1
f

)

+ N̄1

(
r,

1
g + 1

)
− α log r + S(r, f). (5.3)

Write

N̄1

(
r,

1
g + 1

)
= N̄1,R

(
r,

1
g + 1

)
+ N̄1,NR

(
r,

1
g + 1

)
,

in which the subscripts ‘R’, ‘NR’ denote real and non-real zeros, respectively.

Lemma 5.2. We have, as r → ∞,

N̄1,R

(
r,

1
g + 1

)
� N̄(r, f) + N̄

(
r,

1
f

)
+ N0

(
r,

g + 1
g′

)
+ β log r + S(r, f), (5.4)

in which β = 0 if f is transcendental; β = −1 if f is rational and g(∞) = −1; β = 1 if f

is rational and g(∞) �= −1.

Proof. Applying Rolle’s theorem shows that between adjacent real zeros x1, x2 of
g + 1 there must be at least one point x0 which is a pole of g or a zero of g′ but not a
zero of g + 1. In the first case x0 is a zero of f , while in the second case x0 is either a
pole of f or contributes to N0(r, (g + 1)/g′). If g(∞) = −1 then the same argument may
be applied on intervals of form (−∞, x1), (x2,∞). �

Combining (5.3) and (5.4) yields

(m−1)T (r, f) � 3N̄(r, f)+2N̄

(
r,

1
f

)
+N̄1,NR

(
r,

1
g + 1

)
+(β−α) log r+S(r, f). (5.5)

For transcendental f both assertions of the theorem follow at once from (5.5).
Suppose now that f is a rational function, and that all non-real zeros of g +1 are zeros

of f . If f(∞) = ∞ then β − α � −1 and a contradiction arises from (5.5) if m � 6 or
if m � 3 and f is a polynomial. Next, if f(∞) = 0 then β − α � 0 and so (5.5) gives
a contradiction for m � 6 since N̄(r, 1/f) < (1 − ε)T (r, f) as r → ∞, for some ε > 0.
Finally, if f(∞) ∈ C \ {0} then β −α � −1 and again if m � 6 we obtain a contradiction
from (5.5). �
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6. Examples

(1) f(z) = e−z + 1 gives f ′ + f = 1 so one cannot take m = 1 in Theorem 1.4.

(2) f(z) = − tan z gives f ′ + f2 = −1, so one cannot take m = 2 in Theorem 1.4.

(3) f(z) = 1/(2 sin z) gives

f ′(z) + f(z)3 =
1 − 2 sin(2z)

8 sin3 z

and this has only real zeros, so Theorem 1.4 does not hold with m = 3.
g(z) = 1/f(z) = 2 sin z gives g′(z)g(z) − 1 = 2 sin 2z − 1 which has only real zeros. So

one cannot put n = 1 in Theorem 1.8.

(4) For f(z) = a − tan a4z with a = 12 we obtain

w(t) = f ′ + f4 = −a4(1 + t2) + (a + t)4, where t = − tan a4z.

Indeed, w(0) = 0, w′(0) > 0 and w(±∞) = +∞. It follows that w has a negative root.
Now w(1) = −2 × 124 + 134 = −12 911 < 0 which implies that w has two positive roots.
Thus all four roots of w are real. The full preimage of the real line under − tan a4z is
contained in the real line, so all roots of f ′ + f4 are real. So Theorem 1.4 does not hold
with m = 4.

Another example with this property is given by

f(z) =
√

2 + tan(4z)
1 +

√
2 tan(4z)

so that

f ′(z) + f(z)4 = − tan3(4z)(4
√

2 + 7 tan(4z))
(1 +

√
2 tan(4z))4

.

Taking g = 1/f we see that Corollary 1.6 does not hold with n = 2.

(5) For f(z) = 1/z the function f ′(z) + f(z)4 = (1 − z2)/z4 has only real zeros, so the
condition m � 5 in Theorem 1.3 cannot be weakened to m � 4 in order to conclude that
f ′ + fm has non-real zeros. Equivalently, g(z) = 1/f(z) = z shows that in Corollary 1.5
the condition n � 2 does not yield the existence of non-real solutions of g′gn = 1.

An example of degree 2 with these properties is given by

f(z) =
5z + 3

2z2 + 8z + 3

and g(z) = 1/f(z). Here 0 is a zero of g′g2 −1 of multiplicity 3, and the other three zeros
of this function are also real. This can be seen by numerical computation, but can also
be deduced from Lemma 2.1, since G(z) = z − g(z)3/3 has four Leau domains associated
to the two real zeros of g, each of them containing a critical point, and symmetric about
the real axis since g′ � 0 on R. If one contained a non-real critical point, then it would
also contain the complex conjugate of this point, and this leads to a contradiction since
there are only four distinct critical points.
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(6) The following examples show that for transcendental meromorphic f one cannot take
m = 5 or m = 6 in Theorem 1.9. Let f(z) = − tan z. Then

f ′(z) + f(z)6 + 1 = (tan z + 1)(tan z − 1)(tan2 z + 1) tan2 z

has only real zeros.
For the case m = 5 let

5a4 − 10a2 + 1 = 0, b = 5a − 10a3, c = −a5 − b. (6.1)

Set f(z) = a + tan(bz) = a + t. Then

G = f ′ + f5 + c = t(t2 + 1)(t2 + 5at + 10a2 − 1).

Equation (6.1) has a root

a =
√

1 − 2/
√

5 = 0.3249 . . .

for which 25a2 − 4(10a2 − 1) > 0, so that all zeros of G are real.
The example

f(z) = −16z2 + 8z + 2, f ′(z) + f(z)2 − 12 = 256z3(z − 1)

shows that Theorem 1.9 is sharp for polynomial f .
We suspect that Theorem 1.9 is not sharp for non-polynomial rational functions or for

transcendental functions with finitely many poles.
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14. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2 (Springer,

1925).
15. T. Sheil-Small, On the zeros of the derivatives of real entire functions and Wiman’s

conjecture, Ann. Math. 129 (1989), 179–193.
16. N. Steinmetz, Rational iteration (de Gruyter, Berlin, 1993).
17. M. Tsuji, On Borel’s directions of meromorphic functions of finite order, I, Tôhoku Math.
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