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Let R be a ring and let S = Spec/?. Let us consider the Etalefini topology on S [5]. By
a form of a given S-scheme T we mean any affine 5-scheme W that is locally (in the etalefini
topology) isomorphic to T. We shall consider forms of the J?-schemes T= SpecR[X] and
T=SpecR[X, Y].

In the case where R = k is a field, the above definition gives the classical definition of
forms of A:-algebras [2]. The problem of determining the forms of k[X] is easy. If A is a
A>algebra such that, for some separable extension K of k, there exists a /iT-isomorphism
between K®A and K[X], then A and k[X] are isomorphic as ^-algebras.

The following result is due to Safarevic [13]. If A: is a field, then there are no non-
trivial forms of the affine plane. It means that, if A is a ^-algebra such that, for some separable
extension K of k, there exists a ^-isomorphism between K®A and K[X, Y], then A and
k[X, Y] are fc-isomorphic.

The main results of this paper are the following theorems.

THEOREM 1. Let R be a noetherian local ring. Then any form ofSpecR[X] is trivial.

THEOREM 2. Let Rbe a discrete valuation ring for which the residue field is algebraically
closed. Then any form of Spec R[X, Y] is trivial.

1. Forms of a ring. Let S be an affine scheme, S = Spec R, and let T be a given affine
S-scheme. We say that an affine S-scheme W is a form of T if W is locally (in the italefini
topology) isomorphic to T. This means that, if T = Spec.4 and W — SpecB, where A, B are
/?-algebras, then there exists a finite collection {#/,}(<=/ of rings such that each Rfl is a
localisation of R with respect to the multiplicative system generated by/}, Spec R = U Spec Rf ,

iel

and there exists a collection {R'i}leI of rings such that R\ is a projective and separable extension
of Jlj-t for every iel, such that the Kj-algebras A ®j{-R( and B <S>RR't are isomorphic for every
iel. Because [14] every projective and separable extension Rft c R't can be imbedded in a
Galois extension of Rfl (in sense of [4]), it follows that we can assume that the R', are Galois
extensions of Rft.

We say that the iJ-algebra B is a form of the .R-algebra A (or shortly that the ring B is a
form of the ring A) if the S-scheme W = Spec B is a form of the 5-scheme T = Spec A. We
say that the /^-algebra B is a trivial form of the i?-algebra A if A and B are isomorphic.

If R is a local ring, then the above definition of a form of a given .R-algebra simplifies as
follows. The .R-algebra B is a form of the i?-algebra A if there exists a Galois extension R'
of R such that the i?'-algebras A®RR' and B®RR' are isomorphic. We say then that B is a
form of A split by R'.

This definition is identical to the classical definition of forms of a variety over a field [10].
Similarly, as in the classical situation, the distinct (up to ^-isomorphism) forms of the R-
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algebra A are in one-to-one correspondence with the elements of a suitable first cohomology
set. Indeed, the classes of i?-isomorphic forms split by a given Galois extension R' of R are
in one-to-one correspondence with the elements of Hi(R'IR, F), the first cohomology set of
the complex obtained from the sequence R' Zj R'®RR'^$ ... by the action of a functor F,
where F(X) = Aut(X®A) (see [7]). In the situation considered, the set H1(R'IR, F) is
isomorphic to the first Galois cohomology set H l{G{R'jR), Aut(R'®A)) (see [4], Theorem 5.4).

2. Forms of R[X]. Let R be a ring with no nilpotent elements, S any Galois extension of
R with Galois group G. Then S has no nilpotent elements. Indeed, there exist elements
*i> • • •. *„; y» • • •, J^eS such that

for all seS [4, Theorem 1.3.b]. Since tr(t)= £ a{t) and R c S is Galois, tr(syt)eR.
oeG

Suppose that seS is nilpotent. Then sy, is nilpotent, cisy,) is nilpotent for every aeG and
therefore tr(sy,-) is nilpotent or tr {syi) = 0; but R has no nilpotent elements, so tr(syj) = 0
and by (*) we have s = 0.

It is easy to see that the image of X under any 5-automorphism of S [X] is of the form
aX+ b, where aeS*, beS. Therefore there exists an exact sequence of groups

0-> S + -»Aut(S[X])-> S* -> 1

(where S + is the additive group of S) which gives (in virtue of [2]) an exact sequence of
cohomology sets

H\G, S +) -»H\G, Aul{S[X])) -*i/^G, S*).

If i? is a local ring, we have H\G,S+) = 0, H\G,S*) = 0 [1, Theorem A9]. Consequently
i / ^G, Aut (S [X])) = 0. S is an arbitrary Galois extension of J?; hence we have

PROPOSITION 2.1. IfR is a local ring with no nilpotent elements, then there are no nontrivial
forms ofR[X].

If there are nilpotent elements in R, then the group Aut(/?[A']) is not so simple as in the
previous case. The following fact is proved in [6]. Let n be a nilpotent ideal in R. An
endomorphism of R[X] that maps X into f(X) is an automorphism if and only if the endo-
morphism of Rln[X] that maps X into/(X) (where / is the reduction of/ modulo n) is an
automorphism.

LEMMA 2.2. Let Rbe a noetherian local ring, S any Galois extension of R with the Galois
group G. 7/n is the nilradical of R, then nS is the nilradical of S and H\G, (nkS)+) = Ofor
every positive integer k.

Proof. nS is contained in the nilradical of S. On the other hand 5/nS is a Galois
extension of the ring Rja without nilpotent elements; hence S/nS has no nilpotent elements.
Therefore nS is the nilradical of S. Since the extension R c S is faithfully flat, we have
nkSnR = ak [3, Ch. I, § 3, no 5]. The ring SlnkS is a Galois extension of /?/nk with the Galois
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group G [4, Lemma 1.7]. Therefore the exact sequence of additive groups

gives rise to the exact sequence of cohomology groups

H°(G, n'S) - • H \ G , S) ->H°(G, S/akS) -+H\G, akS) -+H\G, S)

i.e., to the exact sequence

In the last sequence q> is an epimorphism; so kert/r = R/nk. Since HY(G, S) = 0, we have
H1(G,akS) = 0.

LEMMA 2.3. IfS is a Galois extension of the noetherian local ring R with the Galois group
G, then H\G, Ant(.S[X])) = 0.

Proof. Let n be the nilradical of R and let k be the least natural number such that
n* = 0. If k = 1, then R has no nilpotent elements and H \G, Aut (S [X])) = 0 by Proposition
2.1.

Suppose that the proposition holds for rings in which the nilpotence degree of the
nilradical is less than k. Let us consider the subgroup N <= Aut (S [X]) of all the automorphisms
that map X into X+f(X), where all coefficients of/ belong to nk~1S. It is easy to see that N
is isomorphic to the countable direct sum © ( n ' ^ S ) * of the additive group (nk~1S)+, N is a
normal subgroup of Aut(S [.AT]) and the factor group is isomorphic to Aut(S'/nfc~15[A']).
Therefore we have the exact sequence

Hl(G, ©(n*- lS)+) -- H *(G, Aut (S [X])) -> H\G, Aut (S/n*- XS [X]))

in which the first term is trivial by Lemma 2.2 and the last term is trivial by the assumption.
Hence H\G, Aut (£[*])) = 0.

Theorem 1 is now an immediate consequence of this lemma.

REMARK. All forms considered in this paper are forms in the etalefini topology. If we
consider a more general topology, e.g. the faithfully flat, quasi compact topology, then
Theorem 1 is not true. Let, for example,A: be a nonperfect field of characteristicp,^$k,£,pek.
It is easy to see that the ring k[X, Y]j{Xp- Y-fY") is a nontrivial form of the ring k[X].

Let us consider forms of R[X] in the case when R is a principal ideal domain.

PROPOSITION 2.4. IfR is a principal ideal domain, then there are no nontrivial forms ofR[X].

Proof. Suppose that the .R-algebra S is a form of R[X]. Let m be any maximal ideal of
R. Since the localisation Rm is a local ring, the J?m-algebra Rm®S is a trivial form of Rm[X]
(by Theorem 1). Rm is a faithfully flat i?-module [3, Ch. II, §2, no 4] and Rm®S is an Rm-
algebra of finite presentation; hence, by [8, exp. 8, no 3], 5 is an i?-algebra of finite presen-
tation. Let / „ . . . , / „ be a set of generators of S: S = R[tu ..., tn]. If/: Rm[X]->Rm®S
is an isomorphism and g : Rm®S -* Rm[X] is the inverse isomorphism, then we have/CZ) =
•F(tu ...,tn) and g(Q = G&X) (i = 1 , . . . , i t ) , where FeRJT,, ...,Tn] and GieRJX]
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(/ = 1,...,«). Let us consider all coefficients of polynomials F,Gu...,Gn. Any of these
coefficients is of the form a^b{, where a^R, bt eR—m. LetMbethe multiplicative system of R
generated by all the denominators bt of these coefficients. We have an isomorphism of RM[X]
onto RM®Sdescribed by the formulaf(X) = F{tu ..., tn).

Therefore there exists a covering of the space Spec I? by open sets Spec RMl such that the
.RMi-algebras SMi and RMi[X~\ are isomorphic for every i. The collection of these isomorphisms
gives an element from the Cech cohomology set H1(SpecR, AutCRfA'])) on Speci? with the
Zariski topology. Hence the forms of R [X ] are in one-to-one correspondence with the elements
of H1(SpecR, Aut(R[X])) (see [7]). A simple induction makes it possible to consider only
coverings of Spec I? by two open sets. Let S be trivial over Spec RMi and over SpecRM2,
where SpecR = SpecRMiuSpecRMl. Suppose that M1 = R-(p), M2 = R—(q\ where
(p, q) = 1. It is obvious that any automorphism of

can be represented as a composition a°b, where aeAut(i?Ml[X]), fceAut(KM2[.Y]). This
shows that H^SpecR, Aut(R[X])) is trivial. Therefore any form of R[X] is trivial.

3. Forms of R[X, Y]. The following description of Aut (K [X, Y]) in the case where K is an
algebraically closed field is due to Safarevic [13]. The group Aut (K [X, Y]) is a free product
of groups BK and LK with amalgamated subgroup TK = BKr\LK, where BK is the group of
automorphisms that map X into aX+b and Y into f(X) + cY, a,ceK*, beK,f(X)eK[X]
and LK is the group of linear automorphisms with translations. We shall now prove this
proposition for any field.

LEMMA 3.1. Let k be afield. Then the group Aut^t-Jf, Y]) is a free product of groups Bk

and Lk with amalgamated subgroup Tk = BknLk, where Bk is the group of automorphisms that
map X into aX+b and Y into f(X) + cY, a, cek*, bek, f(X)ek[X], and Lk is the group of
linear automorphisms with translations over k.

Proof. Let g be an automorphism of k[X, Y]. We can consider g as an element of
Aut(K[X, Y]), where K is an algebraic closure of k, so that geBK*TKLK. On the other
hand, g can be represented as a finite product of linear automorphisms with translations over
k and automorphisms that map X into X and Y into f(X)+Y, where f{X) ek[X] [11].
Therefore the group Aut(k[X, Y]) is generated by Bk and Lk. But BKn,Aut(k[X, Y]) = Bk,
LKnAut(k[X, Y]) = Lk, Tk = BknLk; so, by [12, §D.8, no 1], the group Aut(k[X, Y]) is a
free product of Bk and Lk with amalgamated subgroup Tk.

The following example shows that this proposition is not true in the case of rings.

Example 3.2. Let R be an integral domain, k its field of fractions, p any nonzero non-
invertible element in R. Let us consider the following automorphisms of k[X, Y]:

au which maps Zinto A'and Yinto (llp)(X2- Y);
a2, which maps Xinto X+pYand Yinto Y; and
a3, which maps X into X and Y into X2 +pY.

It is easy to check that at °a2°a$ restricted to R[X, Y] is an automorphism of R[X, Y].
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Suppose that aloa2 »a3 can be represented as a product of suitable automorphisms belonging
to BR and LR. Then there exists an automorphism teTk such that toa3eBR. If t maps Z
into a^+ b and y into cX+ dY+ e, then f oa3 maps A'into aA> b and 7into cZ+ dX2 + dp Y+ e.
Therefore we have deR, dpeR*; but this is impossible.

LEMMA 3.3. Let Rbe a discrete valuation ring, m its maximal ideal, R the completion of R
in the m-adic topology. Let Kbe the field of fractions ofR, fc the field of fractions of R. Then
Aut(£[Z, Y]) = Aut(R[X, Y]).Aut(K[X, Y]).

Proof. Let a be any automorphism of R.[X, Y]. We can represent a in the form a =
at o.. .oan, where ateLR or a.-efi^ (Lemma 3.1). Since the set of elements of AT is dense in £
in the m-adic topology and the set of polynomials K[X, Y] is dense in fc [X, Y], the com-
position a, o...oan is a continuous operation. Let ateLK or ateBK respectively be such that
all coefficients of a {are sufficiently near to corresponding coefficients of a{. Then (idR ®fl)»fl"1

and a°{idR®a)~l are automorphisms arbitrarily near to the identity automorphism of
R [X, Y], i.e., each of them maps A'into a polynomial of the form X+F(X, Y) and Y into a
polynomial of the form Y+G(X, Y), where all coefficients ofF(X, Y) and G(X, Y) belong to
the given power of m. This means that ao (idR ®a)~* can be represented in the form idR ®b,
where b is an automorphism of R[X, Y]. Thus we have, for any aeAut(R[X, Y], that
a = («/* ®b)o(idR ®a), where 6eAut(^[Z, y]), 5eAut(K[X, Y]).

LEMMA 3.4. Let Rbe a discrete valuation ring. If an R-algebra S is a form of R[X, Y]
such that R®S is a trivial form ofR[X, Y], then S is trivial.

Proof. By assumption, there exists an isomorphism g : R[X, Y] -»R®S and by [13] an
isomorphism / : K®S -> K[X, Y]. Let / ' = idR ®f g' = idR ®g. The composition g' of is
an automorphism of R[X,Y] and by Lemma 3.3 g' of = (idR®a)o(idK®b), where
aeAut(£|X, Y]), beA\it(K[X, Y]). Therefore we have an isomorphism h' of R®S onto
R(X, Y), which can be defined in two ways: h' = (idR®b)°f'~1 = (idR®a)~log'. Let us
observe that h' = idR®{bof~i); so h'\Ktss is an isomorphism of K®S onto K[X, Y].
Similarly h' = idti®(a~1og); so h' \R®S is an isomorphism R®S onto R[X, Y]. Since
R®S ~ fi[X, Y] is a flat ^-algebra, ^ is a flat i?-algebra [8, exp. IV, Cor. 5.8]. We can now
apply Proposition 6 of [3, Ch. I, §2, no 6] and we have (K®S)n(R®S) = (KnR)®S =
R®S = S. Therefore h = h' \s is an ^-isomorphism of S onto R[X, Y].

Proof of Theorem 2. Since R is a discrete valuation ring for which the residue field is
algebraically closed, the residue field of R is algebraically closed and, by [9, Ch. IV, Proposition
18.8.1], R has no nontrivial Galois extensions. Therefore every form of R[X, Y] is trivial
and, by Lemma 3.4, every form of R[X, Y] is trivial.

The following proposition provides a generalisation of Theorem 2.

PROPOSITION 3.5. Let R be a local noetherian ring with the nilradical n, let S be a
Galois extension of R with the Galois group G. If H\G, Aut(S/nS[X, Y])) = 0, then
H\G,Aut(S[X, y])) = 0.

First we must establish the following lemma.
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LEMMA 3.6. Let n be a nilpotent ideal of R. An endomorphism of R[X, Y] that maps X
intof{X, Y) and Yinto g(X, Y) is an automorphism if and only if the endomorphism ofRln[X, Y]
that maps X into J{X, Y) and Y into g(X, Y), where J, g are the reductions off, g modulo n
respectively, is an automorphism.

Proof. The necessity is obvious. Suppose that/(A", Y), g{X, Y)eR[X, Y] are such that
there is an automorphism of R/n[X, Y] that maps X into J{X, Y) and Y into g(X, Y).
Then X, YeRln[X, Y] can be represented in the forms X= £ a ,j.J(X, Y)'.g(X, Y)J,
Y=Y,bij-J(X' Y)'-9(x> Y)J> w h e r e «y» By a r e suitable elements of R/n. Let au, bueR be
arbitrary inverse images of a iJt Bi}, respectively. We have

, Y)<.g(X, Y)' = X+F(X, Y),

, Y)'.g(X, Y)j=Y+G(X, Y),

where all coefficients of F and G belong to n. Let A be the ring generated over R by X+ F(X, Y)
and Y+G(X, Y). We must show that XeA, Ye A. Let nk = 0. Let us assume that every
monomial aX'Y3, for which aenk~r, belongs to A. Suppose that ften*"'"1. Since bX' =
b(X+F(X, Y))-b.F(X, Y), we have bXeA, because X+F(X, Y)eA and b.F(X, Y)eA by
assumption. Similarly bYeA. If bXsY'eA, then

bXs+1Y' = bXsY'(X+F(X,-Y))-bX5Y'F(X, Y) e A

and similarly bXsY'+ieA. Therefore every monomial bX'YJ for which 2>enk~r~1, belongs
to A. Thus our assumption is true for every r ^ k and in particular X, Ye A. Therefore we
have the sufficiency.

Proof of Proposition 3.5. Let k be the nilpotence degree of the nilradical n. If k = 1, then
n = 0 and Aut(5/nS[Ar, Y]) = Aut(S[X, Y]). Suppose that k > 1 and that our proposition
is true for any ring such that the nilpotence degree of its nilradical is less than k. Let N be the
subgroup of Aut(5[Ar, Y]) composed of the automorphisms that map X into X+f(X, Y)
and yinto Y+g(X, Y), where/, genk~1S[X, Y]. It is easy to see that Nis isomorphic to the
countable direct sum ®(nk~15)+ of the additive group (n*~1S)+. Moreover N is a normal
subgroup and the factor group is isomorphic to Aut(Slnk~1S[X, Y]). Therefore we have the
following exact sequence:

H\G, ®(nk-1sy)^H1(.G, Aut(S[X, Y]))^Hl(G,Aut(Slnk~1S[X, Y]))

in which the first term is trivial by Lemma 2.2 and the last term is trivial by the assumption.
Therefore H\G, K\it{S[X, Y])) = 0.

Corollary 3.7. Let R be a local noetherian ring with nilradical n. If there are no nontrivial
forms ofR/a[X, Y], then there are no nontrivial forms ofR[X, Y].

THEOREM 2'. Let Rbe a local noetherian ring with nilradical n, such that 7?/n is a discrete
valuation ring for which the residue field is algebraically closed. Then there are no nontrivial
forms ofR[X, Y].
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Problems.
1. Is the thesis of Theorem 2 true without the assumption that the residue field is

algebraically closed ?
2. Is the thesis of Theorem 2 true only under the assumption that R is a regular local ring?
3. Are there nontrivial forms of R[X, Y] if R is a principal ideal domain?
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