FORMS OF THE RINGS R[X] AND R[X, Y]

by M. BRYŃSKI

(Received 27 March, 1970; revised 6 October, 1971)

Let R be a ring and let $S = \operatorname{Spec} R$. Let us consider the *étale fini* topology on S [5]. By a form of a given S-scheme T we mean any affine S-scheme W that is locally (in the *étale fini* topology) isomorphic to T. We shall consider forms of the R-schemes $T = \operatorname{Spec} R[X]$ and $T = \operatorname{Spec} R[X, Y]$.

In the case where R = k is a field, the above definition gives the classical definition of forms of k-algebras [2]. The problem of determining the forms of k[X] is easy. If A is a k-algebra such that, for some separable extension K of k, there exists a K-isomorphism between $K \otimes A$ and K[X], then A and k[X] are isomorphic as k-algebras.

The following result is due to Safarevič [13]. If k is a field, then there are no nontrivial forms of the affine plane. It means that, if A is a k-algebra such that, for some separable extension K of k, there exists a K-isomorphism between $K \otimes A$ and K[X, Y], then A and k[X, Y] are k-isomorphic.

The main results of this paper are the following theorems.

THEOREM 1. Let R be a noetherian local ring. Then any form of Spec R[X] is trivial.

THEOREM 2. Let R be a discrete valuation ring for which the residue field is algebraically closed. Then any form of Spec R[X, Y] is trivial.

1. Forms of a ring. Let S be an affine scheme, $S = \operatorname{Spec} R$, and let T be a given affine S-scheme. We say that an affine S-scheme W is a form of T if W is locally (in the *étale fini* topology) isomorphic to T. This means that, if $T = \operatorname{Spec} A$ and $W = \operatorname{Spec} B$, where A, B are R-algebras, then there exists a finite collection $\{R_{f_i}\}_{i \in I}$ of rings such that each R_{f_i} is a localisation of R with respect to the multiplicative system generated by f_i , Spec $R = \bigcup \operatorname{Spec} R_{f_i}$,

and there exists a collection $\{R'_i\}_{i \in I}$ of rings such that R'_i is a projective and separable extension of R_{f_i} for every $i \in I$, such that the R'_i -algebras $A \otimes_R R'_i$ and $B \otimes_R R'_i$ are isomorphic for every $i \in I$. Because [14] every projective and separable extension $R_{f_i} \subset R'_i$ can be imbedded in a Galois extension of R_{f_i} (in sense of [4]), it follows that we can assume that the R'_i are Galois extensions of R_{f_i} .

We say that the *R*-algebra *B* is a form of the *R*-algebra *A* (or shortly that the ring *B* is a form of the ring *A*) if the *S*-scheme $W = \operatorname{Spec} B$ is a form of the *S*-scheme $T = \operatorname{Spec} A$. We say that the *R*-algebra *B* is a trivial form of the *R*-algebra *A* if *A* and *B* are isomorphic.

If R is a local ring, then the above definition of a form of a given R-algebra simplifies as follows. The R-algebra B is a form of the R-algebra A if there exists a Galois extension R' of R such that the R'-algebras $A \otimes_R R'$ and $B \otimes_R R'$ are isomorphic. We say then that B is a form of A split by R'.

This definition is identical to the classical definition of forms of a variety over a field [10]. Similarly, as in the classical situation, the distinct (up to R-isomorphism) forms of the R-

M. BRYŃSKI

algebra A are in one-to-one correspondence with the elements of a suitable first cohomology set. Indeed, the classes of R-isomorphic forms split by a given Galois extension R' of R are in one-to-one correspondence with the elements of $H^1(R'/R, F)$, the first cohomology set of the complex obtained from the sequence $R' \rightrightarrows R' \otimes_R R' \rightrightarrows \ldots$ by the action of a functor F, where $F(X) = \operatorname{Aut}(X \otimes A)$ (see [7]). In the situation considered, the set $H^1(R'/R, F)$ is isomorphic to the first Galois cohomology set $H^1(G(R'/R), \operatorname{Aut}(R' \otimes A))$ (see [4], Theorem 5.4).

2. Forms of R[X]. Let R be a ring with no nilpotent elements, S any Galois extension of R with Galois group G. Then S has no nilpotent elements. Indeed, there exist elements $x_1, \ldots, x_n; y_1, \ldots, y_n \in S$ such that

(*)
$$s = \sum_{i=1}^{n} \operatorname{tr}(sy_i) x_i$$

for all $s \in S$ [4, Theorem 1.3.b]. Since $\operatorname{tr}(t) = \sum_{\sigma \in G} \sigma(t)$ and $R \subset S$ is Galois, $\operatorname{tr}(sy_i) \in R$. Suppose that $s \in S$ is nilpotent. Then sy_i is nilpotent, $\sigma(sy_i)$ is nilpotent for every $\sigma \in G$ and therefore $\operatorname{tr}(sy_i)$ is nilpotent or $\operatorname{tr}(sy_i) = 0$; but R has no nilpotent elements, so $\operatorname{tr}(sy_i) = 0$ and by (*) we have s = 0.

It is easy to see that the image of X under any S-automorphism of S[X] is of the form aX+b, where $a \in S^*$, $b \in S$. Therefore there exists an exact sequence of groups

$$0 \to S^+ \to \operatorname{Aut}(S[X]) \to S^* \to 1$$

(where S^+ is the additive group of S) which gives (in virtue of [2]) an exact sequence of cohomology sets

$$H^{1}(G, S^{+}) \rightarrow H^{1}(G, \operatorname{Aut}(S[X])) \rightarrow H^{1}(G, S^{*}).$$

If R is a local ring, we have $H^{1}(G, S^{+}) = 0$, $H^{1}(G, S^{*}) = 0$ [1, Theorem A9]. Consequently $H^{1}(G, \operatorname{Aut}(S[X])) = 0$. S is an arbitrary Galois extension of R; hence we have

PROPOSITION 2.1. If R is a local ring with no nilpotent elements, then there are no nontrivial forms of R[X].

If there are nilpotent elements in R, then the group Aut (R[X]) is not so simple as in the previous case. The following fact is proved in [6]. Let **n** be a nilpotent ideal in R. An endomorphism of R[X] that maps X into f(X) is an automorphism if and only if the endomorphism of R/n[X] that maps X into f(X) (where f is the reduction of f modulo **n**) is an automorphism.

LEMMA 2.2. Let R be a noetherian local ring, S any Galois extension of R with the Galois group G. If **n** is the nilradical of R, then **n**S is the nilradical of S and $H^1(G, (\mathbf{n}^k S)^+) = 0$ for every positive integer k.

Proof. nS is contained in the nilradical of S. On the other hand S/nS is a Galois extension of the ring R/n without nilpotent elements; hence S/nS has no nilpotent elements. Therefore nS is the nilradical of S. Since the extension $R \subset S$ is faithfully flat, we have $\mathbf{n}^k S \cap R = \mathbf{n}^k$ [3, Ch. I, §3, no 5]. The ring $S/\mathbf{n}^k S$ is a Galois extension of R/\mathbf{n}^k with the Galois

group G [4, Lemma 1.7]. Therefore the exact sequence of additive groups

$$0 \to \mathbf{n}^k S \to S \to S/\mathbf{n}^k S \to 0$$

gives rise to the exact sequence of cohomology groups

$$H^{0}(G, \mathbf{n}^{k}S) \to H^{0}(G, S) \to H^{0}(G, S/\mathbf{n}^{k}S) \to H^{1}(G, \mathbf{n}^{k}S) \to H^{1}(G, S) \to \dots,$$

i.e., to the exact sequence

$$\mathbf{n}^k \to R \xrightarrow{\varphi} R/\mathbf{n}^k \xrightarrow{\psi} H^1(G, \mathbf{n}^k S) \to H^1(G, S) \to \dots$$

In the last sequence φ is an epimorphism; so ker $\psi = R/n^k$. Since $H^1(G, S) = 0$, we have $H^1(G, n^k S) = 0$.

LEMMA 2.3. If S is a Galois extension of the noetherian local ring R with the Galois group G, then $H^{1}(G, \operatorname{Aut}(S[X])) = 0$.

Proof. Let **n** be the nilradical of R and let k be the least natural number such that $\mathbf{n}^k = 0$. If k = 1, then R has no nilpotent elements and $H^1(G, \operatorname{Aut}(S[X])) = 0$ by Proposition 2.1.

Suppose that the proposition holds for rings in which the nilpotence degree of the nilradical is less than k. Let us consider the subgroup $N \subset \operatorname{Aut}(S[X])$ of all the automorphisms that map X into X + f(X), where all coefficients of f belong to $\mathbf{n}^{k-1}S$. It is easy to see that N is isomorphic to the countable direct sum $\bigoplus (\mathbf{n}^{k-1}S)^+$ of the additive group $(\mathbf{n}^{k-1}S)^+$, N is a normal subgroup of $\operatorname{Aut}(S[X])$ and the factor group is isomorphic to $\operatorname{Aut}(S[x])$. Therefore we have the exact sequence

$$H^{1}(G, \bigoplus(\mathbf{n}^{k-1}S)^{+}) \rightarrow H^{1}(G, \operatorname{Aut}(S[X])) \rightarrow H^{1}(G, \operatorname{Aut}(S/\mathbf{n}^{k-1}S[X]))$$

in which the first term is trivial by Lemma 2.2 and the last term is trivial by the assumption. Hence $H^{1}(G, \operatorname{Aut}(S[X])) = 0$.

Theorem 1 is now an immediate consequence of this lemma.

REMARK. All forms considered in this paper are forms in the *étale fini* topology. If we consider a more general topology, e.g. the faithfully flat, quasi compact topology, then Theorem 1 is not true. Let, for example, k be a nonperfect field of characteristic $p, \xi \notin k, \xi^p \in k$. It is easy to see that the ring $k[X, Y]/(X^p - Y - \xi^p Y^p)$ is a nontrivial form of the ring k[X].

Let us consider forms of R[X] in the case when R is a principal ideal domain.

PROPOSITION 2.4. If R is a principal ideal domain, then there are no nontrivial forms of R[X].

Proof. Suppose that the *R*-algebra *S* is a form of R[X]. Let **m** be any maximal ideal of *R*. Since the localisation R_m is a local ring, the R_m -algebra $R_m \otimes S$ is a trivial form of $R_m[X]$ (by Theorem 1). R_m is a faithfully flat *R*-module [3, Ch. II, §2, no 4] and $R_m \otimes S$ is an R_m -algebra of finite presentation; hence, by [8, exp. 8, no 3], *S* is an *R*-algebra of finite presentation. Let t_1, \ldots, t_n be a set of generators of $S: S = R[t_1, \ldots, t_n]$. If $f: R_m[X] \to R_m \otimes S$ is an isomorphism and $g: R_m \otimes S \to R_m[X]$ is the inverse isomorphism, then we have $f(X) = F(t_1, \ldots, t_n)$ and $g(t_i) = G_i(X)$ $(i = 1, \ldots, n)$, where $F \in R_m[T_1, \ldots, T_n]$ and $G_i \in R_m[X]$

93

M. BRYŃSKI

(i = 1, ..., n). Let us consider all coefficients of polynomials $F, G_1, ..., G_n$. Any of these coefficients is of the form a_i/b_i , where $a_i \in R$, $b_i \in R-m$. Let M be the multiplicative system of R generated by all the denominators b_i of these coefficients. We have an isomorphism of $R_M[X]$ onto $R_M \otimes S$ described by the formula $f(X) = F(t_1, ..., t_n)$.

Therefore there exists a covering of the space Spec R by open sets Spec R_{M_i} such that the R_{M_i} -algebras S_{M_i} and $R_{M_i}[X]$ are isomorphic for every *i*. The collection of these isomorphisms gives an element from the Čech cohomology set $\check{H}^1(\operatorname{Spec} R, \operatorname{Aut}(R[X]))$ on Spec R with the Zariski topology. Hence the forms of R[X] are in one-to-one correspondence with the elements of $\check{H}^1(\operatorname{Spec} R, \operatorname{Aut}(R[X]))$ (see [7]). A simple induction makes it possible to consider only coverings of Spec R by two open sets. Let S be trivial over Spec R_{M_1} and over Spec R_{M_2} , where Spec $R = \operatorname{Spec} R_{M_1} \cup \operatorname{Spec} R_{M_2}$. Suppose that $M_1 = R - (p), M_2 = R - (q)$, where (p, q) = 1. It is obvious that any automorphism of

$$\operatorname{Spec} R_{M_1 \cup M_2}[X] = \operatorname{Spec} R_{M_1}[X] \cap \operatorname{Spec} R_{M_2}[X]$$

can be represented as a composition $a \circ b$, where $a \in \operatorname{Aut}(R_{M_1}[X])$, $b \in \operatorname{Aut}(R_{M_2}[X])$. This shows that $\check{H}^1(\operatorname{Spec} R, \operatorname{Aut}(R[X]))$ is trivial. Therefore any form of R[X] is trivial.

3. Forms of R[X, Y]. The following description of Aut (K[X, Y]) in the case where K is an algebraically closed field is due to Šafarevič [13]. The group Aut (K[X, Y]) is a free product of groups B_K and L_K with amalgamated subgroup $T_K = B_K \cap L_K$, where B_K is the group of automorphisms that map X into aX+b and Y into f(X)+cY, $a, c \in K^*, b \in K, f(X) \in K[X]$ and L_K is the group of linear automorphisms with translations. We shall now prove this proposition for any field.

LEMMA 3.1. Let k be a field. Then the group $\operatorname{Aut}(k[X, Y])$ is a free product of groups B_k and L_k with amalgamated subgroup $T_k = B_k \cap L_k$, where B_k is the group of automorphisms that map X into aX+b and Y into f(X)+cY, $a, c \in k^*$, $b \in k, f(X) \in k[X]$, and L_k is the group of linear automorphisms with translations over k.

Proof. Let g be an automorphism of k[X, Y]. We can consider g as an element of Aut (K[X, Y]), where K is an algebraic closure of k, so that $g \in B_K *_{T_K} L_K$. On the other hand, g can be represented as a finite product of linear automorphisms with translations over k and automorphisms that map X into X and Y into f(X) + Y, where $f(X) \in k[X]$ [11]. Therefore the group Aut (k[X, Y]) is generated by B_k and L_k . But $B_K \cap Aut (k[X, Y]) = B_k$, $L_K \cap Aut (k[X, Y]) = L_k$, $T_k = B_k \cap L_k$; so, by [12, §D.8, no 1], the group Aut (k[X, Y]) is a free product of B_k and L_k with amalgamated subgroup T_k .

The following example shows that this proposition is not true in the case of rings.

Example 3.2. Let R be an integral domain, k its field of fractions, p any nonzero non-invertible element in R. Let us consider the following automorphisms of k[X, Y]:

 a_1 , which maps X into X and Y into $(1/p)(X^2 - Y)$; a_2 , which maps X into X + pY and Y into Y; and a_3 , which maps X into X and Y into $X^2 + pY$.

It is easy to check that $a_1 \circ a_2 \circ a_3$ restricted to R[X, Y] is an automorphism of R[X, Y].

Suppose that $a_1 \circ a_2 \circ a_3$ can be represented as a product of suitable automorphisms belonging to B_R and L_R . Then there exists an automorphism $t \in T_k$ such that $t \circ a_3 \in B_R$. If t maps X into aX + b and Y into cX + dY + e, then $t \circ a_3$ maps X into aX + b and Y into $cX + dX^2 + dpY + e$. Therefore we have $d \in R$, $dp \in R^*$; but this is impossible.

LEMMA 3.3. Let R be a discrete valuation ring, **m** its maximal ideal, \hat{R} the completion of R in the **m**-adic topology. Let K be the field of fractions of R, \hat{K} the field of fractions of \hat{R} . Then Aut ($\hat{K}[X, Y]$) = Aut ($\hat{R}[X, Y]$). Aut (K[X, Y]).

Proof. Let a be any automorphism of $\hat{K}[X, Y]$. We can represent a in the form $a = a_1 \circ \ldots \circ a_n$, where $a_i \in L_{\mathcal{K}}$ or $a_i \in B_{\mathcal{K}}$ (Lemma 3.1). Since the set of elements of K is dense in \hat{K} in the m-adic topology and the set of polynomials K[X, Y] is dense in $\hat{K}[X, Y]$, the composition $a_1 \circ \ldots \circ a_n$ is a continuous operation. Let $\bar{a}_i \in L_K$ or $\bar{a}_i \in B_K$ respectively be such that all coefficients of \bar{a}_i are sufficiently near to corresponding coefficients of a_i . Then $(id_{\mathcal{K}} \otimes \bar{a}) \circ a^{-1}$ and $a \circ (id_{\mathcal{K}} \otimes \bar{a})^{-1}$ are automorphisms arbitrarily near to the identity automorphism of $\hat{K}[X, Y]$, i.e., each of them maps X into a polynomial of the form X + F(X, Y) and Y into a polynomial of the form Y + G(X, Y), where all coefficients of F(X, Y) and G(X, Y) belong to the given power of m. This means that $a \circ (id_{\mathcal{K}} \otimes \bar{a})^{-1}$ can be represented in the form $id_{\mathcal{K}} \otimes b$, where b is an automorphism of $\hat{K}[X, Y]$. Thus we have, for any $a \in \operatorname{Aut}(\hat{K}[X, Y]$, that $a = (id_{\mathcal{K}} \otimes b) \circ (id_{\mathcal{K}} \otimes \bar{a})$, where $b \in \operatorname{Aut}(\hat{K}[X, Y])$, $\bar{a} \in \operatorname{Aut}(K[X, Y])$.

LEMMA 3.4. Let R be a discrete valuation ring. If an R-algebra S is a form of R[X, Y] such that $\hat{R} \otimes S$ is a trivial form of $\hat{R}[X, Y]$, then S is trivial.

Proof. By assumption, there exists an isomorphism $g: \hat{R}[X, Y] \to \hat{R} \otimes S$ and by [13] an isomorphism $f: K \otimes S \to K[X, Y]$. Let $f' = id_R \otimes f$, $g' = id_R \otimes g$. The composition $g' \circ f'$ is an automorphism of $\hat{K}[X, Y]$ and by Lemma 3.3 $g' \circ f' = (id_R \otimes a) \circ (id_R \otimes b)$, where $a \in \operatorname{Aut}(\hat{R}[X, Y])$, $b \in \operatorname{Aut}(K[X, Y])$. Therefore we have an isomorphism h' of $\hat{K} \otimes S$ onto $\hat{K}(X, Y)$, which can be defined in two ways: $h' = (id_R \otimes b) \circ f'^{-1} = (id_R \otimes a)^{-1} \circ g'$. Let us observe that $h' = id_R \otimes (b \circ f^{-1})$; so $h'|_{K \otimes S}$ is an isomorphism of $K \otimes S$ onto K[X, Y]. Similarly $h' = id_R \otimes (a^{-1} \circ g)$; so $h'|_{R \otimes S}$ is an isomorphism $\hat{R} \otimes S$ onto $\hat{R}[X, Y]$. Since $\hat{R} \otimes S \simeq \hat{R}[X, Y]$ is a flat \hat{R} -algebra, S is a flat R-algebra [8, exp. IV, Cor. 5.8]. We can now apply Proposition 6 of [3, Ch. I, §2, no 6] and we have $(K \otimes S) \cap (\hat{R} \otimes S) = (K \cap \hat{R}) \otimes S = R \otimes S = S$. Therefore $h = h'|_S$ is an R-isomorphism of S onto R[X, Y].

Proof of Theorem 2. Since R is a discrete valuation ring for which the residue field is algebraically closed, the residue field of \hat{R} is algebraically closed and, by [9, Ch. IV, Proposition 18.8.1], \hat{R} has no nontrivial Galois extensions. Therefore every form of $\hat{R}[X, Y]$ is trivial and, by Lemma 3.4, every form of R[X, Y] is trivial.

The following proposition provides a generalisation of Theorem 2.

PROPOSITION 3.5. Let R be a local noetherian ring with the nilradical n, let S be a Galois extension of R with the Galois group G. If $H^1(G, \operatorname{Aut}(S|nS[X, Y])) = 0$, then $H^1(G, \operatorname{Aut}(S[X, Y])) = 0$.

First we must establish the following lemma.

M. BRYŃSKI

LEMMA 3.6. Let **n** be a nilpotent ideal of R. An endomorphism of R[X, Y] that maps X into f(X, Y) and Y into g(X, Y) is an automorphism if and only if the endomorphism of R/n[X, Y]that maps X into $\overline{f}(X, Y)$ and Y into $\overline{g}(X, Y)$, where $\overline{f}, \overline{g}$ are the reductions of f, g modulo **n** respectively, is an automorphism.

Proof. The necessity is obvious. Suppose that f(X, Y), $g(X, Y) \in R[X, Y]$ are such that there is an automorphism of R/n[X, Y] that maps X into $\overline{f}(X, Y)$ and Y into $\overline{g}(X, Y)$. Then $X, Y \in R/n[X, Y]$ can be represented in the forms $X = \sum \overline{a}_{ij} \cdot \overline{f}(X, Y)^i \cdot \overline{g}(X, Y)^j$, $Y = \sum \overline{b}_{ij} \cdot \overline{f}(X, Y)^i \cdot \overline{g}(X, Y)^j$, where \overline{a}_{ij} , \overline{b}_{ij} are suitable elements of R/n. Let a_{ij} , $b_{ij} \in R$ be arbitrary inverse images of \overline{a}_{ij} , \overline{b}_{ij} , respectively. We have

$$\sum_{ij} f(X, Y)^{i} g(X, Y)^{j} = X + F(X, Y),$$

$$\sum_{ij} f(X, Y)^{i} g(X, Y)^{j} = Y + G(X, Y),$$

where all coefficients of F and G belong to **n**. Let A be the ring generated over R by X + F(X, Y)and Y + G(X, Y). We must show that $X \in A$, $Y \in A$. Let $\mathbf{n}^k = 0$. Let us assume that every monomial aX^iY^j , for which $a \in \mathbf{n}^{k-r}$, belongs to A. Suppose that $b \in \mathbf{n}^{k-r-1}$. Since $bX = b(X + F(X, Y)) - b \cdot F(X, Y)$, we have $bX \in A$, because $X + F(X, Y) \in A$ and $b \cdot F(X, Y) \in A$ by assumption. Similarly $bY \in A$. If $bX^sY^t \in A$, then

$$bX^{s+1}Y^t = bX^sY^t(X+F(X,Y)) - bX^sY^tF(X,Y) \in A$$

and similarly $bX^sY^{t+1} \in A$. Therefore every monomial bX^tY^j for which $b \in \mathbf{n}^{k-r-1}$, belongs to A. Thus our assumption is true for every $r \leq k$ and in particular $X, Y \in A$. Therefore we have the sufficiency.

Proof of Proposition 3.5. Let k be the nilpotence degree of the nilradical **n**. If k = 1, then $\mathbf{n} = 0$ and Aut $(S/\mathbf{n}S[X, Y]) = Aut (S[X, Y])$. Suppose that k > 1 and that our proposition is true for any ring such that the nilpotence degree of its nilradical is less than k. Let N be the subgroup of Aut (S[X, Y]) composed of the automorphisms that map X into X+f(X, Y) and Y into Y+g(X, Y), where $f, g \in \mathbf{n}^{k-1}S[X, Y]$. It is easy to see that N is isomorphic to the countable direct sum $\bigoplus (\mathbf{n}^{k-1}S)^+$ of the additive group $(\mathbf{n}^{k-1}S[X, Y])$. Therefore we have the following exact sequence:

 $H^1(G, \oplus(\mathbf{n}^{k-1}S)^+) \to H^1(G, \operatorname{Aut}(S[X, Y])) \to H^1(G, \operatorname{Aut}(S/\mathbf{n}^{k-1}S[X, Y]))$

in which the first term is trivial by Lemma 2.2 and the last term is trivial by the assumption. Therefore $H^{1}(G, \operatorname{Aut}(S[X, Y])) = 0$.

Corollary 3.7. Let R be a local noetherian ring with nilradical n. If there are no nontrivial forms of R/n[X, Y], then there are no nontrivial forms of R[X, Y].

THEOREM 2'. Let R be a local noetherian ring with nilradical n, such that R/n is a discrete valuation ring for which the residue field is algebraically closed. Then there are no nontrivial forms of R[X, Y].

Problems.

1. Is the thesis of Theorem 2 true without the assumption that the residue field is algebraically closed?

2. Is the thesis of Theorem 2 true only under the assumption that R is a regular local ring?

3. Are there nontrivial forms of R[X, Y] if R is a principal ideal domain?

REFERENCES

1. M. Auslander and O. Goldman, The Brauer group of a commutative ring, Trans. Amer. Math. Soc. 97 (1960), 367-409.

2. A. Borel and J. P. Serre. Théorèmes de finitude en cohomologie galoisienne, Comment. Math. Helv. 39 (1964), 111-164.

3. N. Bourbaki, Algèbre commutative, Ch. 1-2 (Paris, 1961).

4. S. U. Chase, D. K. Harrison and A. Rosenberg, Galois theory and cohomology of commutative rings, *Mem. Amer. Math. Soc. no* 52 (1965), 15-33.

5. M. Demazure and A. Grothendieck, Séminaire de Geometrie Algebrique, Exposé 4 (IHES, Paris, 1963).

6. R. W. Gilmer, R-automorphisms of R[X], Proc. London Math. Soc. (3) 18 (1968), 328-336.

7. A. Grothendieck, Technique de descente et théorèmes d'existence en geometrie algebrique, Séminaire Bourbaki 1958/59, Exposé 190.

8. A. Grothendieck, Séminaire de Geometrie Algebrique (IHES, Paris, 1960/61).

9. A. Grothendieck, Eléments de Geometrie Algebrique (IHES, Paris, 1960/67).

10. D. Hertzig, Forms of algebraic groups, Proc. Amer. Math. Soc. 12 (1961), 657-660.

. 11. A. Van der Kulk, On polynomial rings in two variables, *Nieuw Arch. Wisk.* (3) 1 (1953), 33–41. 12. A. G. Kurosh, *Theory of groups* (Moscow, 1967).

13. I. R. Šafarevič, On some infinite-dimensional groups, Rend. Mat. e Appl. 25 (1966), 208-212.

14. O. E. Villamayor, Separable algebras and Galois extensions, Osaka Math. J. 4 (1967), 161-171.

UNIVERSITY OF WARSAW