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Let R be a ring and let S = Spec R. Let us consider the étale fini topology on S [5]. By
a form of a given S-scheme T we mean any affine S-scheme W that is locally (in the étale fini
topology) isomorphic to I. We shall consider forms of the R-schemes T = Spec R[X'] and
T = SpecR[X, Y].

In the case where R =k is a field, the above definition gives the classical definition of
forms of k-algebras [2]). The problem of determining the forms of k[X] is easy. If 4 is a
k-algebra such that, for some separable extension K of k, there exists a K-isomorphism
between K® A and K[X], then 4 and k[X'] are isomorphic as k-algebras.

The following result is due to Safarevi¢ [13]. If k is a field, then there are no non-
trivial forms of the affine plane. It means that, if 4 is a k-algebra such that, for some separable
extension K of k, there exists a K-isomorphism between K®A and K[X, Y], then 4 and
k{X, Y] are k-isomorphic.

The main results of this paper are the following theorems.

THEOREM 1. Let R be a noetherian local ring. Then any form of Spec R[X] is trivial.

THEOREM 2. Let R be a discrete valuation ring for which the residue field is algebraically
closed. Then any form of Spec R[X, Y] is trivial.

1. Forms of a ring. Let S be an affine scheme, S = Spec R, and let T be a given affine
S-scheme. We say that an affine S-scheme W is a form of T if W is locally (in the érale fini
topology) isomorphic to 7. This means that, if T'= Spec 4 and W = Spec B, where 4, B are
R-algebras, then there exists a finite collection {R,};.; of rings such that each R, is a
localisation of R with respect to the multiplicative system generated by f;, Spec R = U Spec R fo

iel
and there exists a collection {R}}; ., of rings such that R} is a projective and separable extension
of R, for every i€, such that the Rj-algebras 4 ® R; and B ®g R; are isomorphic for every
iel. Because [14] every projective and separable extension R, < Rj can be imbedded in a
Galois extension of R, (in sense of [4]), it follows that we can assume that the R; are Galois
extensions of Ry,

We say that the R-algebra B is a form of the R-algebra A (or shortly that the ring Bis a
form of the ring A) if the S-scheme W = Spec B is a form of the S-scheme T = Spec 4. We
say that the R-algebra B is a trivial form of the R-algebra A4 if A and B are isomorphic.

If R is a local ring, then the above definition of a form of a given R-algebra simplifies as
follows. The R-algebra B is a form of the R-algebra 4 if there exists a Galois extension R’
of R such that the R’-algebras A® R’ and B®y R’ are isomorphic. We say then that Bis a
form of A split by R'.

This definition is identical to the classical definition of forms of a variety over a field [10].
Similarly, as in the classical situation, the distinct (up to R-isomorphism) forms of the R-

A
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algebra A are in one-to-one correspondence with the elements of a suitable first cohomology
set. Indeed, the classes of R-isomorphic forms split by a given Galois extension R’ of R are
in one-to-one correspondence with the elements of H '(R’/R, F), the first cohomology set of
the complex obtained from the sequence R' 3 R'®p R’3 ... by the action of a functor F,
where F(X) = Aut(X®A) (see [7]). In the situation considered, the set H'(R'/R, F) is
isomorphic to the first Galois cohomology set H '(G(R'/R), Aut (R’ ® A)) (see [4), Theorem 5.4).

2. Forms of R[X]. Let R be a ring with no nilpotent elements, S any Galois extension of
R with Galois group G. Then § has no nilpotent elements. Indeed, there exist elements
Xis ey Xns Vis -5 Y,€S5 such that

n
* s= ,Zl tr (sy:)x,
i=
for all seS [4, Theorem 1.3.b]. Since tr(f)= ) o(f) and R< S is Galois, tr(sy,)eR.
0ceG

Suppose that se S is nilpotent. Then sy, is nilpotent, a(sy,) is nilpotent for every ¢€G and
therefore tr(sy;) is nilpotent or tr(sy;) = 0; but R has no nilpotent elements, so tr{sy;,) =0

and by (*) we have s = 0.
It is easy to see that the image of X under any S-automorphism of S[X] is of the form
aX+b, where ac S*, beS. Therefore there exists an exact sequence of groups

0-S* > Aut(S[X)~»S*->1

(where S* is the additive group of S) which gives (in virtue of [2]) an exact sequence of
cohomology sets

HYG,S*)-> H'G, Aut(S[X])) » H'(G, S ™).

If R is a local ring, we have H*(G, S*) =0, H(G, $*) = 0 [1, Theorem A9]. Consequently
HY(G, Aut(S{X])) =0. Sis an arbitrary Galois extension of R; hence we have

PropOSITION 2.1. If R is a local ring with no nilpotent elements, then there are no nontrivial
forms of R[X}.

If there are nilpotent elements in R, then the group Aut(R[X]) is not so simple as in the
previous case. The following fact is proved in [6]. Let n be a nilpotent ideal in R. An
endomorphism of R[X'] that maps X into f(X) is an automorphism if and only if the endo-
morphism of R/n[X] that maps X into f(X) (where f is the reduction of f modulo n) is an
automorphism.

LEMMA 2.2. Let R be a noetherian local ring, S any Galois extension of R with the Galois
group G. If n is the nilradical of R, then nS is the nilradical of S and H'(G, (0*S)*) = 0 for
every positive integer k.

Proof. nS is contained in the nilradical of S. On the other hand S/nS is a Galois
extension of the ring R/n without nilpotent elements; hence S/nS has no nilpotent elements.
Therefore nS is the nilradical of S. Since the extension R c § is faithfully flat, we have
n*SAR =n*[3, Ch. 1, §3, no 5]. The ring S/n*S is a Galois extension of R/n* with the Galois
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group G [4, Lemma 1.7]. Therefore the exact sequence of additive groups
0-n*'S>S-Sn'S-0
gives rise to the exact sequence of cohomology groups
HG,n*'S) > H°(G, S) - H°(G, Sn*S)» H'(G,n*S) > H'(G, S) - ...,
i.e., to the exact sequence
n"—»Rva/n"-‘-b»H‘(G, n*S)-» H(G, §)—...

In the last sequence ¢ is an epimorphism; so kery = R/n*. Since H!(G, S) =0, we have
HYG,n*S)=0.

LemMa 2.3. If S is a Galois extension of the noetherian local ring R with the Galois group
G, then H'(G, Aut(S[X])) = 0.

Proof. Let n be the nilradical of R and let k be the least natural number such that
n* =0. Ifk = 1, then R has no nilpotent elements and H (G, Aut(S[X 1)) = 0 by Proposition
2.1.

Suppose that the proposition holds for rings in which the nilpotence degree of the
nilradical is less than k. Let us consider the subgroup N = Aut(S[X]) of all the automorphisms
that map X into X+f(X), where all coefficients of f belong to n*~1S. It is easy to see that N
is isomorphic to the countable direct sum @(n*~1S)* of the additive group (n*~1$)*, Nisa
normal subgroup of Aut(S[X]) and the factor group is isomorphic to Aut(S/n*~1S[X]).
Therefore we have the exact sequence

HYG, ®@*~'S)*) > HY(G, Aut(S[X])) » H'(G, Aut(S/n*"'S[X])

in which the first term is trivial by Lemma 2.2 and the last term is trivial by the assumption.
Hence H(G, Aut(S[X]) =0.

Theorem 1 is now an immediate consequence of this lemma.

ReMARK. All forms considered in this paper are forms in the étale fini topology. If we
consider a more general topology, e.g. the faithfully flat, quasi compact topology, then
Theorem 1is not true. Let, for example, k be a nonperfect field of characteristic p, ¢k, EPek.
It is easy to see that the ring k[X, Y]/(X?—Y—£PYP) is a nontrivial form of the ring k[X].

Let us consider forms of R[X]in the case when R is a principal ideal domain.
ProPosITION 2.4. If Ris a principal ideal domain, then there are no nontrivial forms of R[X].

Proof. Suppose that the R-algebra S is a form of R[X']. Let m be any maximal ideal of
R. Since the localisation R, is a local ring, the R,-algebra R, ®S is a trivial form of R, [X]
(by Theorem 1). R, is a faithfully flat R-module [3, Ch. II, §2, no 4] and R, ®S is an R,-
algebra of finite presentation; hence, by (8, exp. 8, no 3], S is an R-algebra of finite presen-
tation. Lett,,...,1, be a set of generators of S: S=R[t;,..., 1) Iff: R [X]—> R,®S
is an isomorphism and g : R,®S — R,[X] is the inverse isomorphism, then we have f(X) =
F(ty,...,t,) and g(t)=G(X) (=1,...,n), where FeR,[T,,...,T,] and G,eR,[X]
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(i=1,...,n). Let us consider all coefficients of polynomials F, G,, ..., G,. Any of these
coefficients is of the forma;/b;, wherea;€ R,b,e R—m. Let M be the multiplicative system of R
generated by all the denominators b; of these coefficients. We have an isomorphism of Ry [X]
onto R, ®.S described by the formula f(X) = F(z,, ..., t,).

Therefore there exists a covering of the space Spec R by open sets Spec Ry, such that the
Ry, -algebras Sy, and Ry, [X ] are isomorphic for every i. The collection of these isomorphisms
gives an element from the Cech cohomology set H *(Spec R, Aut(R[X])) on Spec R with the
Zariski topology. Hence the forms of R[X']are in one-to-one correspondence with the elements
of H(Spec R, Aut(R[X])) (see [7]). A simple induction makes it possible to consider only
coverings of Spec R by two open sets. Let S be trivial over Spec Ry, and over Spec Ryy,,
where SpecR = Spec Ry, USpec Ry,,. Suppose: that M, = R—(p), M, =R—(g), where
(p,q) = 1. It is obvious that any automorphism of

Spec Ry, 01, X1 = Spec Ry, [ X] A Spec Ry, [X]

can be represented as a composition aob, where aeAut(R,,[X]), beAut(R,,[X]). This
shows that H'? (Spec R, Aut(R[X])) is trivial. Therefore any form of R[X] is trivial.

3. Forms of R[X, Y]. The following description of Aut (K[X, Y ])in the case where K is an
algebraically closed field is due to Safarevi¢ [13]. The group Aut(K[X, Y]) is a free product
of groups By and Ly with amalgamated subgroup Ty = BynLy, where By is the group of
automorphisms that map X into aX+b and Y into f(X)+cY, a,ceK*, beK, f(X)eK[X]
and Ly is the group of linear automorphisms with translations. We shall now prove this
proposition for any field.

LEMMA 3.1. Let k be a field. Then the group Aut(k[X, YY) is a free product of groups B,
and L, with amalgamated subgroup T, = B,nL,, where B, is the group of automorphisms that
map X into aX+b and Y into f(X)+cY, a, cek*, bek, f(X)ek[X], and L, is the group of
linear automorphisms with translations over k.

Proof. Let g be an automorphism of k[X, Y]. We can consider g as an element of
Aut(K[X, YJ), where K is an algebraic closure of k, so that ge By *, Ly. On the other
hand, g can be represented as a finite product of linear automorphisms with translations over
k and automorphisms that map X into X and Y into f(X)+ Y, where f(X)ek[X] [11].
Therefore the group Aut(k[X, Y]) is generated by B, and L,. But BynAut(k[X, Y]) = B,,
LynAut(k[X, Y)) = L,, T, = B,nL;; so, by [12, §D.8, no 1], the group Aut(k[X, Y)) is a
free product of B, and L, with amalgamated subgroup 7.

The following example shows that this proposition is not true in the case of rings.

Example 3.2. Let R be an integral domain, k its field of fractions, p any nonzero non-
invertible element in R. Let us consider the following automorphisms of k[X, Y):

a,, which maps X into X and Y into (1/p)(X2-Y);
a,, which maps X into X+pY and Yinto Y; and
a;, which maps X into X and Y into X2+4pY.

It is easy to check that a; e g, ca; restricted to R[X, Y] is an automorphism of R[X, Y].
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Suppose that a, ca, ca, can be represented as a product of suitable automorphisms belonging
to Bz and Lg. Then there exists an automorphism 7€ T, such that toa,eB;. If f maps X
intoaX+band Y intocX+dY +e, then toay maps X into aX+b and YintocX+dX2+dpY +e.
Therefore we have de R, dpe R*; but this is impossible.

LemMa 3.3. Let R be a discrete valuation ring, m its maximal ideal, R the completion of R
in the m-adic topology. Let K be the field of fractions of R, R the field of fractions of R. Then
Aut(R[X, Y]) = Aut (R[X, Y]). Aut (K[X, Y]).

Proof. Let a be any automorphism of K[X, Y]. We can represent a in the form a =
a,o...oa, where a;e Lg or a;€ Bg (Lemma 3.1). Since the set of elements of K is dense in K
in the m-adic topology and the set of polynomials K[X, Y] is dense in K [X, Y], the com-
position a, o...¢a, is a continuous operation. Let a;e Ly or a;e By respectively be such that
all coefficients of @, are sufficiently near to corresponding coefficients of a;. Then (idg ®a)ea™!
and ao(ide ®a)~! are automorphisms arbitrarily near to the identity automorphism of
R[X, Y}, i.e., each of them maps X into a polynomial of the form X+ F(X, Y) and Y into a
polynomial of the form Y+ G(X, Y), where all coefficients of F(X, Y) and G(X, Y) belong to
the given power of m. This means that ao (idg ®@) ™! can be represented in the form idg ®b,
where b is an automorphism of R[X, Y]. Thus we have, for any acAut(K[X, Y], that
a = (idg ®b) o (idg ®a), where be Aut(R[X, Y)), ae Aut(K[X, Y)).

LemMmA 3.4. Let R be a discrete valuation ring. If an R-algebra S is a form of R[X, Y]
such that R®S is a trivial form of R[X, Y ), then S is trivial.

Proof. By assumption, there exists an isomorphism g : R[X, Y] - R®S and by [13] an
isomorphism f: K®S — K[X, Y). Letf' =ide ®f, g' = ide ®g. The composition g’'of" is
an automorphism of K[X,Y] and by Lemma 3.3 g'of’ = (idg ®a)e(ide ®b), where
aeAut(R[X, Y]), be Aut(K[X, Y]). Therefore we have an isomorphism 4’ of K®S onto
R(X, Y), which can be defined in two ways: A’ = (idg ®b)of' ™! = (idg ®a) 'eg’. Let us
observe that k' =idg @(bof""); so h'|ges is an isomorphism of K®S onto K[X, Y]
Similarly 4’ = idg ®(a"'og); so K [R®s is an isomorphism R®S onto R[X, Y]. Since
R®S ~ R[X, Y]is a flat R-algebra, S is a flat R-algebra [8, exp. IV, Cor. 5.8]. We can now
apply Proposition 6 of [3, Ch. I, §2, no 6] and we have (K®S)N(R®S) = (KNnR)®S =
R®S =S. Therefore h = k' |5 is an R-isomorphism of S onto R[X, Y.

Proof of Theorem 2. Since R is a discrete valuation ring for which the residue field is
algebraically closed, the residue field of R is algebraically closed and, by [9, Ch. IV, Proposition
18.8.1], R has no nontrivial Galois extensions. Therefore every form of R[X, Y] is trivial
and, by Lemma 3.4, every form of R|X, Y] is trivial.

The following proposition provides a generalisation of Theorem 2.

ProposiTION 3.5. Let R be a local noetherian ring with the nilradical n, let S be a
Galois extension of R with the Galois group G. If H'(G, Aut(SnS[X, Y]))=0, then
H*(G, Aut(S[X, Y))) =0.

First we must establish the following lemma.
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LEMMA 3.6. Let n be a nilpotent ideal of R. An endomorphism of R[X, Y] that maps X
into f(X, Y) and Y into g(X, Y is an automorphism if and only if the endomorphism of Rn[X, Y]
that maps X into f(X, Y) and Y into g(X, Y), where f,g are the reductions of f, g modulo n
respectively, is an automorphism.

Proof. The necessity is obvious. Suppose that f(X, Y), g(X, Y)e R[X, Y] are such that
there is an automorphism of R/n[X, Y] that maps X into f(X, Y) and Y into g(X, Y).
Then X, YeR/m[X, Y] can be represented in the forms X =3 a,.f(X, Y).g(X, YV,
Y=Yb,.J(X, Y).g(X, Y)Y, where G, b,, are suitable elements of R/n. Let a;;, b;;€R be
arbitrary inverse images of a;;, b;;, respectively. We have

Ya, . f(X, Y).g(X, YY = X+ F(X, Y),
Yby S, Y)Y . g(X, Y)Y = Y+G(X, Y),

where all coefficients of Fand G belong to n. Let A be the ring generated over Rby X+ F(X, Y)

and Y+G(X, Y). We must show that Xe 4, YeA. Letn*=0. Let us assume that every
monomial aX 'Y/, for which aen*~", belongs to A. Suppose that ben*~""!, Since bX =

b(X+F(X,Y))—b.F(X,Y), we have bXe A4, because X+ F(X, Y)eAd and b.F(X, Y)e A by
assumption. Similarly bYe A. If bX*Y'e A, then

bX**1Y' = bX°Y(X+F(X, Y))—bX*Y'F(X,Y) € 4

ijs

and similarly bX°Y**'e 4. Therefore every monomial X 'Y/ for which ben*~"~!, belongs
to A. Thus our assumption is true for every r < k and in particular X, Ye 4. Therefore we
have the sufficiency.

Proof of Proposition 3.5. Let k be the nilpotence degree of the nilradical n. If k = 1, then
n =0 and Aut(S/nS[X, Y]) = Aut(S[X, Y]). Suppose that k > 1 and that our proposition
is true for any ring such that the nilpotence degree of its nilradical is less than k. Let N be the
subgroup of Aut(S[X, Y1) composed of the automorphisms that map X into X+f(X, Y)
and Yinto Y+g(X, Y), where f, gen*"'S[X, Y]. Ttis easy to see that N is isomorphic to the
countable direct sum @(n*~!S)* of the additive group (n*~'S)*. Moreover N is a normal
subgroup and the factor group is isomorphic to Aut(S/n*~'S[X, Y]). Therefore we have the
following exact sequence:

H(G, ®@*™'8)") > H'(G, Aut(S[X, YD) - H'(G, Aut(Sp*~'S[X, Y])

in which the first term is trivial by Lemma 2.2 and the last term is trivial by the assumption.
Therefore H'(G, Aut(S[X, Y]) = 0.

Corollary 3.7. Let R be a local noetherian ring with nilradical n, If there are no nontrivial
forms of RIn[X, Y1, then there are no nontrivial forms of R[X, Y].

THEOREM 2'. Let R be a local noetherian ring with nilradical n, such that R/n is a discrete
valuation ring for which the residue field is algebraically closed. Then there are no nontrivial
forms of R[X, Y.
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Problems.

1. Is the thesis of Theorem 2 true without the assumption that the residue field is
algebraically closed ?

2. Is the thesis of Theorem 2 true only under the assumption that R is a regular local ring?

3. Are there nontrivial forms of R[X, Y]if R is a principal ideal domain?
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