Cusp Forms Like Δ

C. J. Cummins

Abstract. Let f be a square-free integer and denote by $\Gamma_0(f)^+$ the normalizer of $\Gamma_0(f)$ in $SL(2, \mathbb{R})$. We find the analogues of the cusp form Δ for the groups $\Gamma_0(f)^+$.

Let G be a discrete subgroup of $SL(2,\mathbb{R})$ acting on the upper half plane \mathcal{H} by fractional linear transformations and let $\mathcal{H}^* = \mathcal{H} \cup \mathbb{Q} \cup \infty$. Suppose $G \setminus \mathcal{H}^*$ is compact, *i.e.*, G is a Fuchsian group of the first kind. For any meromorphic function h on \mathcal{H} and $M = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in G$ define the slash operator by

$$h|[M]_k = (cz+d)^{-k}h(Mz).$$

The convention here for arguments and exponents, following Knopp [8], is that $z^r = |z|^r \exp(ir \arg(z))$, where $-\pi \le \arg(z) < \pi$. (Note the non-standard choice of argument for the negative reals.) Recall that h is called an automorphic form for G of weight k and multiplier ν if in addition to being meromorphic on \mathcal{H} , it also satisfies the following two conditions:

- (i) $h|[M]_k = \nu(M)h$ for all $M \in G$;
- (ii) h is meromorphic at the cusps of G.

In (i) we require $|\nu(M)| = 1$ for all $M \in G$ and

$$\nu(M_3)(c_3z+d_3)^k = \nu(M_1)\nu(M_2)(c_1M_2z+d_1)^k(c_2z+d_2)^k$$

for all $M_1, M_2 \in G, M_3 = M_1 M_2$. If k is integral this is just the condition that ν is a character of G. See for example Knopp [8, Chapter 2] and Shimura [13, Chapter 2]. If in addition h is holomorphic on $\mathcal H$ and vanishes at the cusps of G then it is called a cusp form.

Let

$$\eta = q^{1/24} \prod_{i \ge 1} (1 - q^i), \quad q = \exp(2\pi i z).$$

Then with the above definitions η is a cusp form of weight 1/2 on SL(2, \mathbb{Z}) for an appropriate multiplier system. Petersson [11], following Rademacher [12], gave an explicit formula for the multiplier system for η :

Theorem 1 Let $a, b, c, d \in \mathbb{Z}$ with ad - bc = 1. Then the multiplier system ν for $\eta(z)$ is given by

$$\nu\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{cases} (\frac{d}{c})^* \exp(\frac{\pi i}{12}[(a+d)c - bd(c^2 - 1) - 3c]) & \text{if c is odd,} \\ (\frac{c}{d})_* \exp(\frac{\pi i}{12}[(a+d)c - bd(c^2 - 1) + 3d - 3 - 3cd]) & \text{if c is even,} \end{cases}$$

Received by the editors June 20, 2006; revised January 24, 2007.

Work partly supported by NSERC.

AMS subject classification: Primary: 11F03; secondary: 11F22, 30F35.

© Canadian Mathematical Society 2009.

where if $c \neq 0$ then

$$\left(\frac{c}{d}\right)^* = \left(\frac{c}{|d|}\right) \quad and \quad \left(\frac{c}{d}\right)_* = \left(\frac{c}{|d|}\right)(-1)^{\frac{\operatorname{sign}(c) - 1}{2}} \frac{\operatorname{sign}(d) - 1}{2}$$

with $(\frac{d}{|c|})$ and $(\frac{c}{|d|})$ being the standard Jacobi symbols with $(\frac{c}{1}) = 1$. We also have $(\frac{0}{+1})^* = (\frac{0}{1})_* = -(\frac{0}{-1})_* = 1.$

Note that this formula is for the non-standard choice of argument given above, as can be seen, for example, by considering the transformation $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$. See the proof in [8, Chapter 4, Theorem 2] for details.

It follows that $\Delta = \eta^{24}$ is a weight 12 cusp form on $SL(2, \mathbb{Z})$ with trivial multiplier system. The cusp form Δ has many remarkable properties and has been extensively studied. More generally there has been much study of automorphic forms that can be expressed as products of η functions. One particularly nice result is the following, which we shall use later:

Fix a positive integer N and define $h(z) = \prod_{\delta | N} \eta(\delta z)^{r(\delta)}$ where $\delta > 0$ and $r(\delta) \in$ \mathbb{Z} . Let $w = \frac{1}{2} \sum_{\delta | N} r(\delta)$.

Theorem 2 The function h(z) is an automorphic form on $\Gamma_0(N)$ if and only if the following conditions are satisfied:

- (i) 24 divides $\sum_{\delta|N} \delta r(\delta)$,
- (ii) 24 divides $\sum_{\delta|N} (\frac{N}{\delta}) r(\delta)$, (iii) w is a positive integer.

If h(z) satisfies these conditions, then it has weight w and multiplier

$$\nu\begin{pmatrix} a & b \\ cN & d \end{pmatrix} = \chi(d) = \left(\frac{(-1)^w D}{d}\right),$$

where $D = \prod_{\delta \mid N} \delta^{r(\delta)}$. In particular h(z) is an automorphic form with trivial character if and only if it satisfies conditions (i) and (ii), w is an even positive integer, and D is a square in Q.

This result is essentially due to Newman [9, 10]; see also [5] and [2]. This particular formulation is taken from Gordon and Ono [6].

Now let f be a positive, squarefree integer and define

$$\Gamma_0(f)^+ = \{e^{-1/2}(\begin{smallmatrix} ae & b \\ cf & de \end{smallmatrix}) \in \mathrm{SL}(2,\mathbb{R}) | a,b,c,d,e \in \mathbb{Z}, \ e|f, \ ade^2 - bcf = e\}.$$

These groups are of particular importance, since Helling [7] has shown that if G is a subgroup of $SL(2,\mathbb{R})$ which is commensurable with $SL(2,\mathbb{Z})$, then G is conjugate to a subgroup of $\Gamma_0(f)^+$ for some squarefree f. For this reason we call these groups Helling groups. Conway [3] has given a nice proof of Helling's Theorem. Note that $\Gamma_0(f)^+$ has one cusp.

In the rest of this paper, by cusp form we will mean a cusp form with a trivial multiplier system. The aim of this paper is to describe the analogues of the cusp form Δ for the Helling groups. We shall call these forms Δ_f . For $\mathrm{SL}(2,\mathbb{Z})$, up to a nonzero multiplicative constant, Δ is the unique cusp form of smallest-weight. We could also define Δ , up to a nonzero multiplicative constant, as the cusp form of smallest weight which is an η product or as the cusp form of smallest weight which does not vanish on $\mathcal H$. For a general Helling group G the last two conditions are equivalent and we will define Δ_f to be the smallest weight cusp form on G which is an η product. It is in this sense that Δ_f is a cusp form like Δ . In general Δ_f is not a cusp form of smallest weight.

55

A complete characterization of the cusp forms Δ_f is given in Theorem 6. The difficulty in obtaining this result is the complexity of the expression for ν in Theorem 1. This problem was also faced by Newman in obtaining Theorem 2. Newman observed that $\Gamma_0(N)$ is generated by matrices satisfying additional congruence conditions and inequalities, and that with these additional conditions the multiplier system simplifies:

Lemma 3 If $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is an element of $SL(2, \mathbb{Z})$ with a > 0, c > 0 and gcd(a, 6) = 1, then

$$\eta(Az) = (-i)^{1/2} \exp(-\pi i\alpha(A))(cz+d)^{(1/2)} \eta(z),$$

and

$$\alpha(A) \equiv \frac{1}{12}a(c-b-3) - \frac{1}{2}(1-(\frac{c}{a})) \pmod{2}.$$

Note that if c > 0 then $cz + d \in \mathcal{H}$ and so $0 < \arg(cz + d) < \pi$, so that this lemma holds for our nonstandard choice of argument.

In this paper we will make use of Theorem 1, Lemma 3, the structure of $\Gamma_0(f)^+$ and a congruence argument inspired by Newman to prove Theorem 6. First we need an explicit description of the generators of $\Gamma_0(f)^+$ over $\Gamma_0(f)$; see for example Atkin–Lehner [1]:

Let f > 1 be a squarefree integer and p a prime divisor of f and let

$$W_p = p^{-1/2} \begin{pmatrix} ap & b \\ cf & dp \end{pmatrix}$$

where a, b, c, d are integers chosen so that $adp^2 - cfb = p$. Different choices of a, b, c, d give rise to matrices in the same coset of $\Gamma_0(f)$. The Helling group $\Gamma_0(f)^+$ is generated by $\Gamma_0(f)$ together with the W_p for all primes p dividing f. Also W_p normalizes $\Gamma_0(f)$. By an abuse of notation we will refer to any element of the coset $W_p\Gamma_0(f)$ as an Atkin–Lehner element. The proof of Theorem 6 will depend on making a suitable choice of W_p , just as Newman's proof of Theorem 2 depends on making a suitable choice of generators of $\Gamma_0(N)$.

Lemma 4 Let δ be a positive divisor of f. Then $\eta_{\delta}|W_p = (p/g^2)^{1/4}\nu\eta_{\delta\circ p}$, where ν is a 24-th root of unity (that depends on W_p), $\delta\circ p = (\delta p)/g^2$ with $g = \gcd(\delta, p)$, and $\eta_{\delta}(z) = \eta(\delta z)$.

Proof First note that

$$\begin{pmatrix} \delta & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} ap & b \\ cf & dp \end{pmatrix} = \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} \begin{pmatrix} ag & b\delta/g \\ fgc/p\delta & dp/g \end{pmatrix} \begin{pmatrix} \delta \circ p & 0 \\ 0 & 1 \end{pmatrix}$$
$$= \begin{pmatrix} g & 0 \\ 0 & g \end{pmatrix} A \begin{pmatrix} \delta \circ p & 0 \\ 0 & 1 \end{pmatrix}$$

and so $\eta(\delta W_p z) = \eta(A(\delta \circ p)z)$. Hence we have

$$\begin{split} \eta(\delta W_p z) &= \nu(A) ((fgc/p\delta)(\delta p/g^2)z + dp/g)^{1/2} \eta((\delta \circ p)z) \\ &= \nu(A) ((fc/g)z + dp/g)^{1/2} \eta((\delta \circ p)z) \\ &= g^{-1/2} \nu(A)(fcz + dp)^{1/2} \eta((\delta \circ p)z) \\ &= (p/g^2)^{1/4} \nu(A)(p^{-1/2}fcz + p^{-1/2}dp)^{1/2} \eta_{\delta \circ p}. \end{split}$$

So $\eta_{\delta}|W_p=(p/g^2)^{1/4}\nu\eta_{\delta\circ p}$ and $\nu=\nu(A)$ is a 24-th root of unity by Theorem 1, as required.

Lemma 5 If $h(z) = \prod_{\delta | f} \eta(\delta z)^{r(\delta)}$ is an automorphic form on $\Gamma_0(f)^+$, then $r(\delta) = r$ for some fixed r.

Proof If $h(z)|W_p = \text{const} \times h(z)$, then by the previous lemma $\prod_{\delta|f} \frac{\eta(\delta z)^{r(\delta)}}{\eta(\delta z)^{r(\delta)p}}$ is a constant. But by [2, Theorem B] this implies that $r(\delta) = r(\delta \circ p)$ for all positive divisors δ of f and all primes p dividing f. But the positive divisors of f form a group of exponent 2 under the operation $\delta \circ \delta' = (\delta \delta'/\text{gcd}(\delta, \delta')^2)$, which is generated by the prime divisors of f. Thus $r(\delta) = r(\delta')$ for all positive divisors δ , δ' of f.

Now let $\psi(f) = \prod_{p|f} (1+p)$, which is equal to $\sum_{\delta|f} \delta$ since f is squarefree. Then define

$$r_{\min} = \begin{cases} 24/\gcd(24, \psi(f)) & \text{if } 24/\gcd(24, \psi(f)) \text{ is even or } f \text{ is composite,} \\ 48/\gcd(24, \psi(f)) & \text{if } 24/\gcd(24, \psi(f)) \text{ is odd and } f \text{ is prime,} \end{cases}$$

or equivalently

$$r_{\min} = \begin{cases} 24/\gcd(24, \psi(f)) & \text{if } 8 \nmid \psi(f) \text{ or } f \text{ is composite,} \\ 48/\gcd(24, \psi(f)) & \text{if } 8|\psi(f) \text{ and } f \text{ is prime.} \end{cases}$$

A simple calculation shows that if $r(\delta)$ is constant and f is squarefree, then $D=\prod_{\delta|f}\delta^r=f^{r2^{\sharp f-1}}.$ So by Theorem 2 and Lemma 5, $d_f(z)=\prod_{\delta|f}\eta(\delta z)^{r_{\min}}$ is a cusp form with trivial multiplier system on $\Gamma_0(f)$ and is the smallest power of $\prod_{\delta|f}\eta(\delta z)$ that is a cusp form with trivial multiplier system on $\Gamma_0(f)$. Since the square of the Atkin–Lehner element W_p is in $\Gamma_0(f)$, we have $d_f|W_p=\pm d_f$. Set $\Delta_f=d_f$ if $d_f|W_p=d_f$ for all primes p dividing f and $\Delta_f=d_f^2$ otherwise. Then Δ_f is the smallest power of $\prod_{\delta|f}\eta(\delta z)$ that is a cusp form with trivial multiplier system on $\Gamma_0(f)^+$, and it is not difficult to see that every such power is a multiple of Δ_f .

Let #f be the number of prime factors of f. The following theorem characterizes the two cases $\Delta_f = d_f$ and $\Delta_f = d_f^2$.

Theorem 6 $\Delta_f = d_f$ if and only if one of the following conditions holds:

- (i) # f > 3;
- (ii) #f = 2 and either
 - (a) f is even and either $p \equiv 1 \pmod{4}$ or $p \equiv 3 \pmod{8}$ where p is the odd factor of f or

57

- (b) f is odd and $p \equiv 1 \pmod{4}$ for all factors p of f;
- (iii) # f = 1 and $f \equiv 1 \pmod{4}$ or f = 2.

To prove this theorem we first derive a transformation rule for η for a particular choice of W_p .

Lemma 7 Let f be a squarefree integer and p a divisor of f. Let S be any finite set of primes excluding p, fix a positive integer m, and set $Q = \prod_{q \in S} q^m$. Then we can take the Atkin–Lehner transformation W_p to have the form $p^{-1/2}\binom{ap}{f}$ with a > 0, $pa \equiv 1 \pmod{Q}$, and $a \equiv 1 \pmod{p}$.

Proof If f' = f/p, then since f is squarefree, p and f' are coprime. So we can find a and b so that ap - bf' = 1 so that $p^{-1/2} \binom{ap}{f} \binom{ap}{p}$ is in $\Gamma_0(f)^+$ and so is a possible Atkin–Lehner element. By the Chinese Remainder Theorem, we can find arbitrarily large solutions to the congruences:

$$\begin{split} k &\equiv (1-a)f'^{-1} \pmod{p}, \\ k &\equiv (p'-a)f'^{-1} \pmod{q^m}, \quad q \nmid f', \\ k &\equiv \left(\frac{(p'-a)}{q}\right) \left(\frac{f'}{q}\right)^{-1} \pmod{q^{m-1}}, \quad q|f', \end{split}$$

where p' is some integer such that $p'p \equiv 1 \pmod{Q}$

Then replacing a by a' = a + kf' and b by b + kp we obtain another Atkin–Lehner element. From the congruence mod p we have that $a' \equiv 1 \pmod{p}$. The second two congruences imply that $pa' \equiv 1 \pmod{Q}$ and since we can take kf' to be arbitrarily large we can also arrange for a' to be positive.

Using this lemma we can give the transformation rule in Lemma 8 below. Although it is possible in principle to prove this result using Petersson's formula, a direct application leads to an explosion of special cases. In [10] Newman used a "congruence trick", which makes use of Lemma 3 to simplify the proof of Theorem 2. The proof of Lemma 8 uses a similar strategy to reduce the number of cases that have to be considered, although we still have to use the general formula for some of the cases.

Lemma 8 Let $h(z) = \prod_{\delta | f} \eta(\delta z)$. Then with a choice of W_p such that gcd(a, 6) = 1 (which is possible by Lemma 7):

$$h|W_p = \left[\frac{f'}{a}\right] \exp\left(\frac{\pi i}{12} [2(a-1)2^{\#f-1} + \psi(f')(a+1)(b-1)]\right) h$$

where $[\frac{f'}{a}]$ is equal to the Jacobi symbol $(\frac{f'}{a})$ if f' is a prime and 1 otherwise.

Proof We start by computing $\eta_{\delta}|W_{p}$. By Lemma 4 this is equal to

$$(p/g^2)^{1/4}\nu(A)\eta((\delta \circ p)z)$$

where $A=\begin{pmatrix} ag & b\delta/g \\ fg/\delta & p/g \end{pmatrix}$ and $g=\gcd(p,\delta)$. There are two cases: g=p and g=1. If g=p then $A=\begin{pmatrix} ap & b\delta' \\ f'/\delta' & 1 \end{pmatrix}$ where f'=f/p and $\delta'=\delta/p$. For this case we use Petersson's formula, and so we have to consider two subcases, f'/δ' odd and f'/δ' even. However, since the lower right entry is 1, it turns out that these two subcases give the same result:

$$\nu(A) = \exp\left(\frac{\pi i}{12} \left[\frac{f'}{\delta'} (ap - bf' - 2) + b\delta' \right] \right).$$

In h(z) we get one such contribution for all the terms in the product for which δ is divisible by p, and so the total contribution to the transformation from these terms is

$$\prod_{\delta'|f'} p^{-1/4} \exp\left(\frac{\pi i}{12} \left[\frac{f'}{\delta'} (ap - bf' - 2) + b\delta' \right] \right)$$

$$= p^{-2^{\#f-3}} \exp\left(\frac{\pi i}{12} \psi(f') [ap - b(f' - 1) - 2] \right).$$

The second case is g=1, and in this case $A=(\begin{smallmatrix} a & b\delta \\ f'/\delta & p\end{smallmatrix})$. Since we have chosen W_p such that $\gcd(a,6)=1$, we can use Lemma 3, which gives

$$\nu(A) = \exp\left(\frac{\pi i}{12} \left[3(a-1) - a\frac{f'}{\delta} + ab\delta + 6(1 - (\frac{f'\delta}{a})) \right] \right)$$
$$= \left(\frac{f'/\delta}{a}\right) \exp\left(\frac{\pi i}{12} \left[3(a-1) - a\frac{f'}{\delta} + ab\delta \right] \right).$$

In h(z) there is one such contribution for all the terms in the product for which δ is not divisible by p, and so the total contribution to the transformation from these terms is

$$p^{2^{\#f-3}}\left(\prod_{\delta\mid f'}(\frac{\delta}{a})\right)\,\exp\!\left(\frac{\pi i}{12}[3(a-1)2^{\#f-1}+\psi(f')(ab-a)]\right).$$

Now $\prod_{\delta|f'}\delta$ is a square except in the case that f' is a prime and so $\prod_{\delta|f'}(\frac{\delta}{a})=\left[\frac{f'}{a}\right]$. So the total constant term in the transformation is

$$\left[\frac{f'}{a}\right] \exp\left(\frac{\pi i}{12}[3(a-1)2^{\#f-1} + \psi(f')(ap-a-b(f'-1)+ab-2)]\right).$$

Finally, using the fact that ap - bf' = 1 we obtain the expression:

$$\left[\frac{f'}{a}\right] \exp\left(\frac{\pi i}{12} [3(a-1)2^{\#f-1} + \psi(f')(a+1)(b-1)]\right)$$

as required.

Using this lemma we can now complete the proof of Theorem 6.

Proof of Theorem 6 Since d_f is a cusp form for $\Gamma_0(f)$ by Theorem 2, it is sufficient to evaluate the transformation of $d_f|W_p$ for any representative Atkin–Lehner element W_p for all primes p dividing f. As noted above, we either have $d_f|W_p=d_f$ or $d_f|W_p=-d_f$. To determine this sign factor we will use the transformation rule found in Lemma 8 together with the special form of W_p found in Lemma 7. To do this, in Lemma 7 we take S and m to be such that $\gcd(a,6)=1$ and $pa\equiv 1\pmod{p+1}$, which is possible since p and p+1 are coprime. Then $a+1\equiv 0\pmod{p+1}$, so that

$$r_{\min}\psi(f')(a+1)(b-1) = r_{\min}\psi(f)\frac{(a+1)}{(p+1)}(b-1),$$

and the definition of r_{\min} tells us that this is divisible by 24. Thus, from Lemma 8, $d_f|W_p = \nu d_f$ with

$$\nu = \left[\frac{f'}{a}\right]^{r_{\min}} \exp\left(\frac{\pi i}{4} r_{\min}(a-1) 2^{\#f-1}\right).$$

Since *a* is odd, this implies that if $\#f \ge 3$ then $\nu = 1$.

Suppose next that #f=1; then $\nu=\exp(\frac{\pi i}{4}r_{\min}(a-1))$. If f=2, then $r_{\min}=8$ and so $\nu=1$. Otherwise f is odd. If $f\equiv 1\pmod 4$, then $4|r_{\min}$ and $\nu=1$, while if $f\equiv 3\pmod 4$, then 2 exactly divides r_{\min} (recall that if $24/\gcd(24,p+1)$ is odd then r_{\min} has an extra factor of 2). Also $a-1\equiv -2\pmod {f+1}$ so $a-1\equiv 2\pmod 4$ and hence in this case $\nu=-1$.

The remaining case is #f = 2, say f = pq with q prime, so

$$\nu = \left(\frac{q}{a}\right)^{r_{\min}} \exp\left(\frac{\pi i}{4} r_{\min} 2(a-1)\right)$$
$$= \left(\frac{q}{a}\right)^{r_{\min}} (-1)^{r_{\min}(a-1)/2}.$$

Consider the case that f is even. Take q=2; then $\nu=(-1)^{\frac{a^2-1}{8}r_{\min}}(-1)^{\frac{a-1}{2}r_{\min}}$. If $p\equiv 7\pmod 8$, then r_{\min} is odd and since $a\equiv -1\pmod p+1$ we have $a\equiv 7\pmod 8$, which gives $\nu=-1$. If $p\equiv 1,3,5\pmod 8$, then r_{\min} is even and $\nu=1$. We also have to consider p=2. In this case

$$\nu = \left(\frac{q}{a}\right)^{r_{\min}} (-1)^{r_{\min}(a-1)/2}.$$

If q is not congruent to 7 modulo 8 then r_{\min} is even and ν is 1, while if $q \equiv 7 \pmod{8}$ then by quadratic reciprocity, $\nu = (\frac{q}{a})(-1)^{(a-1)/2} = (\frac{a}{q}) = (\frac{2}{q})$, since 2a - bq = 1 gives $2a \equiv 1 \pmod{q}$. But $(\frac{2}{q}) = 1$ since $q \equiv 7 \pmod{8}$, and so ν is one in this case also. This deals with all the cases when #f = 2 and f is even.

Finally consider #f = 2 and f odd. If $p \equiv 1 \pmod{4}$ and $q \equiv 1 \pmod{4}$ then r_{\min} is even and ν is one. So $\Delta_f = d_f$ in this case.

21 22 23 26 29 30 11 13 14 15 15 17 10 7 6 5 $[3, 2^3]$ $[4, 2^2]$ $[3, 2^6]$ $[6, 2^3]$ $[4, 2^4]$ $[3, 2^4]$ $[3, 2^2]$ [6, 2][4, 2] $[2^{5}]$ $[2^4]$ [3, [26 [26 $[2^{3}]$ $[2^3]$ $[2^5]$ [27 $[2^5]$ $[2^4]$ $[2^4]$ 16 10 35 7 4 8 32 7 2 12 12 12 4 8 12 4 12 12 8/34/33/23/2 $\frac{3}{2}$ $\frac{5}{3}$ 7/6 3/42/31/21/2 $1^{1}2^{1}3^{1}5^{1}6^{1}10^{1}15^{1}30^{1}$ $1^42^417^434^4$ $1^23^211^233^2$ $1^42^413^426^4$ $1^22^211^222^2$ 163676216 $1^42^45^410^4$ $1^23^25^215^2$ $1^22^27^214^2$ $1^22^23^26^2$ $1^{12}13^{12}$ $1^{12}19^{12}$ $1^{12}7^{12}$ 1^423^4 1^411^4 $1^{12}3^{12}$ 1^429^4 1^417^4 $1^{8}2^{8}$ 105 71 78 87 35 38 39 41 41 42 46 47 55 55 55 56 66 66 $[6, 2^5]$ $[2^{11}]$ $[2^{10}]$ $[2^{14}] \\ [2^{12}]$ $[2^{12}]$ $[2^{14}]$ $[2^{10}]$ $[2^{10}]$ $[2^{12}]$ $[2^{10}]$ $[2^9]$ $[2^8]$ $[2^8]$ $[2^{8}]$ $[2^8]$ [2°] $[2^8]$ $[2^6]$ $[2^9]$ 14 V 12 7/2 4 6 $1^{1}2^{1}5^{1}10^{1}11^{1}22^{1}55^{1}110^{1}$ $1^{1}3^{1}5^{1}7^{1}15^{1}21^{1}35^{1}105^{1}$ $1^{1}2^{1}3^{1}6^{1}11^{1}22^{1}33^{1}66^{1}$ $1^{1}2^{1}3^{1}6^{1}13^{1}26^{1}39^{1}78^{1}$ $1^{1}2^{1}5^{1}7^{1}10^{1}14^{1}35^{1}70^{1}$ $1^{1}2^{1}3^{1}6^{1}7^{1}14^{1}21^{1}42^{1}$ 12721721192 $1^2 2^2 23^2 46^2$ $1^25^219^295^2$ $1^23^229^287^2$ $1^23^223^269^2$ $1^22^219^238^2$ $1^2 2^2 47^2 94^2$ $1^25^211^255^2$ 1636136396 $1^2 2^2 3 1^2 62^2$ $1^23^217^251^2$ $1^25^27^235^2$ 1^441^4 1^471^4

expression for Δ_f as an η product written in partition notation, for example 1^82^8 in the entry for f=2 means $\Delta_2(z)=\eta(z)^8\eta(2z)^8$. leading exponent of the q expansion of Δ_f , and w is the weight of Δ_f . A is the area of a fundamental domain of $\Gamma_0(f)^+$ in multiples of 2π , and P is the Table 1: f is a squarefree integer such that $\Gamma_0(f)^+$ is genus zero. R is a list of the orders of the classes of elliptic fixed points in partition notation, e is the

Next suppose both $p\equiv 3\pmod 4$ and $q\equiv 3\pmod 4$ then r_{\min} is odd. Also $a\equiv -1\pmod p+1$ implies that $a\equiv 3\pmod 4$. So $\nu=(\frac{q}{a})(-1)^{(a-1)/2}=-(-1)^{(q-1)/2(a-1)/2}(\frac{q}{q})=(\frac{p}{q})$, using $ap\equiv 1\pmod q$ and quadratic reciprocity. By symmetry, the sign factor for W_q is $(\frac{q}{p})$, but by quadratic reciprocity, one of $(\frac{q}{p})$ and $(\frac{p}{q})$ is -1 and $\Delta_f=d_f^2$ in this case. Finally suppose $p\equiv 3\pmod 4$ and $q\equiv 1\pmod 4$. Once again, r_{\min} is odd. So the sign factor for W_p is $-(\frac{q}{a})=-(\frac{q}{q})=-(\frac{p}{q})$. The sign factor for W_q is $(\frac{p}{\alpha})(-1)^{(\alpha-1)/2}$ (where we have used α rather than α to avoid confusion, since α depends on the prime). Since α is α is α in α is α in α in

Since all the cases listed in Theorem 6 give $\Delta_f = d_f$ and all the remaining cases give $\Delta_f = d_f^2$, the result follows.

If $h \neq 0$ is a cusp form on $\Gamma_0(f)^+$ of weight k and trivial multiplier system, then for suitable integers s and t, h^a/Δ^b is a modular function with divisor supported only at the one cusp of $\Gamma_0(f)^+$. This is only possible if h^a/Δ^b is a constant, so that h is an η product and so $h = \text{const} \times \Delta^u_f$ for some positive integer u. Thus, as mentioned previously, Δ_f is also characterized, up to a nonzero multiplicative constant, as the cusp form of smallest weight on $\Gamma_0(f)^+$ that does not vanish on \mathcal{H} .

If the genus of $G = \Gamma_0(f)^+$ is not zero, then there are cusp forms of weight 2 on G. A simple calculation shows that the weight of Δ_f is always divisible by 4, and so in this case Δ_f is never a cusp form of smallest weight. The cases when the genus of G is zero are given in Table 1, together with the expression for Δ_f . Since the signatures of these groups are known, see for example Cummins [4] and the references therein, we can use Shimura's expression for the dimensions of spaces of cusp forms [13, Theorem 2.24] to conclude that Δ_f is, up to a nonzero multiplicative constant, the unique cusp form of smallest weight only in the cases f = 1, 2, 5, 6.

References

- [1] A. O. L Atkin and J. Lehner, *Hecke operators for* $\Gamma_0(m)$. Math. Ann. **185**(1970) 134–160.
- [2] A. J. F. Biagioli, The construction of modular forms as products of transforms of the Dedekind eta function. Acta Arith. 54(1990), no. 4, 273–300.
- [3] J. H. Conway, *Understanding groups like* $\Gamma_0(N)$. In: Groups, difference sets, and the Monster, Ohio State Univ. Math. Res. Inst. Publ. 4, de Gruyter, Berlin, 1996, pp. 327–343.
- [4] C. J. Cummins, Congruence subgroups of groups commensurable with PSL(2, ℤ) of genus 0 and 1. Experiment. Math. 13(2004), no. 3, 361–382.
- [5] D. Dummit, H. Kisilevsky, and J. McKay, Multiplicative products of η-functions. In: Finite groups—coming of age, Contemp. Math. 45, American Mathemtical Society, Providence, RI, 1985, pp. 89–98.
- [6] B. Gordon and K. Ono, Divisibility of certain partition functions by powers of primes. Ramanujan J. 1(1997), no. 1, 25–34.
- [7] H. Helling, Bestimmung der Kommensurabilitätsklasse der Hilbertschen Modulgruppe. Math. Z. 92(1966), 269–280.
- [8] M. I. Knopp, Modular functions in analytic number theory. Markham Publishing Co., Chicago, Ill., 1970.
- [9] M. Newman, Construction and application of a class of modular functions. Proc. London. Math. Soc. (3) 7(1957), 334–350.

[10] M Newman, Construction and application of a class of modular functions. II. Proc. London

- [11] M Newman, Construction and application of a class of modular functions. II. Proc. Econdon Math. Soc., (3) 9(1959), 373–387.
 [11] H. Petersson, Über Modulfunktionen und Partitionenprobleme.
 Abh. Deutsch. Akad. Wiss. Berlin. Kl. Math. Allg. Nat. 1954, no. 2, 59pp.
 [12] H. Rademacher Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 167(1932), 312–336.
 [13] O. Rademacher Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 167(1932), 312–336.
- [13] G. Shimura, *Introduction to the arithmetic theory of automorphic functions*. Publications of the Mathematical Society of Japan 11, Princeton University Press, Princeton, NJ, 1971.

Department of Mathematics and Statistics, Concordia University, Montréal, QC, H3G 1M8 e-mail: cummins@mathstat.concordia.ca