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CONVOLUTION KERNELS OF (n + 1)-FOLD MARCINKIEWICZ
MULTIPLIERS ON THE HEISENBERG GROUP

A.J. FRASER

We prove a characterisation, in terms of regularity and cancellation conditions, of
the convolution kernels of Marcinkiewicz multiplier operators m(C\,..., £n , iT) on
the Heisenberg group Hn, where Ci,...,Cn are the n partial sub-Laplacians. The
necessity of these regularity and cancellation conditions was established by Fraser
(2001); here, we prove their sufficiency.

1. INTRODUCTION

This paper deals with a class of convolution kernels on the Heisenberg group M^ =
C" x E which in a sense correspond to the product-type Calderon-Zygmund kernels on
K", and involve an underlying multi-parameter structure. These kernels were defined in
[3], where they arose as the convolution kernels of spectral multiplier operators on the
Heisenberg group analogous to the rc-fold Marcinkiewicz multipliers on Kn. We show here
that they always arise as such.

The situation thus corresponds to that of Marcinkiewicz multipliers in Kn, (see
[1, 5, 7]) whose convolution kernels can be seen to be precisely the class of product-
type Calderon-Zygmund kernels. Just as multipliers on Kn can be viewed as func-
tions of t——,...,i——, we take for our operators on the Heisenberg group functions

dx1 dxn

m(C\y... ,Cn,iT) of iT and the partial sub-Laplacians C\,.. .,Cn. The (n + l)-fold
Marcinkiewicz-type condition we require is that

(1) | ( W ' • • • {(ndinr{r,d,ym{i,r,)\ < Cy.

Our work uses the methods of Miiller, Ricci and Stein who in [6] studied the case of
functions m(£,iT) of iT and the sub-Laplacian C, where m satisfies a two-fold Marcin-
kiewicz-type condition,

In [3], by lifting to a larger product group, where multi-parameter methods can be
used, and then transferring the results obtained back down to M,,, we established the
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boundedness on Lp, for 1 < p < oo, of these Marcinkiewicz multipliers and showed that
their convolution kernels are polyradial distributions on En, which are smooth away from
the Zi = 0 planes and satisfy the regularity and cancellation conditions (4)-(7) given in
Section 3 below. We now show that these conditions in fact characterise the convolution
kernels of Marcinkiewicz multipliers m{C\,... ,Cn,iT).

The proof is analogous to the proof in Rn of conditions on the multipliers of Calde-
ron-Zygmund operators, starting from estimates on their convolutions kernels.

We do not have to work with the full group Fourier transform on the Heisenberg
group, because our kernels are polyradial, and so their Fourier transforms are diagonal-
isable operators on the representation space. We are thus able to deal simply with their
eigenvalues; that is, with the Gelfand transform of the kernels. Thus, making use of
Geller's explicit expression ([4]) for the Gelfand transform of a polyradial function on
Hn, in terms of Laguerre functions (this and other facts about the Fourier transform
on Mn are outlined below in Section 2), we begin in Section 4 by considering the case
of a smooth, compactly supported kernel satisfying (4)-(7), and show that its Gelfand
transform is bounded.

In Section 5, we show that a discrete Marcinkiewicz-type condition on the Gelfand
transform of C£° kernels follows from the boundedness proved in Section 4, by the simple
observation that certain differential and difference operators, applied to the Gelfand
transforms of our kernels, still yield Gelfand transforms of the same kind of kernels. This
corresponds to the fact in Rn that

(2) tAj= (-f-xAjr,
and —f—XjdXjf is still a Calderon-Zygmund kernel if/ is. The relations on EH,,, analogous
to (2) are proved in Lemma 5.1. This discrete Marcinkiewicz-type condition on the
Gelfand transform is then shown in Proposition 5.3 to extend to give the required Mar-
cinkiewicz condition on the multiplier m. This is really a result about interpolation
between integers to go from difference conditions on a function on Zn to differential
conditions on an extended smooth function on Rn. (The argument is an adaptation to
n-variables of that in [6]).

Thus, in Sections 4 and 5, the main result is established for smooth kernels of
compact support. The general case is then proved in Section 6 by an approximation
argument.

2. PRELIMINARIES

We denote by Mn the 2n -f- 1-dimensional Heisenberg group, HU = <Cn x R, with
multiplication (z, t) • (w, s) = (z + w, t + s + 2 Im z • w). The identity under this multi-
plication is (0,0), and the inverse (z,t)~l of (z,t) is (—z,—t). The Heisenberg group is
a connected, simply connected nilpotent Lie group. We define one-parameter dilations
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[3] Convolution Kernels of Marcinkiewicz Multipliers 355

on Hn, for r > 0, by r(z,t) = (rz,r2t). These dilations are group automorphisms. A
homogeneous norm on Hn is given by

Using coordinates h = (z,t) = {x + iy,t), for points in Hk, the left-invariant vector

fields Xj, Yj and T on Hn equal to -z—, —— and — at the origin are given by

xi = -5Tj
+2*m>. Y ^ W r 2 x 4 t and r = s l

respectively. These 2n + 1 vector fields form a basis for the Lie algebra t)n of H,, with
commutation relations

for j = 1 , . . . , n, and all other commutators equal to 0.

A differential operator D on Hn is called homogeneous of degree d if

D{f{v))=r\Df){r.).

Thus, X\, ... , Xn, Y\, ... ,Yn are homogeneous of degree one, and T is homogeneous of
degree two. The homogenous dimension of H,, is 2n + 2, the sum of the degrees of the
homogeneous basis elements X\,..., Xn, Y\,..., Yn, and T.

The partial sub-Laplacians C\, . . . , Cn on Hn are given by

for j = 1 , . . . ,n. The operators £\,... ,Cn, and iT form a family of commuting self-
adjoint operators with commuting spectral measures, and so, by the spectral theo-
rem, for m € Z/°°((R+)n x R), we can define the joint spectral multiplier operator
m(Cu ... ,Cn,iT) which is then a bounded operator on L2(Hn). Since C\,... ,Cn, iT are
left-invariant, m{C\,..., Cn,iT) commutes with left-translations and is therefore given
by convolution with a distribution K G S'(Hn): m(Ci,... ,£n,iT)ip — (p * K, for all

Given any r 6 Tn, the n-torus, define the operator pT on functions / on H,, by

Prf{z,t)=f{T-Z,t).

A function / on Hn will be called polyradial if / = pTf for all r £ Tn. A distribution
A' € <S'(Hn) is said to be polyradial if K(<p) - K(pTip) for all r G T" and all (p e 5(Hn).
Since £ j , . . . , £ „ and iT commute with all pT, so does m{Cu ... , Cn,iT), Therefore the
convolution kernel K of m(Ci,..., Cn, iT) is polyradial.

We now set down some facts about the Fourier transform for polyradial functions
on the Heisenberg group. These are covered in detail in [4].
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The Fock-Bargmann realisation of the (infinite-dimensional) irreducible unitary rep-
resentations of Mn is as follows. For A > 0, the Fock space Tix is the set of all holomorphic
functions F : C" -»• C such that

) " / \F(w)\2e-2X^dw < oo.

is a Hilbert space, with orthonormal basis

for k = (fci,...,fcn) 6 Nn (where \k\ = ki+ \-kn, k\ = kx\---kn\, and wk = w^ • • • to*"
for w S Cn). For A < 0, H\ = "H-A, E£ = E^x. The irreducible unitary representations
TT\ of IHIn on H\ are given by, for A > 0,

nx(z,t)F(w) = e-iXte~x^2+2z^F(w + z)

for F G %A, and for A < 0,

7rx{z,t)F{w) = e-'x'ex^2-21^F(w-z)

for F E 7i\. Then dn\(iT) = A/, and for j = 1, . . . , n, dirx(Cj) is diagonal on the basis

{i?£}, with eigenvalues (2kj + 1)|A| corresponding to E£.

A function / 6 //'(IHIn) is polyradial if and only if n\(f) is diagonal on the basis

{E£}, for all A 7̂  0. In this case, let

*x(f)Ex
k=f(k,\)Ex

k,

for k G Nn, A ̂  0, then / is the Gelfand transform, also given by

(3) f(k,X)= f e-tMek{2\X\\z\2)f(z,t)dzdt

where \z\ = ( | z i | 2 , . . . , |^n|2) for z G C", and £k = d°k is a Laguerre function, defined as
follows. For x > 0, and k G N, m G N U {0}, the Laguerre polynomials are

• =0

The Laguerre function P™ on R+ is then

And finally, for k G Nn, m G (NU {0})", x G (R+)n , the Laguerre function P? is given by
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[5] Convolution Kernels of Marcinkiewicz Multipliers 357

The inversion formula for polyradial / is

f(k,X)e'x%(2\X\\z\2){2\X\)nd\ .

Thus, the convolution kernel K of m{Ci , . . . , £ „ , iT) for bounded m on (R + ) n x R is given

by

K(z,t) = cn r' Y, ™((2fci + OIAI, • • •, (2A:n + 1)|A|, A)

The joint spectrum of Cu . . . , £ „ , iT is the closure in (R + ) n x R of

{ ( ( 2 * 1 + l ) | A | l . . . > ( 2 * f I + l ) | A | > A ) : * e N n , A ^

The multiplier m((, if) on this joint spectrum is then related to the Gelfand transform

H = K by

/*(*, A) = m((2fc1 + 1)|A|, . . . , (2kn + 1)|A|, A)

forfc = (fc1,...,fcn) e N " , A G R \ { 0 } .

The following properties of Laguerre functions Ik = Pk on R+ (see for example [2])
will be used throughout this paper:

(i) x4 = fc(4-4-i)-^4 (ii) xtu
k +

(iii) | 4 K i (iv) |4|

3. KERNELS OF MARCINKIEWICZ MULTIPLIER OPERATORS ON THE

HEISENBERG GROUP

Before stating our main result, we first define what will be referred to as a product-

type kernel on a product group G — G\ x • • • x GN- This definition applies in the

generality of homogeneous groups; however, for our purposes in this paper we shall only

consider products of the homogeneous groups C (where Q — 2), and R (Q = 1).

For j £ { 1 , . . . , ./V}, we let Gj be a homogeneous group of homogeneous dimension

Qj. Then Gj is equipped with an automorphic one-parameter dilation (which, for r;- > 0,

we denote simply by Xj i-> rjXj, for Xj € Gj) and a homogeneous norm | • |. Given a basis

{Xh\,... ,Xj:n}} of left-invariant vector-fields, for / £ (Z+)"J (where Z + denotes the set

{0,1,2, . . . }), the degree of the left-invariant differential operator Xj = Xj\ ... X^ on

Gj will be denoted by dj(I).

NOTATION: Throughout this paper, we shall adopt the following notational conventions

for product groups. For x in a product group G — G\ x • • • x Gjv, we let
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so that, given J € (Z+)JV',

| x | J = | i i P I - - - M i w .

For j € Z + , we denote by j the multi-index (j,... ,j) € (Z+)m for a dimension m which
will always be clear from the context. We set Q = (Qi,..., QN), and for a multi-index
/ = (h,..., IN), with /,- € (Z+)B>, j = 1 , . . . , N, we also set

The differential operator X1 = X[* • • • XJf on G, with X]j on Gj denned as above, then

has degree |d(/) | .

We denote multi-parameter dilation, given r = ( H , . . . ,r^v) € (R + ) w , by

i r ( x ) = (riXi,.. .,rNxN)

for x 6 G.

Frequently it will be necessary to split a variable x in a product group G into two

component variables. In such cases we shall write x = (x e, x e), where

for 1 ^ t ^ n, and
vJ yJi vJi vK

u\^ — yij • • • j \ t , A ^ —

for J = ( J i , . . . , Ji) e (Z + ) n i x • • • x (Z+)n" and K = (Ke+1,..., KN) € (Z+)"'+- x • • • x
(Z+)n" We also set

G^_ = Gi x ••• x Ge, Gj^ = Gt+i x • • • x GN,

with corresponding definitions of Q e, Q < , rf e, and <f <.

We note tha t for z £ CN, | z | 2 = \zi\2 • • • \zN\2, while \z\2 is the square of the usual

norm, \z\\2 + V \ZN\2-

We shall define the product-type kernel conditions in terms of normalised bump

functions. A Cf function <*p is called a normalised bump function if <p is supported in

the unit ball, and ip and all first order partial derivatives of ip are bounded by a fixed,

pre-determined constant.

A function K on G\ x • • • x GN is said to be a kernel of product-type (or to satisfy

product-type kernel conditions) if it satisfies the following conditions:

(a) the regularity condition:

for all / = ( / „ . . . , IN), I; € (Z+)"i, j = l,...,N;
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[7] Convolution Kernels of Marcinkiewicz Multipliers 359

(b) for each £ — 1 , . . . , N, the cancellation condition in x t :

,-Qi-dt

for all / = ( / /+! , . . . , IN), I, G (Z+)"J , j = £ + 1,. • . , N, all normalised

bump functions <p on G e , and all r € (R+) ' .

In addition, for each permutation <r G 5/v /f must satisfy the cancellation condition

in xCT( t) obtained from (b) by permuting the indices 1 , . . . , N by a.

In the case where K is a tempered distribution, we assume that K is smooth away
from the "planes" {x 6 G : Xj — 0}, j = l , . . . , iV, and the cancellation conditions
are to be understood as follows. Given <p in the Schwartz space S(G i), we define the
distribution Kv by Kv(i>) — K(ip <g) xj)) for all \\> G S(G i), where (p ® ij)(xi,..., £#) =

The cancellation condition then states that for all normalised bump functions ip on
G t, and for all r € (K+) ' , the distributions Kvosr £ S'(G i), are smooth away from the
planes { i , £ G t : x}• = 0}, j' = i + 1 , . . . , N, and uniformly satisfy

for all / = (/,+,,. . . , / * , ) € (Z+)n'+' x • • • x (Z+)"".

We now state the main result of this paper, the characterisation of kernels of
Marcinkiewicz multipliers m(Ci,... ,Cn,iT), and observe that these kernels form a sub-
set of the product-type kernels on Cn x R. The cancellation conditions (5)-(7) below are
to be interpreted for distribution kernels in the same manner as indicated above in the
case of the product-type cancellation conditions.

THEOREM 3 . 1 . Let m be a function on (K+)n x R satisfying the Marcinkie-

wicz-type condition (1) for all ii,...,in,j G Z + . Then, the convolution kernel K on

Kn corresponding to the operator m{C\,..., £„, iT) is polyradial, smooth away from the

z; = 0 planes, and satisfies the size condition

for all I G (Z+)", k G Z + ; as well as the following cancellation conditions: for all £,

(5) v-i-/t

for all normalised bump functions <p on€?,r G (R+)e, I G (Z+)n~e, and k G Z + ;

(6) U J^K(z,t)<p(6r(z^t))dZldt ^C,|z4|-2-'
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for all normalised bump functions (p on C*, r € (R + ) ' + 1 , and / 6 (Z + )"" ' ; all conditions

obtained from (5) and (6) by permuting the indices 1 , . . . ,n; and

(7) diK(z,t)<p(rt)dt 1-2-/

/R

for all normalised tp on R, r > 0, and / £ (Z+)n . The converse also holds: every polyradial

distribution K on M^ which is smooth away from the Zi = 0 planes and satisfies (4)-
(7) is the convolution kernel of a multiplier operator m(£t,... ,Cn, iT) for some m on

(R + ) n x R satisfying the Marcinkiewicz-type condition (1) for all ii,... ,in,j £ Z + .

The forward direction was established in [3]. We prove the converse here.

4. T H E RESULT FOR SMOOTH COMPACTLY SUPPORTED KERNELS
PROPOSITION 4 . 1 . If K £ Cf^Hn) is polyradial and satisfies (4)-(7), then

/j,(k, A) = K(k, A) fas given in (3)) is bounded by a constant that depends only on the
constants in the conditions (4)-(7).

PROOF: By homogeneity, we may assume A = 1. We have

fj.(k, 1) = / e-itik(2\z\2)K(z,t)dzdt.

We break up the integral according to the size of the |z,-|'s by introducing a normalised
bump function ip on R, such that <p = 1 on [-(1/2), (1/2)]. Observe that rf)(w) = v?(|iu|2)
is then a normalised bump function on C. Thus,

n
\!—^ \—^

t=0 l^t'i<—<i<^n

with

M \zu I 2 ) )

where j i < ••• < jn-t are such tha t {iu ... ,it,ji,..., jn-t} = { l , . . . , n } .

Now, given £, 0 ^ £ ^ n, by relabelling of variables, it suffices to consider only the

term h(\,...,t)-
Since K is polyradial, we may define
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[9] Convolution Kernels of Marcinkiewicz Multipliers 361

Then, changing variables rt = 2 | ^ | 2 for i = 1 , . . . ,£, we have,

Im,...A = ( f ) ' / I (1 "
• <p{2kt+l\zt+l\

2) • • • ¥ , (

• 4 i ( r i ) • • • £kt(rt)e~ltf(ri, ...,re,ze+u..., zn, t) dr dz' dt

= (|V f *1{r)e{r)e-af(r,2>,t)u{2>)drdz>dt
x^' 7(K+)'xC»-'xR

where r = {ru ..., rt), z' = (zt+i,..., zn),

<P,(r) = (1 - ^(fcxn)) ••• (1 - <p(ktre)), t{r) = 4 , ( n ) • • • ht (r<),

and by properties (iii) and (iv) for Laguerre functions,

t i t O - <p{2ke+l\ze+1\
2) ...V{2kn\zn\ykt+l{2\zl+l\

2) • • •4 n (2 |z n | 2 )

is a dilate of a normalised bump function on C" '.

We remark that using (5) directly at this stage to estimate

J(r,z',t)u(z')dz'

would yield rf1 • • • rjl (r\ \-rt+ \t\) , which is too large. There are two tricks at our
disposal to improve matters. Writing e~xt as its own derivative and integrating by parts
in t, we can move as many derivatives dt

N as we wish onto / , so that (5) then gives the
estimate rj"1 • • • rjl (ji + • • • + rt + \t\)~ ~ , which is integrable (for example, for N = E)

on the support of ( l — <p(k\r{)) • • • ( ! — ip(k(rt)), but at a cost dependent on k:

Jri21/(2ki),i=l,...,t JR
dtdr

The second trick is the corresponding one in the ri,... ,rg variables, and we begin with
this. By property (ii), we can write the Laguerre functions in terms of their derivatives:

Setting L{ = L2 + L\ + L°{, with L2 = rJ^-Y, L\ = -^-, and L°{ = - n / 4 , then,

tik<
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with Li£ki • • • L(lkt expanding to

(L\lkl + L\lkl + L\tkl)- • • (Lj£kt + L\tkl + L°tekt)

where the summat ion is over all £\, £2, 0 ^ t\ S$ £1 ^ £, and all parti t ions a of { 1 , . . . , £}

into three sets, {a^1+1 < ••• < at2}, {a^ < ••• < ati], and { a ^ + 1 < • • • < ae} of

cardinalities £2 — £1, £\, and £ — £2. Thus , correspondingly,

,=0<2=/i a

Given 0 ^ £\ ^ £2 ^ £, without loss of generality, we consider only the term
Atljt2 = Ae

a'
l(2, with the partition a given by a,- = i, for i = 1,... ,£.

The proposition will be proved once we have shown that A*itt2 is bounded. Letting

(*! +1/2) •••(** +1/2)

t h e n \ A ' u t 2 \ ^ Ck^1 • • • kJl\Btut2\, a n d so it suffices t o s h o w \ B l i > t 2 \ ^ Cki...ke ( t h u s

giving us lee-way to use the integration by parts in t trick if needed).
We thus consider

d
ir(.

•£kt{rt)drdz'dt.

Since / has compact support, and because of the presence of the factor $i(r) = (l —
y(&iri)) • • • (l — (p(kire)), we may integrate by parts in the r-variables. Thus, Blut2

becomes

C / R + ' X O - X R ^ ' ' ' drtl^+i ' ' ' ^ [7Vl+1 ' ' ' r / ' * l ( r ) / ( r ' V ) t ) ]

rt dr dz' dt.

In order to expand the derivative expression in the first line of the integrand, we
observe that each second order derivative produces five kinds of terms:

- 2(1 - <p{kiri))drig-2riki<p'{kiri)drig

- 2kiip'{kiri)g - r.-fc.Vftr-Os + r,-(l
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[11] Convolution Kernels of Marcinkiewicz Multipliers 363

Thus, d, ••• d1t [re1+i • • • rl2$xf] expands into a sum of 5'2"'1 terms given by, for tx =

j \ ^ J2 ^ 73 ^ J4 ^ 35 ^ je = -̂ 2, aU terms obtained by permuting the variables
r / 1 + i , . . . , r(2 in the term

ft #2 ^3 ft ft #2 d?f

w h e r e # 2 ( r ) is j u s t $ i ( r ) w i t h o u t t h e f a c t o r s ( l — < p ( k t l + 1 r t l + l ) ) • • • ( ! — t p ( k t 7 r i 7 ) ) , a n d

= JJ kw'ten) $<{r) = J J r,A:,V"(fc,r1)

where for i = 1 , . . . , 5, J< = {>,• + 1 , . . . ,>.+i}, J , = 0 if ji = ji+i, and /? = (6,,. . . ,b() G
(Z + ) ' is the multi-index with all entries 0, except 6,- = 1, for i € J\ U 1/2,6. = 2, for
i € J5, so that

Next, each first order derivative produces two kinds of terms:

dri [(1 - V(*,T,-))$] = -kiV>'(kiri)g + (1 - <p(kiri))drig

Thus, the full expansion of

dn • • • drtl d2
rii+1 • • • d2

rh [rtl+l • • • r , , # ( r ) / ( r , z\ t)}

has 2 ' '5 ' 2" ' ' terms given by, for each 0 < j 0 ^ j i < j 2 ^ J3 ^ ji < js ^ Je,

the I ) I . . . I different terms obtained by permuting the variables r j , . . . , r*. and
VW 233343s/

hrel+i,..., r;2 in the term

with <P(r) = (1 - yj(fc/2+ir<2+1)) • • • (l - ^ ( ^ r , ) ) , and

^^'(Air,-) ft- =
ieJ-l i£Jo

where for i — —1,0, (j_i = 0), Ji is defined as above, and a = /? + 7, with 7
(c i , . . . , Q ) , C,- = 1 for i € Jo, and 0 otherwise, so that

We also set <£6 = r<2+i • • • rt $, and Je = {£2 + 1 , . . . , £}.
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The integral Btut2 therefore splits up accordingly into 2' '5'2 '• terms. Given

jo,J2,J3,J4,J5 as above, it suffices to consider the term

" " / ,(R+)<xC—'xR
-uu{z')dr dz> dt

with &(r) = ty-x^o Wi #2 <P3 #4 <̂ 5 %. The Proposition will be proved if we show that
IB'11'2! ^ Ck\---kt. We shall establish this estimate below, in Case 1 (if .75 < (.2 or
£2 < i) and Case 2 (otherwise).

CASE 1. J7s U J76 7̂  0- In this case, we use the integration by parts in t trick to improve

the estimate (5) by an extra r"1 for each i £ J7s and by r~2 for each i G Je- That is, we

let N = \J5\ + 2\J6\ = t2 - js + 2(/ - / 2 ) . Then, using

e - =

and integrating by parts N times in t, we obtain,

f f f d?d?f(r,z',tMz')dz'
JnJR Jo-'

where Q is the region

' : — ^ r, ^ —, i € J - i U J2 U J3 U J 4 ;
2A:t fc,

containing the support of <?. Estimating the inner integral by the cancellation condition
(5) in 2', then

n -.- n
1-N \9(r)\dtdr

n*? n
ieJ,

But
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since N = \J5\ + 2 |J6 | , whence |5J' ' ' 2 | < Ckt • • • kt, as required.

CASE 2. J5VJ6 = 0.

In this case, the cancellation condition (5) in z' gives too large an estimate, which
cannot be improved by integrating by parts in t. We must therefore take into account
the cancellation in t. Recall that ip is a normalised bump function on R, with ip = 1 on
[-(1/2), (1/2)]. Including the factor 1,

1 =¥>(*) +(1-¥»(*))

in the integrand, we then break Btut2 accordingly into two integrals:

B'uti = B?/2 +Bfyt2 .
We first observe that \B'*{'2\ is bounded by

/ I /
Jn I Jo>

dr ,%f(r,z',t)e-ituMp(t)dz'dt\*
In | Jc - ' xR

with fi as above. By the cancellation condition (6) in z' and t, since e~ltu(z')tp(t) is a
dilate of a normalised bump function in z' and t,

rf* |*(r)| dr

C ki---kt .

d
Next, for B^ 2, writing e '' = * " j " e **> an<i integrating by parts in t, we obtain,

dt

(R+)'xC-'xR
-)c-'u(z') (1 - <p(t))d?f{r, z\ t) dr dz' dt

/ R + txo>_t JR [v'(0^/(r, '̂, 0 + (1 - <p{t))dtd?f{r, z\ t)]

' f \ f I / d?f(r,z',t)u(z')dz> dt

+ / I / dtd?f(r,z',t)u(z')dz' dt]\V(r)\ dr

Then, by the cancellation condition (5) in z', | 5 2 ' ' 2 | is bounded by

7 n u
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Since the integrals over t are bounded, we are left with the same integral obtained for

B^f1, which concludes the proof of Proposition 4.1. [].

REMARK. We notice from the proof that in Proposition 4.1, conditions (4)-(7) were in
fact not required for all derivatives on the kernel K, but only as follows: (4) for all d\d\

where / G (Z+)n, k £ Z + such that i, < 2, j = l , . . . , n a n d k ^ maxl l , £ ( £ 2+.2<Lo));
^ j=o '

(5) for all d\ d\ for / , k as above, with n - £ replacing n; (6) for all d' with / as for

(5); and (7) for all d[ with / as for (4).

5. CONDITIONS ON THE GELFAND TRANSFORM

Define the difference operators A,-, i = 1, . . . , n by

where 1,- = {ju ... ,jn) G N" with je = Sei.

LEMMA 5 . 1 . Iffe Cf^IEi,) is polyradial, with /x(k, X) = f(k, A) as in (3), then

(8) X^(k, A) = - f(n + 1)/ + tp
L

(9) fc

PROOF: Since / is polyradial, we may set /o(2 |zi | 2 , . . . ,2|zn|2,<) = f(z,t). Then by
the change of variables r,- = 2|z,|2, i = 1, . . . ,n, we have

/z(M)= f e-iX%(2\X\\z\2)f(z,t)dzdt

= GY I e-ix%{2\X\\z\2)f0(ru...,rn,t)drdt .
y£; y(R + )"xR

We first prove (8). We notice that XdjdX [e"'A'4(|A|r)l equals

^ r~ekj{\X\r})

where the shorthand aj --J-- an will be used to denote the product
ai • • • aj_i<i;-+i • • an, (that is, without the j ' h factor a,j). Observing the presence of the
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factor r,, 'and the fact that /o has compact support, we integrate by parts in t and the

rj variables, to obtain

?(kX) (£)"( / e-»%(\\\)%X-?-u(k,X) = - ( £ ) " ( / e-»%(\\\r)%-(tfo{r,t))drdt

+ E

• f (r i\

which proves (8), since TJ——fo(r,t) = Zj——f(z,t).

Now, for (9), using property (i) for the Laguerre function £kj,

A^A^.flAIr,-) = lAlr^.dAIr,-) + | | A 1 ^ ^ (|A|^)

and thus kjAj/j.(k, A) equals

•T~tkn {\*Vn)r~lk, (lAlrvJ/od-, t) dr dt

+ hr ek(\X\r)l-\X\r]e-'Mfo(r,t)drdt.

Integrating by parts in r,- for the first term, and in t for the second, where we write

|A|e~lA' = i(sgn A)—e~lAt , then the above is equal to

- (?)" /
V ^ y y(R+)

/ ) f ( r , 0 + r i / / 0(r )<) + isgnA^
(R+)"xR L Or,- 2

which proves (9). D

With this lemma and Proposition 4.1 in hand, the Gelfand transform of our kernel

is easily seen to satisfy the discrete Marcinkiewicz condition

(10) |(*,A,)O1---(&BAB)

for all a,-, be NU{0}:
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COROLLARY 5 . 2 . If K e CftlEi) is polyradial, and satisfies (4)-(7), then

(i(k, A) = K(k, A) satisfies (10), with constants Ca,6 that depend only on the constants

in (4)-(7).

PROOF: Since t—K, ZJQ-K and W^K also satisfy (4)-(7) if K does, then by

Lemma 5.1, applying A— or kjAj to the ~-transform of a C f function satisfying (4)-(7)

still yields a ""-transform of a C£° function satisfying (4)-(7). Thus the result follows

from Proposition 4.1. D

REMARK. Further to the remark at the end of Section 4, we observe that it is of course
here in Corollary 5.2 that conditions (4)-(7) are required for all derivatives on the kernel
K.

The Marcinkiewicz condition (1) on the multiplier m then follows by the following
argument of interpolation between integers.

P R O P O S I T I O N 5 . 3 . If //(*,-A) = ^ ( ( 2 ^ + i)|A|,...,(2fcn + l)|A|,A) satisfies
(10) then m satisfies (1) with constants Ca\, depending only on the constants Cab in the
condition (10) on fi.

PROOF: Let <p e CC°°(R) be supported in [-(3TT/2) , (3TT/2)] , with tp = 1 on

[-(T/2),(7r/2)],and

kez

for all I E R . Then, setting $(x) = <p{x{) • • • <p(xn) for x £ Rn, we have

Sko for k € Zn .

For all A ^ 0, we set ak(X) = (i(k,\) for k G Nn, and ak{\) = -ak.(\) for k, k' £ Zn, if
k and k' differ only in one component, say the j t h , where kj = —k'. For u 6 Rn, A ̂  0,
define

Then 3^pt(A:, A) = db
xn(k, A) for fc e Nn, for all b € Nu{0}, so that u is a smooth extension

of fj..

For fixed A ^ 0, and b G N U {0}, let 5* = (AdA^a^A). Then by definition, the ak

are odd in each fcj-component. By (10),

for all a G (NU {0})". And consequently

(11) \Ar---Aa
n"k
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holds for all a G (N G {0}) . Since in particular, |ot| ^ Cb, then the series

E ~«**ikX
kez"

converges in the sense of distributions to a distribution H on the n-torus T n ( = [—ir, "•)")•
We observe that, viewing H as a periodic distribution on Rn, then the compactly sup-
ported distribution $H has Fourier transform

We define
N N

hN(X)= Y, ••• E s*c*r-
fc,=-JV /fcn=-JV

Given a € (N U {0})n, if there are only finitely many non-zero a'ks, then fixing x, and
for i = 1, . . . ,n, splitting the summation in fct- according to the size of |fc,| with respect
to |xi|~', it follows from summation by parts and (11) that

finite

I-1...!*.!-1

independently of the number of nonzero a'ks. But the sum in absolute value on the
left-hand side above equals

finite

and therefore

(12) 1^' • • • S£MX)

holds uniformly in V̂, for all a G (NU{0})".
Viewing hN as periodic functions on Rn, then for f3,j £ (NU {0})", the functions

gN = x^d^Xi)*3* ... {dXnxn)

also satisfy the same condition (12) uniformly in iV for all a £ (NU {0})".

Since the a^ are odd in each A;,-, then the periodic functions Ayv are odd in each x,-.
Therefore, given 1 < i ^ n, if 7,- G NU {0} is even, then for fixed xx, ... , £,_!, i 1 + i , . . . ,
xn, the functions

($hN)(xu . . . , i,-_i, • , i,-+i,..., xn)

are odd on [—(TT/2), (TT/2)], where y> = 1. Consequently, by (12), if ^ , 7 G (NU{0})"with
7, even for all i = 1 , . . . ,n, then the functions gw satisfy the product-type cancellation
conditions on R' (see Section 3), uniformly in Â .
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Since

tion

converge in the sense of distributions to the compactly supported distribu-
)01 ... (dXnxn)

p"($H), then by Lemma 5.5 below,

holds for all 7,/? G (NU {0})" with each 7,- even (i — I,... ,n), and consequently by
Lemma 5.4, for all 7,/? G (NU {0})". Therefore

'a,b

for all a G (N U {0})n, and since ($#)~(i/) = (\dx)
h]i{v, A), then

|((^! + ^ )^ , ) Q 1 ... ((„„+ l-)dVn)
an(\dx)

bp(v, A)

for all a € (N U {0})",6 € N U {0}. Hence,

satisfies (1), concluding the proof of Proposition 5.3.

LEMMA 5 . 4 . Let f be a smooth function on R such t/iat

(13) Kd/dtn^/Ay/wi^c-i j

for all j e Z+ and all i G 2Z+. TAeiJ (13) JjoJds for o// i, j G Z+ .

PROOF: Given i,j G Z + with i even, we let g(t) = (td/dt)j f(t) , and show that

(14) \{d/dt)i+1g(t)\^Cij.

From (13), we have

\(d/dty(td/dt)g(t)\ ^ Ctj , and \(d/dtyg(t)\ ^ Ci<3 .

Using
y(td/dt) = (td/dt)(d/dty + i(d/dty ,

then \{d/dt)(i+Vg{t)\ < Citj \t\~
x; proving (14) for |i| ^ 1. Now, by (13), \{d/dt)li+Vg(t)\

Ci,j, whence

* C ' I - J - | i - l | .

Thus for |t| < 1
\(d/dt)^g(t)\

establishing (14) for all t G R.
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LEMMA 5 . 5 . Let K be a distribution on Rn satisfying product-type kernel con-

ditions for all multi-indices I with ij ^ 1 for all j . Then K is bounded (by a constant

depending only on those in the regularity and cancellation conditions K satisfies).

The proof in the case of A" a smooth function of compact support (which is in fact
all that we require in Proposition 5.3) uses a similar (but much simpler) argument to
that in Proposition 4.1 in Section 4. The result for general K can then be obtained by
approximation, as in Theorem 3.1 in Section 6.

6. APPROXIMATION OF A DISTRIBUTION KERNEL

We now conclude the proof of Theorem 3.1. We reduce to the case of K smooth,
with compact support as follows. Let ip be a polyradial normalised bump function on M,,
of the product form given in Lemma 6.1 below, with f <p = 1, and f(0) = 1. Denote by
<pei, the normalised dilated function

for £i > 0, and by <p(£2'), the dilated function

(p(e2-(z,t)) = (p(e2z,e]t)

for e2 > 0. Then the functions Kei>e3 = <p(e2-)(K*ipCx) are smooth, compactly supported,
polyradial, converge to K in the sense of distributions, as £i,£2 —> 0, and by Lemmas 6.1
and 6.2 below, satisfy (4)-(7) uniformly in t\ and e2.

By Corollary 5.2 and Proposition 5.3, the multipliers mCuC2, such that

77i £ l i £ 2 (£ l ! . . . ,£ n , iT) / = f*KCuC2

for / 6 S(Hn), satisfy the Marcinkiewicz condition (1) for all i i , . . . , in, j € Z + , uniformly
in £i, e2 > 0.

It follows by Ascoli's Theorem that a subsequence m£lji£2j., with Z\j —> 0, e2j ->• 0
as j —¥ oo is uniformly bounded, and converges pointwise to a function m on (R+)n x R
satisfying (1). But since KCI}IC2J converge to K in 5'(Hn), then K is the convolution
kernel of m ( £ i , . . . ,Cn,iT).

LEMMA 6 . 1 . Let rp be a radial normalised bump function on C, V"o a normalised
bump function on R, and define ip on Mn by

If(pe denotes the normalised dilate,

of tp, for e > 0, then the smooth functions K *R2n+i <pc obtained by convolving K as a

distribution on K2n+1 with (pc, are polyradial, and satisfy (4)-(7) uniformly in e > 0.
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P R O O F : All convolutions in the proof of this lemma are Euclidean, rather than

Heisenberg, and thus henceforth we shall drop the subscripts to *.

Let e > 0 be given. The function K * <pe is easily seen to be polyradial. For / on

R", and u € RN, we let J(x) - f{-x) and denote by /'"' the Euclidean translate by u of

/ . T h a t is, / M ( « ) = f(v -u) = / ( « ! -vu...,uN-vN). Thus, K * <pe(z,t) = K(<p[
e
z't]).

Given r G T", since by construction ip is polyradial,

4TZ>t)]&, s) = *£' V l C , s) = pr-><#A(C, s) .

But as K is a polyradial distribution, K(pT-\ip* ) = K(<Pe ) , from which it follows that
K * ipe is polyradial.

We now show that K *ipe satisfies the regularity condition (4). Let (z, t) 6 Hn, with
Zi ± 0 for i = 1 , . . . , n. For any / € (Z+)n, and k e Z+,

(15) dt%{K * <pe)(z, t) = K* {df$<pe){z, t) =

with

(ac
/a5V£)(z't l(C, s) = (dl

where tps and (^b)e2 are the usual (Euclidean) normalised dilates of if> on C" and of tpQ

on R.

We shall consider separately the cases corresponding to the sises of the \ZJ\, j =

l,...,n, with respect to e. When all \ZJ\ are large with respect to e, then (15) is just

the convolution of a smooth function, d£d'sK, with <p£, and we shall use the regularity

condition (4) on K. (Case 1 below.) When some of the \ZJ\ are small compared to e,

then the corresponding (<?J'.̂ >e)'*•>' are essentially normalised bump functions, and so we

shall use the relevant cancellation condition (5) or (6) on K. (Cases 2 and 3 below.)

C A S E 1. If \ZJ\ > 2e for all j — l , . . . , n , then since ipe is supported in the e-disc,

{w € C : \w\ < e} in C, (9^9*(p£)f
Z|(' is supported in the region

{ ( C , s ) € H n : | C i | > £ , i = l , . . . , n } ,

in which K is a smooth function. Therefore

f dc'

by (4). But for (C,s) in the support of <pe(z-(,t-s), we have |Ci| > | ^ | / 2 for i = 1 , . . . ,n.
If |f| > 2e2, then for (C, s) in the support of <pe{z — (,,t- s) we also have \s\ > \t\/2. Thus
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If |t| ^ 2e2, then \z\2 > (|z|2 + \t\)/2, and therefore

CASE 2. If only £ of the \zi\ ^ 2e, 0 < £ < n, we may assume, by relabelling variables

if necessary, that | z i | , . . . , \ze\ ^ 2e and \zi+i\ , . . . , |zn| > 2e. We split ip accordingly:

, s) = <Pi(Ci)<P2(<;±, s). Now,

for i € Z+ . For j = 1 , . . . ,^, since (3^t/')o£:~1 is supported in the£-disc in C, and \ZJ\ ^ 2e,

then ((i9V/0)oe"1) is supported in the 3e-disc in C, and is thus a dilate by (3c)"1 of

the normalised bump function hj(w) = {dwij}){e~1Zj - 3w) on C. Therefore

is a dilate of a normalised bump function on Cl. Here, e = ( e " 1 , . . . , e"1) € (R+)e.

Consequently, by the cancellation condition (5), the distribution K$ on Wn~e, defined

as in Section 4, is smooth away from the £/+1 = 0 , . . . , £n = 0 planes and satisfies

for all J € (Z+)" l, j e Z + , where the constant does not depend on e. But

d'zd
k
t{K*ipe){z,t) ^e~2e~llllK^((d^dk{ip2)e)lz^t]) ,

and since \zi+i\,..., \zn\ > 2e, we are therefore reduced to the situation of Case 1 on

H"-'. Thus,

|#3*(tf *<*)(*, t)| =£"*""•

using the fact that | z i | , . . . , |z/| < 2e < | ^ + i | , . . . , \zn\.

CASE 3(a). If |^»| ^ 2e for all i = 1 , . . . , n, and \t\ > 2e2, we define $ on Cn as in Case

2, with £ = n.

Then <J> is a dilate of a normalised bump function on Cn, and so by the cancellation

condition (5) on K, the distribution K$ on R is smooth away from 0, and satisfies
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for all j € Z+, where the constant does not depend on e.

Since \t\ > 2e2, and dk(rp0)e2 is supported in [-£2,e2], then ( d * ^ ) ^ ) is supported

outside [—£2,£2]. Therefore

[d*K*(s)(i/>o)t2(t-s)ds

But for s in the support of {">po)^{t - s), \s\ ̂  |4|/2, and since \t\ > 2e2, and |z,-| ^ 2e for
i = l,...,n, then |*| ̂  c(|a;|2 + \t\). Thus, the result follows.

CASE 3(b). If all \z,\ < 2e, and |i| ̂  2e2, then (df
(d^e)

[z-t] = e-**-\i\-2-2k $ w h e r e

is a dilate of a normalised bump function on Mn, and so the cancellation condition (6)
on K yields

\d{dk
t{K *R2n+l <pt)(z,t)\ = B-2n-W-2-

concluding the proof of (4).

Before proceeding with the proof of the cancellation conditions (5)-(7), we recall
that for a distribution K on K ^ + ^ and fx € ^(R"1), the distribution Kh on RN* is
defined by

(16) Kh{h) = K{h ® h) for all f2 € S(RN').

We observe that if gu fx € ^(E^1), g2 € 5(R^) , then letting g = gi®g2,

(17) (K*g)fl=Kflth*g2.

The cancellation conditions (5)-(7) are defined using (16). To consider these can-
cellation conditions, we write Mn = Ho x • • • x Hn, where exactly one Ht = R and all
others are C. Abusing terminology somewhat, we shall refer to a kernel on Hn satisfying
(4)-(7) as a product-type kernel on Hg x • • • x Hn. A product-type kernel on C" or on
R, however, will mean the usual product-type kernel on C x • • • x C or respectively on M
(one-fold product) defined in Section 3.

We let G\ — Hi, G2 = Hi, and split if into ipi <2> <{>2, with <pt on Gi, i — 1, 2. For

the cancellation in the Gi-variables on K * <p£, given a normalised bump function 77 on
G\, and r £ (B.+ ) t + l , we must show that (K*(p£),,o{r satisfies the product-type regularity
condition on G2 independently of 77 or r.
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But by (17),

and so if we show that K(vosr),$u is a product-type kernel on G2, then it will suffice
to prove that the regularity condition on Gi is satisfied by K * ip2c whenever A" is a
product-type kernel on G^. But we proved this above for the case where G2 = Hln- For
G2 = Cn~e, the result follows as in Cases 1 and 2 above; for G2 — K, as in Cases 1 and
3(b).

To see that K(rio&r)*$\t ' s a product-type kernel on G2, we let # = (r]oSr) *<fic. Then

<p(x,)= T!(8r(x - ey))$i(y)dy = r)(8r(ey))(pl(--y)dy,
JGi JGi V e '

and we see that \dXi<P(x t )| ^ Csi, where s,- = min(T-,-,£~1), while $ is supported in the
region where |x,| ^ e + r"1 ^ 2s"1. Thus $ ( 1 , ) is a dilate by s = (so,... ,sij of a
normalised bump function on G\. It follows easily from the product-type cancellation
conditions on K that K$ is thus of product-type on G2, which concludes the proof of
Lemma 6.1. D

LEMMA 6 . 2 . Let tp be as in Lemma 6.1, and denote by <p(e-) the dilate

v(e-(z,t))=ip(ez,e2t)

of ip, for e > 0. If K is a polyradial distribution on Hj, satisfying (4)-(7), then Ke =

ip(e-)K are polyradial, and satisfy (4)-(7) uniformly in e > 0.

PROOF: We first prove (4). This follows directly from (4) on K. Since K is smooth
away from the z, = 0 planes, then so is Kt. We set e = ( e , . . . ,e,e2) £ (R+)n + 1 , so that
V?(e) = y°Je, where 5 denotes multi-parameter dilation on H^ — C x R, and let fi be
the region in Hn, containing the support of ifo8e, where | z i | , . . . , |zn| ^ e"1, and |t| ^ e~2.

Then given any (z, t) 6 Mn with z,- ^ 0 for i = 1 , . . . , n,

v=O

E E
v=0

' i/=O

by (4) on A\ The summations in U above are over multi-indices U € (Z+)n such that
Uj^ij for j = l,...,n.
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For the cancellation conditions (5)-(7) on Kc, we write H,, — HQ X • • • x Hn, as in
the proof of the previous lemma. Given £, 0 ^ £ ^ n, we let Gi = H t , Gi = H t , and
split if and e accordingly into <p\ ®V'2 and e\ ®e^ respectively. Given a normalised bump
function r\ on G\, and r € (K + ) ' + 1 , we observe that

as distributions on G2. But ((fiio8ei)(r]o8r) is a dilate of a normalised bump function on
G\. Consequently, by the cancellation condition in the Gi-variables on K, K(ViO6cl){n°8r)

satisfies the regularity condition on C?2- We are therefore reduced to the situation of
estimate (4) proved above for the case of G2 = Mn. The cases G2 = Cn~' and G2 = K
follow in the same manner. This concludes the proof of Lemma 6.2. D
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