
Canad. Math. Bull. Vol. 33 (4), 1990 

THE LIMITING BEHAVIOR OF SEQUENCES 
OF QUASICONFORMAL MAPPINGS 

BY 

BEAT AEBISCHER 

ABSTRACT. The limiting behavior of sequences of quasiconformal 
homeomorphisms of the «-sphere Sn is studied using a substitute to the Poin-
caré extension of Mobius transformations introduced by Tukia. Adapted 
versions of the limit set and the conical limit set known in the theory of 
Kleinian groups are utilized. Most of the results also hold for families 
of homeomorphisms of Sn with the convergence property introduced by 
Gehring and Martin. 

1. Introduction. In [1] we have studied the limiting behavior of sequences of 
Mobius transformations of the ^-sphere Sn. The behavior of the Poincaré extension at 
any one point in the unit ball Bn+l has been found to be crucial for the asymptotics of 
the sequence on Bn+l. For quasiconformal mappings there is a substitute to the Poincaré 
extension introduced by Tukia [5]. It turns out that using his extension, practically all 
the results on Mobius transformations can be transferred to the quasiconformal case. 

Let n be a positive integer and K > 1. By Q(K,Sn) we denote the set of all K-
quasiconformal homeomorphisms of Sn, which may be orientation reversing. For the 
definition of quasiconformality we refer to [8]. In the case n = 1, ^-quasiconformality 
is defined using moduli of quadrilaterals as in [5, section IF]. Our results will be given 
in Section 3. They are concerned with sequences in Q(K,Sn). Adapted versions of the 
limit set and the conical limit set known in the theory of Kleinian groups will play a 
crucial role. Most of the results also hold if Q(K, Sn) is replaced by any family of home­
omorphisms of Sn with the so-called convergence property, see the remark at the end 
of Section 3. The proofs can be found in Section 4. Tukia's extension is explained be­
low, while some useful properties of a projection which is essential for it are listed in 
Section 2. 

Every Mobius transformation of Sn can be extended to a Môbius transformation of 
the closed hyperbolic space Bn+l = Bn+l U 5". For quasiconformal mappings, Tukia has 
introduced triple space T1 and a continuous projection p: T1 —> Bn+l as a substitute for 
hyperbolic space: 

Tn = { u = (wi,W2>"3) £ OS*1)3 : u\,U2,ui distinct}, 

p(u) — orthogonal projection of W3 (in hyperbolic geometry) 

onto the hyperbolic line joining u\ and W2. 
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By componentwise action, every homeomorphism of Sn extends to one of 771, which 
we will denote by the same symbol. The projection p can be extended to a map from 
Tn = TnUSn onto Bn+l by setting 

p(x) = x forxeSn. 

It has nice properties in connection with quasiconformal maps (see Section 2). 
The Tukia extension/ of a homeomorphism/ of Sn is a continuous map from Bn+l 

into itself. To define it we need the following notation. For X C Bn+l non-empty and 
bounded in the hyperbolic metric, let Z(X) be the center of the smallest closed hyperbolic 
ball containing X. The extension is then defined by 

f(x) = Z(pJp-l(x)), xeBn+x. 

Note that by Property 1 in 2.1, pfp~{(x) is a compact subset of Bn+l, hence bounded 
in the hyperbolic metric. If/ is AT-quasiconformal, then by [5, Theorem l],f\Bn+l is a 
quasiisometry with respect to the hyperbolic metric, which we denote by d: 

C~l d(x,y)-M<d (f(x)J(y)) <Cd(x,y) + M VJC, y G Bn+l 

for some constants C = C(n, K) and M = M(n, K). 
Everywhere in this paper, the projection/? could be replaced by its symmetrized vari­

ant/?: 
p(u) = orthocenter (or barycenter) of the hyperbolic triangle 

with verticesp(u\, «2,^3),/?(w3, u\,\i2),p(ui, ui,u\). 

Since the Môbius group is triply transitive on Sn, it is easily seen that the three geodesies 
which go through one component of u and intersect the geodesic joining the other two 
components orthogonally meet atp(u). Also, with ds = 2\dx\/ (1 — \x\2) as the hyper­
bolic length element, 

d(pu,pu) = - log 3 V w G f . 

Hence, p enjoys all the properties of/? given in Proposition 2.1. 
We shall state our results using just T1 and /?: For a sequence (gj) in Q(K,Sn) we 

consider the mappings pgf T1 —-> Bn+X. The results could as well be formulated for the 
extensions gy. Bn+l —> Bn+i ; one just has to make the obvious replacements T1 —• Bn+l, 
pg —• | , w0 —» p(u0). Note that for x G Bn+l, u G p~1 (*), and g G Q(K, Sn), 

(1.1) d(pg(u),g(x))<m(n,K), 

as follows from Proposition 2.1(3). 
There is an essential qualitative difference in the behavior of a sequence (gj) in the 

cases where \pgj(uo)\ converges to one and where it does not. Here, UQ is an arbitrary 
point in 7™, for instance UQ = (—^1,̂ 1,̂ 2)- Property 3 in 2.1 shows that the condition 
\pgj(uo)\ —* 1 does not depend on the choice of the triple UQ and that it is equivalent 
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to \pg7l(uo)\ —» 1. The case where the condition is not fulfilled is essentially the unin­
teresting case, see Lemma 4.2. So we will be mainly concerned with the other case, the 
virtue of which can be seen, for instance, in Lemma 4.1. 

There is another extension to which the results given here apply. Tukia and Vàisàlà 
[7] have shown that for every g G Q(K,Sn) there exists an extension G: Bn+l —> Bn+l 

such that G is K\-quasiconformal and G\Bn+l is L-bilipschitz in the hyperbolic metric, 
where K\ and L depend only on n, K, and an arbitrary parameter e > 0. (The disadvan­
tage of this extension is that even with e chosen, it is not explicit). Using compactness 
of the set of normalized quasiconformal mappings one shows that the extension satisfies 
a boundedness condition similar to (1.1). That is why the results hold for this extension 
as well. 

2. Properties of the projection. We will need the following properties of the pro­
jection p. Recall that d denotes the hyperbolic metric of Bn+l. 

PROPOSITION 2.1. The projection p: T1 —+ Bn+l has the following properties. 

1. If C C Bn+l is compact, thenp~l(C) C T1 is compact. 

2. There is a universal constant b such that the following hold for x G Sn, u G 7™, 
r > 0: 

if\ut — x\ < rfor two /, then \pu — x\ < br. 

if | ui — x\ > rfor two i, then \pu — x\ > rj b. 

3. There are constants m — m(n, K) and c = c(n, K) such that 

c~ ' d (pu, pv) — m < d (pf(u), pf(v)) <cd (pu, pv) + m 

for allf e Q(K, Sn) and uyveT. 

4. Let L(x, y) denote the hyperbolic geodesic joining x and y. Then with the same 
constants as above, 

c~ d (pu, L(x, y)) — m < d (pf(u), L(fx,fy)) < cd (pu, L(x, y)) + m 

for allf e Q(K,Sn), u^T1, andx,y eSn,x^ y. 
5. There is a continuous increasing function </>: [0,2] —> [0,2] such that 4>(0) = 0 
and 

\pu — pv\ < (j> max |«i — v/| ] \/u, v G T1. 
V= 1.2,3 J 

For the proof of 1 through 3, see [5, sections 3A, 3C] and [6, section C]. The right hand 
inequality in 4 follows from the right inequality in 3 by choosing z G Sn in v = (x, y, z) 
such that d(pu, L(x,y)) = d(pu,pv). The left inequality then follows from the right one 
applied t o / - 1 . The proof of 5 is a simple compactness argument. 

3. Results. To every (infinite) subset A of Q(K,Sn) we associate a subset of Sn, 
which is the usual limit set if A is a group. Let UQ G T1 be an arbitrary base point. 
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DEFINITION 3.1. The limit set A of the set A Ç Q(K, Sn) is 

A = {xeSn : mf\x-pg-l(u0)\ = 0 } 
geA 

By Property 2.1(3), this definition does not depend on the choice of the point UQ € T1. 
Note that A = 0 if A is finite. The following theorem shows that A can be considered 
an analogue of the Julia set in iteration theory. 

THEOREM 3.2. Let Abe a subset ofQ(K, Sn) and A its limit set. Then T1 \ A is the 
maximal open subset of T1 where {pg : g G A} is a normal family. 

Equivalently, Bn+l \ A is the maximal open subset of Bn+l, where { g : g E A} is nor­
mal, (g is Tukia's extension explained in the introduction.) Of course, this is well-known 
in the case where A is a group and the argument of the transformations is restricted to 
Sn. 

From now on we restrict to sequences in Q(K,Sn). We generalize two notions that 
were introduced in connection with continued fractions, see [3], [4], and [1]. 

DEFINITION 3.3. Let n be a positive integer, y E Sn, and (gj) a sequence in Q(K, Sn). 
We say that (gj) converges generally to y if there exist sequences (UJ) and (v/) in T1 (or 
Sn) such that 

\impgj(uj) — limpgj(vj) = y and liminf \puj — pvj\ > 0. 

We call (gj) a restrained sequence if there exist sequences (UJ) and (VJ) in Sn such that 

lim \gj(uj) — gj(vj)\ = 0 and liminf |Uj — Vj\ > 0. 

The following characterizes restrained sequences. 

THEOREM 3.4. For a sequence (gj) in Q(K, Sn) the following are equivalent. 
(a) (gj) is a restrained sequence. 
(b) \pgj(u0)\ —• 1 

(c) \pgj(x) — pgj(uo)\ —> 0 locally uniformly onTn\ A. 
(d) For every e > 0, \pgj(xj) — pgj(uo)\ —• 0 uniformly for all sequences (XJ) in T1 

satisfying \pxj - pgfl(u0)\ >£ (V/). 
(e) For every pair of sequences (UJ), (VJ) in T71 such that liminf \puj — pvj\ > 0, the 
following holds: 

lim min{ \pgj(uj) -pgj(u0)\, \pgj(vj) - pgj(u0)\ } = 0. 

If one of the conditions (a) through (e) holds and pgj(uo) diverges, then there are at 
most two points in T1, where pgj converges, and these points lie in A. 

REMARK. In (e) one could as well require Uj and vy to be in Sn. Statement (b) shows 
that (gj) is a restrained sequence if and only if (g7l) is. 

A characterization of general convergence is given by the following. 
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THEOREM 3.5. If A is the limit set of a sequence (gj) in Q(K, Sn) and y G Sn, then the 
following statements are equivalent. 

(a) (gj) converges generally to y. 
(b) \impgj(u0) = y. 
(c) pgj(x) —y y uniformly in T1 \ A. 
(d) For every E > 0, pgj(Xj) —• y uniformly for all sequences (XJ) in T1 such that 
\pxj - pgj\uo)\ >e (V/). 
(e) For every pair of sequences (UJ), (Vj) in T71 such that lim inf \puj — pvj\ > 0, the 
following holds: 

lim min { \pgj(uj) - y\, \pgj(vj) -y\} = 0 . 
J-+QO 

REMARKS. Statement (d) shows that there are always sequences (uj), (VJ) in Sn satis­
fying the condition in the definition of general convergence. The equivalence of (a) and 
(b) shows that a general limit is unique if it exists. Theorems 3.4 and 3.5 together imply 
that if (gj) is a restrained sequence, then (pgj(x)), x G f , takes at most two different 
limits. 

We give two corollaries which have already been proved for the case of continued 
fractions (which is essentially the case of Q(\,S2)) [3, Theorems 4.3 and 4.8]. 

COROLLARY 3.6. If(gj) converges generally to a point y in Sn and there are sequences 
(UJ) and (VJ) in T1 such that neither pgj(uj) nor pgj(vj) accumulates at y, then \puj — 
pvj\ ->0. 

PROOF. Using (e) in the theorem, the counterassumption is easily seen to be contra­
dictory. • 

COROLLARY 3.7. If there exist three different points u, v, w in Sn such that 

\im\gfl(v)-gfl(w)\ = 0 and liminf \gr
l(u) - gr

l(v)\ > 0, 

then (gj) converges generally to u. 

PROOF. We show thatpgj(u$) converges to u. Assume the contrary and choose a subse­
quence such that 

pgi(u0) ^y^u, pgyl(u0) —• / (/ G I). 

By the first part of the hypothesis and Lemma 4.2, y and / are in Sn. Lemma 4.1 applied 
to (gr1)^/yields 

srV) —/ del) Vxesr\{y}. 
Together with the first part of the hypothesis again, this implies that both, gjx(u) and 
g~[x (v) converge to y' for / G /. This contradicts the second part of the hypothesis. • 

We have seen that for a restrained sequence, \pgj(x) — pgj(uo)\ converges to zero 
locally uniformly in T1 \ A. The points x G Sn, where \gj(x) — pgj(uo)\ converges to 
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zero can actually be described geometrically. For x E Sn and a E (1, oo), the Stolz cone 
at x is the set 

Ca(x) = {y e Bn+l : \y - x\ <a(l-\y\)}. 

DEFINITION 3.8. The conical limit set Ac of a sequence (gj) is defined by 

Ac = {x € Sn : 3 a E (1, oo) and a subsequence of (gj) such that 

pg^l(uo) converges to x inside Ca(x) }. 

By Proposition 2.1(4), this definition is equivalent to saying that x E Sn belongs to Ac 

if there is a subsequence of (gj) and a hyperbolic geodesic L with endpoint x such that 
pg^l(uo) —-> x and d(pg^l(uo),L) is bounded. 

THEOREM 3.9. Let (gj) be a restrained sequence in Q(K, Sn) and x E Sn. Then 

IgjM - pgj(u0)\ —» 0 <̂ =» x £ Ac. 

COROLLARY 3.10. Assume (gj) is a restrained sequence in Q(K, Sn) and card (A) > 1. 
Then \gj(x)—pgj(uo)\ diverges for all x E Ac. In particular, every generally convergent 
sequence diverges on Ac. 

PROOF. Letx E AC. Choose a subsequence (gi)tei such that pg^l(u0) —» z E A \ { JC} . 
Lemma 4.1 implies 

|g/W-W,-(«o) |-^0 ( /€ / ) . 

But by the theorem, | gj(x) — pgj(uo)\ does not converge to zero. • 

REMARK. There is a more general situation for which most of the results given here 
are true. In [2] Gehring and Martin have introduced the so-called convergence property: 
An infinite family of homeomorphisms of Sn has the convergence property if every 
infinite subfamily contains a sequence (fj) of distinct elements such that either 

(A) there is a homeomorphism/ such that fj—>f and fj~l —>/_1 uniformly or 
(B) there exist JCO,̂ O £ Sn such that fj(x) —> yo and fj~X(x) —• *o locally uniformly 
on Sn \ {xo} and on Sn\ {yo}, respectively. 
By [2, Theorem 3.2], Q(K, Sn) has the convergence property. 
All the results given in the present section, except for Theorem 3.9 and its corollary, 

remain valid if Q(K,Sn) is replaced by any family of homeomorphisms of Sn with the 
convergence property. 

Of course, in Lemma 4.2, the limit g need not belong to the family. The proofs remain 
the same except that (4.2) in the proof of Lemma 4.1 is shown using (B) instead of 
Proposition 2.1(3). (The alternative (A) cannot occur because of \pgj(uo)\ —• 1.) 

Since the convergence property is invariant under conjugation by an arbitrary home-
omorphism and 

Ac(hgjh-1) = h(Ac(gj)) 

is not true for general homeomorphisms /z, Theorem 3.9 does not generalize. 

4. Proofs of the theorems. From now on we will abbreviate Q(K, Sn) by Q. First 
we need two lemmas. 
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LEMMA 4.1. If (gj) is a sequence in Q such that lim \pgj(uo)\ = 1, then for every 
e > 0 the following holds: 

lim \pgj(xj) - pgj(u0)\ = 0 
J—*oo 

uniformly for all sequences (XJ) in T1 such that 

(4.1) \pxj-pgj\uo)\ >e Y/. 

In particular, \pgj(x) — pgj(uo)\ —> 0 locally uniformly in T1 \ A. 

PROOF. First we show that for all e > 0, 

(4.2) min { | gj(xj) - pgj(u0)\, |gjty) - pgj(u0)\ } —> 0 

uniformly for all pairs of sequences (XJ), (jj) in Sn such that | JC7- — 3̂-1 >e. 
We may assume e < 1. Choose points Zj G 5" such that |Zj —Xj\ > e and | Zj —yj\ > 

e. Set Vj = (xj,yj,Zj). It follows that the hyperbolic distance d(pvj,puo) is uniformly 
bounded. By Proposition 2.1(3), the same holds for d (pgj(vj),pgj(uo)), hence \pgj(vj) — 
pgj(uo)\ converges to zero uniformly for all pairs ((*/), (jj)) in question. Because pgj(uo) 
approaches the boundary of Bn+l, (4.2) follows by Proposition 2.1(2). 

Let now (XJ) be a sequence in Sn satisfying (4.1). For every j there is a component of 
uo, say yj, such that 

\yj -pgj(u0)\ > cx > 0 and \XJ - g]~l(yj)\ > c2 > 0, 

where c2 depends on e. Applying (4.2) to the pair (*/), (gjx(yj)) yields 

min{ \gj(xj)-pgj(u0)\, \yj -pgj(u0)\ } ^ 0 

uniformly for all (XJ) satisfying (4.1). Thus, \gj(xj) — pgj(uo)\ —> 0 uniformly for all 
sequences (Xj) in Sn such that (4.1) holds. 

The general case Xj G T1 follows from what has been proved, since by (4.1) and 
Property 2.1 (2), at least two components of Xj uniformly stay away from pgj l(uo). m 

LEMMA 4.2. Let (gj) be a sequence in Q such that \pgj(uo)\ does not converge to one. 
Then there exists a subsequence (gdiei and an element g of Q such that 

Si -^ £> S7l —> g _ 1 uniformly on Sn. 

PROOF: There is a subsequence such that pgt(uo) is bounded in the hyperbolic metric. 
By [6, Lemma CI] there exists g G Q such that for a subsequence, gt —> g uniformly on 
Sn. SincepgJx(uo) is bounded as well, we can choose a subsequence such that also gj[ 

converges to an element of g , which is readily seen to be the inverse of g. • 

PROOF OF THEOREM 3.4. (a) => (b). Assume \pgj(u0)\ does not converge to one. Then 
by Lemma 4.2 there is a subsequence such that gi —> g G Q uniformly on Sn. Pick a 
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subsequence again such that also w, and v, from Definition 3.3 converge to points u and v 
in 5", respectively. The condition |#/(«;) — g/(v/)| —-> 0 then implies g(u) = g(v). Hence 
u — v, in contradiction to liminf \.Uj — v7| > 0. 
(b) => (c). This follows from Lemma 4.1. 
(c) => (d). Lemma 4.2 and (c) imply (b), which in turn implies (d) by Lemma 4.1. 
(d) =^ (e). If liminf |/7wy — pvj\ > 0 one can choose a sequence (XJ) such that Xj G 
{wy, v,} V/and liminf \pxj—pgj l(u0)\ > 0. Then by (d), \pgj(xj) — pgj(uo)\ converges 
to zero and the assertion follows. 
(e) => (a). Choose four different points a, b, c, d on Sn. Setting 

u.= la i f \gj(à) -pgj(uo)\ < \gj(b) -pgj(u0)\ 
J \b otherwise 

and similarly for vy-, where a and b are replaced by c and d, it is clear that lim inf | Uj — 
Vj\ > 0, while it follows from (e) that lim \gj(uj) — gj{vj)\ = 0. 

Now assume that (b) holds and pgj(uo) diverges. There exist two different points 
y,w £ Sn and subsequences such that 

pgi(m) —• y (îG/), pgiiuo)—• w (leL). 

Extracting subsequences again one can arrange that also 

P&~W - V 0' G 7), p&~W'-* ̂  (/ E L)> 

where / , w' G A. Now Lemma 4.1 implies 

pgfc) - • y Vx G r \ {/} and p#(*) — w VJC G f \ { w'} . 

Thus, pgj(x) can at most converge for x = / o r x — W. m 

PROOF OF THEOREM 3.5. (a) => (b). Since /?£/(i*/) and pgj(vj) both converge to y, state­
ment (e) in Theorem 3.4 implies that the same is true of pgj(uo). 
(b) => (c) and (c) => (d) follow from Lemma 4.1. 
(d) => (e) and (e) => (a) are analogous to the proof of the corresponding implications in 
Theorem 3.4. • 

PROOF OF THEOREM 3.2. a) Let (gj) be any sequence from A. By choosing a subse­
quence we may assume tha tpg" 1 ^) converges to some y G Bn+1. Consider two cases. 

(i) If y G Bn+\ then {pg~fl(uo)} is bounded in the hyperbolic metric. By Prop­
erty 2.1(3), the same holds for {pgj(uo)}. From [6, Lemma CI] it follows that for a 
subsequence, gt converges (uniformly in the euclidean metric of Sn) to some g G Q. 
Thus by Proposition 2.1(5), pgt —» pg uniformly on f*. 

(ii) If y G S", then there is a subsequence such that pgfl(uo) —• v G A and pgï(uo) —* 
w for some w G 5". Theorem 3.5 implies 

P£i(*) - * w locally uniformly in f" \ {y} D 7* \ A. 

https://doi.org/10.4153/CMB-1990-079-0 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1990-079-0


502 BEAT AEBISCHER 

b) Let x be an arbitrary point in A. There exists a sequence (gj) in A such that pgj l (wo) 
—> x. Thus, every neighborhood of x in 5" contains at least two components of gy{(uo) 
for j large enough. It follows that diam(gy(V)) > 1 for every neighborhood V C Sn of 
x and all large j . So, A is not a normal family in any neighborhood of*. • 

PROOF OF THEOREM 3.9. Assume x G Ac. Let L(x,y) denote the hyperbolic geodesic 
with endpoints x and y in Sn. There is a subsequence such that pgyl(uo) —> x and 
^(pg^Mo),£(*,>*)) is bounded for every y G 5" \ {JC}. By Property 2.1(4), 
d(puo,L(giX,giy)) is also bounded. Thus, \gtx — giy\ > 6(y) > 0 Vy G 5" \ {x}. 
Since at least two of the components of wo are different from x, Proposition 2.1(2) im­
plies that \gt(x) — pgi(uo)\ > b' > 0 for all /. 

Conversely, if \gj(x) — pgj(uo)\ does not converge to zero, then for a subsequence 
\gi(x) — pgi(u0)\ > e > 0 (V/ G /). Using Proposition 2.1(2) and taking a suitable 
subsequence we get 

\gi(x)-gi(yk)\ >ef>0 Vie I, k= 1,2, 

where y\ and y2 denote two different components of u$. It follows that 
d(puo,L(giX,giyk)) is bounded for k = 1,2 and all /. By Property 2.1(4), the same 
holds for d(pgYx(uo),L(x,yk)). Because pgJx{uo) approaches the boundary at infinity, 
it must converge to *, and hence, x G Ac. • 
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