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Abstract

Let G be a connected Lie group with Lie algebra g and a;, ... , g, an algebraic basis of g. Further let
A; denote the generators of left translations, acting on the L,-spaces L,(G; dg) formed with left Haar
measure dg, in the directions a;. We consider second-order operators

d’ d’
- Z A,’C,‘jAj + Z(C,‘A,‘ + A,'C;) +C01

ij=t i=1
in divergence form corresponding to a quadratic form with complex coefficients, bounded Holder continu-
ous principal coefficients ¢;; and lower order coefficients ¢;, ¢}, co € L such that the matrix C = (c;;)
of principal coefficients satisfies the subellipticity condition

MC=2""(C+CH>ul >0

uniformly over G.

We discuss the hierarchy relating smoothness properties of the coefficients of H with smoothness
of the kernel and smoothness of the domain of powers of H on the L,-spaces. Moreover, we present
Gaussian type bounds for the kernel and its derivatives.

Similar theorems are proved for strongly elliptic operators

d
- i: C,'jA,’Aj + ZC,'A,‘ + C()I
ij=1 i=l1

in non-divergence form for which the principal coefficients are at least once differentiable.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 35J15; secondary 35K05, 22E30.

1. Introduction

Our purpose is to derive regularity properties of second-order operators with complex-
valued variable coefficients acting on the L ,-spaces over a d-dimensional connected
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Lie group G. In an earlier paper [EIR6] we examined subelliptic operators and es-
tablished that uniform continuity of the principal coefficients ensured that the corres-
ponding semigroup kernel satisfied Gaussian bounds and a Holder continuity property.
In the current work we analyze the nexus between smoothness of the coefficients and
the kernel.

We principally consider operators in divergence form,

d d
(1) H=- Z A,'C,'jAj + Z(C,'A,‘ + A,'C;) + C01,
ij=1 i=1
with complex coefficients ¢;;, ¢;, ¢}, ¢ € L. The A; denote the generators, A; =
dL(a;), of left translations L on the L ,-spaces in the directions g; of the Lie algebra
g of G where qay, ..., a, is an algebraic basis of g. We assume the real part of the
matrix C = (c;;) of principal coefficients is strictly positive-definite, that is,

2 MRC =27 (C+C*) = ul >0,

in the sense of d’ x d’-matrices, uniformly over G. The least upper bound, g, of the
lower bound p is called the ellipticity constant and we set ||C|l, = sup,.c IC (@)
with ||C(g)| the /,-norm of the matrix C(g) = (c;;(g)). (Here and in the sequel we
use the notation of {Rob], [EIR2] and [EIR6].) Most of our results are restricted to
strongly elliptic operators, that is, operators for which a,, ... , a, is a vector space
basis of g, or to subelliptic operators on stratified groups with a, ... , a, a basis of
the generating subspace of the stratification of g.

The operator H, formally given by (1), is first defined on L, = L,(G; dg), where
dg denotes left invariant Haar measure dg, as the sectorial operator associated with
the form

d d

B3) @ hp) = Y (A, c;Aip) + Y (@p. Aip) — (A, /@) + (¢, cop)

ij=1 i=1

with domain D(h) = L), = ﬂ:f:l D(A;). Then k is closed and H is a maximal
accretive operator which generates a strongly continuous, holomorphic, semigroup S
on L, (see, for example, [Kat2, Chapter VI]). Although the semigroup S extends to the
L ,-spaces with p close to 2 by perturbation theory (see [AMT, Section 3.1], [EIR7])
it does not necessarily extend to the spaces with p close to 1 or p very large (see
[ACT]). There is no problem if the principal coefficients are real-valued, see [EIR8]
but difficulties occur for complex operators. If, however, the principal coefficients ¢;;
are right uniformly continuous then S extends to a holomorphic semigroup on all the
spaces L,(G; dg), p € [1, oo]. The extension is strongly continuous if p € [1, 00)
and weakly* continuous if p = oo (see [AMT], [Aus] and [EIR6]). Moreover, H and
S act on the spaces L; = L,(G; dg) formed with respect to right Haar measure dg.
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It follows from the results of [EIR6] that if Recy is sufficiently large then the
semigroup S is uniformly bounded on the L -, or L ;-, spaces with the bound uniform
in p. Then the fractional powers of H are defined and one of our aims is to identify
conditions on the coefficients of H which ensure that the domain of (/ + H)"? on L,,
or L;,1 < p < 00, coincides with L,.,, or L.,, the subspace of C"-elements with
respect to left translations. As § is holomorphic this would automatically imply that it
maps into the C"-subspaces and this in turn would almost imply differentiability of the
semigroup kernel K associated with S. Conversely, differentiability and smoothness
properties of the kernel can be exploited to obtain information about the domain of
the generator H and its fractional powers.

The kernel is initially defined as a distribution K, such that

W, Si9) = f dg ¥ (g) f dh K,(g; h)e(h)
G G

for all ¢, ¥ € CX(G) and ¢+ > 0. But right uniform continuity of the principal
coefficients ¢;; is sufficient to guarantee that K, is Holder continuous and satisfies
Gaussian bounds ([Aus], [EIR6]). Additional smoothness of the coefficients will be
shown to imply further smoothness of the kernel.

Before we state the main theorems we introduce a multi-index notation and some
spaces of more or less smooth functions. If n € Ny we set

n

L@ =@u.,....d¥ ad J@d)=]Jn@.
k=0 n=0

Then A* = A;, ---A;, fora = (iy,...,i,) and n = |a|. It will be clear from the
context on which space the A* act. If || = O then we set A = [. Furthermore
weset L = (,e) @y P(A%) in L, with norm @[, = maxae,, @) |A*|l,. For the
L ;-spaces we use the notation L;m, etcetera.

Next let d’(-; -) be the right invariant distance canonically associated with the
algebraic basis a,, ... , as (see, for example, [Rob, Sections IV.2 and IV.4c]). This
distance is characterized by

d

d'(gihy =sup { 1Y (g) = Y (b : ¥ € CZ(G), D (A < 1}

i=l

where the i are real-valued ([Rob, Lemma IV.2.3], or [EIR4, Lemma 4.2]). Other
parameters which enter the estimates are the subelliptic modulus g — |g|' = d’'(g; €)
where e denotes the identity of G and the local dimension D', that is, the integer for
which the left Haar measure |B’(g; r)| of the ball B'(g;r) = h € G : d'(g; h) < r}
satisfies bounds ¢~'r? < |B’(e;r)| < cr? for some ¢ > 0 and all small r. If the
algebraic basis a,, ... , a, is completed to a vector space basis a, ... , a; of g then
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the associated distance and modulus are denoted by d(-; -} and | - |, respectively, and

the corresponding balls by B(g; r). Note that D' =d if ay, ... , a4 is a vector space
basis. In general we omit the prime in the notation for quantities with respect to a
vector space basis ay, . .. , a,.

Forv € (0, 1) define the (subelliptic) Holder space C* '(G) of continuous functions
over G for which

llelic:- = sup (1g1)™"I(I — L(g))¢ll

O<l|gl’<l

is finite. If » € N and v € (0, 1) then we define
C*'(G)={pell,: A9 eC"(G)foralla € J,(d)}.

Notethat L .., (G) C C"*"'(G) forall n € Ny and v € (0, 1).

The differentiability properties of the kernel, (g, #) — K,(g; h), involve derivat-
ives with respect to both variables. Left derivatives with respect to the first variable
will be denoted by A;K, and left derivatives with respect to the second by B;K,.
Multiple derivatives A*K,, B? K, etcetera are expressed with the aid of multi-indices.

Our first main result establishes smoothness of the kernel as a consequence of
smoothness of the coefficients.

THEOREM 1.1. Let H be a subelliptic second-order operator in divergence form (1).
Suppose either

(a) H is strongly elliptic, or

(b) G isstratifiedanday, ... , as is a basis for §, in the stratification (8,,)me(1... 1)
of g.

If cij,ci,c; € C"'(G) for some v € (0,1) and ¢y € L, then K, is once left
differentiable in the first variable and the derivatives are once left differentiable in the
second variable. Moreover, for all o, B € J,(d') and « > O there exist a, b > 0 and
w > 0 such that

|(AaBﬂK,)(g; h)| < at—(D’+IaI+Iﬂ|)/2ewte—b(|gh“I’)Zr"
forg,h € Gandt > 0and

(A*BPK)(k™'g; 17" h) — (A" BPK,)(g; b))

’ ’ v
< g~ (P Hlal+IBD/2 jort Ikl + 1] e—bligh™ I
- t1/2+ !gh—l'/

forallg, h,k,1 € Gandt > QOwith |k|' + |l| <«t'?+ 27" gh™!|.
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REMARK 1.2. Since the operators have complex coefficients there is 8- > 0 such
that e'® H is also subelliptic for ¢ € (—0c, 8¢). The estimates of Theorem 1.1 are then
valid for ¢’ H instead of H. Moreover, for all 8 € (0, ) the constants in the kernel
estimates are uniform for ¢ € (—6, 0). Therefore one has estimates for the kernel
K similar to those of Theorem 1.1, if one replaces ¢ in the right hand sides by |z],
uniformly for all z € C\{0} with |arg z| < 6. All subsequent kernel estimates can be
extended to complex time by this complex rotation.

This theorem demonstrates that Holder continuity of the coefficients leads to dif-
ferentiability of the kernel; there is a gain of one derivative simultaneously in each
variable. This differentiability can be used to obtain links between the domain of
powers of H and the C"-subspaces. The basic result of this nature is a Kato-type
theorem characterizing the domain of the square root.

THEOREM 1.3. Let H be a subelliptic second-order operator in divergence form (1).
Suppose either

(a) H is strongly elliptic, or

(b) G isstratifiedanda,, ... , a, is abasis for §, in the stratification (8, )meqi.... )
of g.

Ifcij,ci,c; € C*' for some v € (0,1) and ¢co € Lo, then D((ALI + H)'/?) = L,
foralllarge A > Qand p € (1, oo).

If p = 2 then the strongly elliptic version of this result can be deduced from
Mclntosh’s analysis of the Kato problem [McI]. Mclntosh’s L,-result has been
extended to the case ¢;; € C"" and ¢;, ¢}, ¢y € Lo in [EIR5].

In order to obtain information about the domain of H itself one needs more smooth-
ness but one important input is a resolvent bound which only requires Holder continuity
of the principal coefficients. The following result is readily derived on L, and can
be subsequently extended to the L ,-spaces with p € (1, co) by singular integration
techniques based on the above kernel bounds.

THEOREM 1.4. Let H be a subelliptic second-order operator in divergence form (1).
Suppose either
(a) H is strongly elliptic, or

(b) G isstratifiedanda,, . .. , a, is a basis for &, in the stratification (8,,)meq1.... 1)
of g.

Ifc;; € CY'(G) forsomev € {0, 1) and c;, ¢}, co € L then Af(1+H)_'Aj extends
to a bounded operator on L,, or L;, foralli, j € {l,...,d} and p € (1, 00).

In order to convert the estimates of this theorem into information on the domain
of H one needs to be able to commute the derivatives A; to the left and this requires
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differentiability of the coefficients ¢;; and c;. If, however, these coefficients are
differentiable then H can be written in non-divergence form,

d d

@) H= —Zc,jA,Aj+Zc,»Af+col.

ij=1 i=1

Not only is the domain result best described for operators of this form but the smooth-
ness properties of the kernel can also be partially improved. Unfortunately, we can
only prove the next results for strongly elliptic operators.

THEOREM 1.5. Let H be a second-order strongly elliptic operator in non-divergence
Sform (4) with coefficients ¢;j € L. and ¢;, cg € L.

I. Ifcy, ci,co € Loon withn € N then K, is (n + 1)-times left differentiable in the
[irst variable and these derivatives are (n — 1)-times left differentiable in the second
variable. Moreover, for each v € {0, 1) and k > O there exista,b > O and v > 0
such that

|(A"B'9K,)(g; h)| < at 42 eIHIBD/2 gt g—blgh 27!

and
|(A*BPK) (k' g;17'h) — (A" B*K.)(g; h)|

v
2+ |gh™Y

uniformly for all o € J,.,(d), B € J,_1(d), t >0, g, h € Gand k,l € G such that
"k 4] < w2427 g,
IL  Ifcij, ci,co € Loon(G) withn € N and Re ¢, large enough then D(H™'?) =
L,,forallp e (l,00)andm € (1,... ,n+2}.
ML Ifcij,ci,co € C"(G) withn € Nand 0 < y < v < 1 then the kernel K,
is (n + 2)-times differentiable in the first variable, the derivatives with respect to the
first variable are n-times differentiable with respect to the second, the derivatives are

CONLINUOUS,
|(AaBﬂK,)(g; h)l < at—d/2t—(5ﬂl+|ﬂ|)/2€wfe—blgh"sz_'

and
|(A*BPK ) (k~'g;17"'h) — (A*BPK,)(g: h)|

14
< qt ™2l +BN/2 jot Ik' + /] e“blgh“llzi"
. 07+ gh|

uniformly for all @ € J,.»(d), B € J,(d), t >0, g.h € G and k,l € G such that
k| + 1] < «t'/2+27"|gh™!).
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In particular it follows that one has Gaussian estimates for all derivatives of the
kernel if all the coefficients belong to C,,»(G). In the situation of mth order strongly
elliptic operators on manifolds with bounded geometry this was proved by Kordyukov
[Kor] using pseudo-differential operators.

2. Preliminaries

2.1. Spaces and embeddings For the convenience of the reader we first collect some
definitions and inequalities which will be useful throughout the paper.

Define the norm || - ||2: L — [0,00] by [l¢ll4 = [|A"?¢|l and for each
v € (0, 1) define || - [llcy: C(G) — [0, o] by

llellcy: = sup (g1 IHAY2U — L(g)¢lloo-
e#geB (1)

Then introduce the corresponding Banach spaces L3 = {¢ € Ly : l@ll3 < oo}
and C} " = {p € C(G) : llglllcy+ < oo}
One has the following continuity properties of multiplication operators.

LEMMA 2.1. Let v € {0, 1).
I Ifp,ve€eC’"" NL,, thenpy € C'' and

llowilic: < llellce ¥ lloo + Nl@llooll ¥ llce:-
I IfpeC’ ' NLyandy € C,' NL2, then oy € C%' and
lle ¥llics- < llellle N2 + lellcllPlic -
PROOF. For all g € G one has
) (I = L@eNey) =¥ -(I - L(g)e + (L(gy) - I — L&)V,

from which the statements follow.

For a continuous function ¢ define the right modulus of continuity, w.(g; -): (0, oc)
— [0, oc], by

w,(¢; R) = sup{||(/ — L(h)¢liw : h € B'(R)},

where B'(R) = B'(e; R). The function ¢ is called right uniformly continuous if
limg_,o @, (¢; R) = O. In particular, each element of C*’ with v > 0 s right uniformly
continuous.
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Ifo € L, then
6 NI —-LgNelle = d’IgI'iE{rlnaxd,, 1Aig ]l oo w.(¢; R) < d'Rlloll..,

forallge GandR >0.So L, C C""
Recall the Sobolev spaces L', n € Ny, are defined by L;,m = [Nye @y D(A%)

p.n?
with norms [|¢||},, = sup,., «, IA%@ll,. But for p € (1, 00) one has

& L,, =D + H)'"),
where H, = — Z:’;l A? is the sublaplacian associated with the algebraic basis
ai, ... az,and |||’ is equivalent to the norm ¢ > ||(I + H.)"*¢||, (see [BER]and

the appendix). Next, for y € R\Ny and p € (1, co) we define L/, , as the completion
of L, with respect to the norm ¢ > ||(] + HL)”/2<p|l,, (see also [EIR2, Section 3]). It
then follows from the identity (7) that the L, form a scale of complex interpolation
spaces. Note also that for n € Ny the space L, _, can be identified with the dual of
L., wherel/p*+1/p=1

The scale of spaces L’;_, y € R, can be defined in a similar manner relative to the
spaces L ; based on right Haar measure.

We adopt some conventions on the extension of operators. If X is a bounded
operator on L, such that X(L,NL,) € L,NL, and | X¢|l, < c,ll¢ll, for some
¢, > 0andall ¢ € L, N L, then X is norm densely-defined on L, and norm closable
if p € [1,00). Hence X extends by closure to a bounded operator on L,. In this
situation we abbreviate the description by saying that X is bounded on L,. More
generally, if X is a densely-defined, closable, operator from the Banach space 2 to
the Banach space % with bounded closure we say X is a bounded operator from 2
to % and denote its norm by {| X || o, 4. If X is a bounded operator from L, to L, we
also use || X||,-, to denote the norm.

Next we note some simple criteria for an operator to be bounded between the
Sobolev spaces.

LEMMA 2.2. Let p € (1,00) and n,m € Ny. If X is a bounded operator on L,
then the following conditions are equivalent:

L X is bounded from L, 1o L, .
1. X" is bounded from L,.._, to L., where1/p*+1/p = 1.

L. (I + H)™*X(I + H)"?* is bounded on L,.
IV. A*XAP isboundedon L, foralla € J,(d') and B € J,(d).

PROOF. The equivalence of I and I1 is by duality and the equivalence with I1I follows
from [BER]. But then Il is equivalent to boundedness of (I + H,)™*X*(I + H;)"/? on
L,. and by [BER] this is equivalent to boundedness of the operators A? X*(I + H,)"/?,
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B € J,(d’), on L,. or boundedness of (I + H,)"*XA?, B € J,(d'), on L,. But this
in turn is equivalent to 2.2.

Note that if X is bounded from L/, _, to L, the cross-norm of X between the
spaces can be chosen as
XNy, o, = sup  [A"XAP|, .
) ) aedy,(d).pel,(d')
This is a direct consequence of the above arguments.
Each ¥ € L is identified as a multiplication operator on L, L;,;y or L, etcetera

and we next show that multiplication with a C"' N L, function, v € (0, 1), is a
bounded operator on L;:V forall y € (0, v) and p € (1, o0).

PROPOSITION 2.3. Let v € (0, 1).
L Ify € (0,v)and p € (1,00) then Y9 € L, forall y € C"'N Ly and
Q€ L;,:y. Moreover, for all y € (0,v) and p € (1, 00) there exists a ¢ > 0 such that

ol <cUillc: + ¥ llel,,

uniformly forallg € L), and ¢ € C'' N L.
II. Foralln e N,y € (0,v)and p € (1, 00) there exists a ¢ > 0 such that

2 — c( sup AVl + ||w||:m) (2.

a€d,(d’)

uniformly for all ¢ € L’ and y € C"V".

pnty
II. There exists Ay > O such that for all y € (0, v) there is a ¢ > 0 such that

I + H)"?, ¥lell, < A2 (1¢lle + 1 o) @1l

uniformly for . > ko, p € (1,00), ¥ € C*'NLyandp € L, .
IV. Ifd = d then there exists Ly > O such that for all p € (1,00), y € (0,v)
and ). > Ag there is a ¢ > 0 such that

I[G 1+ H) 2, o <c ( sp_ 1A llcs + IV lle- + ||w||oo) el

uniformly forall ¢ € L,.,,, and € C'*".
Similar statements are valid on the L ;-spaces.

PROOF. We first prove a weaker version of Statement I1I, since we only know that
a multiplication operator is bounded on L,. Let S and K be the semigroup generated
by H, and its kernel. There exista, b, w > 0 such that |K,(g)| < at~2/2¢t(&!1™" gt
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forallt > Oand g € G. Setc, = f; drt7'""/>(1 —e¢'). Then for all A > 0 and

¢ € L, one has

I+ H)Y o =)' f dtt™"7V(I — eV 8))ep.
0

Soifne L, withl/p+1/q = 1then
(M + HL)'*n, ¥) — (n, y M + HL) )

= —c;‘/ dt ™17y, [e7MS,, ¥lp)
1]

Y

— ! / dt 1P / dg K.(9)e™ (n. [ — L(g), ¥19)
0 G
®) ' [ e [ ag ke - Lo - L),
0 G

where we used (5). Since ¥ € C*'N Ly one has ||[(] — L(g))¥ o < cy(Igl") forall
g € G, where ¢y, = |[¥lllcv + 2{|¥ llo- Then

(A1 + H) 0, @) — (0, ¥ M + H) o))

[e9)
- (- D'/ —belN—"  —(h— _1\V/2
SanCylf dr 71+ y)/z/dgt 2, b(lgl')e LAy ((lgl/)zt 1)V/ ||<P“p||77”q
0 G

oo
Ea'cw/ dt t—l+(v—y)/2/ dg t—D'/Ze—b'(IgI')zt"e—(A—w)t”(p”p”n”q
0 G

oC
<d', / dt 710D
0

<a"cy (A — ) o, linl,

for some constants a’, a”, a”’, b', o' > 0, independent of A, ¥, ¢, n and p uniformly

forall A > Ay = 2w’. Since L;,:l, and L;;l, is a core for (A1 + H,)"’? it follows that

I((A + HL) i, o) — (n, (A + HL) )|
9) <a"c,( — Y0l lnl,

forallp € D((AM + H.)"?) =L, andn € D((AM + H)"?) = L,,.
Next, forallg € L, and A = A, one has

|(AT + H) ™, o)
< c(i¥llic: + 1 lao)l@lolinlly + 1l AL + H)oll,lInll,
< U ller + 1l NI + H) ol lnll,
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foralln € D((AM + H.)'"*) = L, . Therefore ¢ € D(((AM + H)"*)*) =L,
Statement I follows since the norms ¢ +> ||(A1 + H,)*"*¢||, and | - /.., are equivalent
(see [Rob, Lemma I1.3.2]). Then Statement III is a consequence of (9) and a density
argument.

For the proof of Statement II, let ¢ € L) . and ¢ € C"*’. Then for all
a € J,(d’) the function A® (¥ ¢) can be written as a finite linear combination of terms
of the form (A% ¢)(A* ) with ¢, o, € J,(d"), by the Leibniz rule. But A% ¢ € L;;y
and A*¢ € C”’ and hence (A*'¢)(A"y) € L, by Statement L. So A*(Y¢) € L),
and ¥ € L, . . The bounds follow from the proof.

Finally we prove Statement IV. Set t = 27!(1 + y). Then

I + H) 72, yel,
< NI+ H) (] + H)™2, Ylell, + NI + H)™?, Y1 T + H) e,
< el + H) "2, Y10l + cliylle: + 1¥ e I + H) Pl
< el + H) ™", Yol + cUlYlle: + 1% o) @]l

where we have used Statement III. For an estimate on the first term we argue
as in (8), with y replaced by . Now {|(I — L(g)¥ - L(®el,1 < 21 —
L(g))wllool”L(g)w”pl BUt CH—D = (Looa Loo;l)v,oo;K;l = (Loo;ly Loo;Z)v,oo:K by
[EIR1, Theorem 2.1]. Therefore [|(I —L(g))¥ [l < cc}|g|"e“®' forallg € G, where

cy, = sup,ey. ) AW ller + Y ller + 11 lloo. Moreover, [ L(g)@llp < c'e* 8[| @]| .1
So [[(I — L(gNY - L(g¢llpn < cc'cy, |gl'e‘ 18] and one can continue to argue as in
the final part of the proof of Statement III.

2.2. De Giorgi estimates The aim of this subsection is to prove the De Giorgi
estimates involving derivatives which are crucial for the regularity theorem in the
next section. Proposition 2.6 establishes a De Giorgi inequality for operators with
C"-coefficients but the basic difficulty is to prove the inequality for operators with
constant coefficients. For these estimates we need the following space

H, (B'(g;r) ={p € L,(B'(g;r) : Awp € La(B'(g;r)) foralli € {l,...,d}},

where g € G, r > 0 and A;¢ denotes the distributional derivative in 2'(B’(g; r)).
These spaces are equipped with the norms ¢ — (ll¢ll3,, + IVell3,,)"/? where
I@lla.gr = (S5, Rl and

4 1/2
||V’<p||2,g.,=< f th|(Aiw)(h)|2) :
B'(gir)

i=1

We denote by [:)[;;,(B’(g; r)) the closure of C°(B’(g; r)) in H,, (B'(g; r)).
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For ¢ € L, we denote by (¢), . the average of ¢ over B'(g; r). If g = e we drop
the ¢ in the notation. So B'(r) = B'(e; r), [V ¢ll2, = [V ¢llae.., etcetera.

The proofs of the De Giorgi estimates for strongly elliptic operators and for subel-
liptic operators on stratified groups are quite distinct.

2.2.1. Strongly elliptic operators with constant coefficients The exponent d + 2 in
the term (r/R)?*? in the next lemma is slightly better than we need for the regularity
theorem in the next section. In fact, we only need (r/R)?*% for all v € (0, 1), as in
[EIR6, Section 3]. On the other hand, we now have an additional error term.

LEMMA 2.4. Let H = — Z:i j=1 CijAiA; be a pure second-order strongly elliptic
operator with constant coefficients.

Then there exist cpg, cpg > 0 such that for all R € (0,1], all g € G and all
¢ € H,,\(B(g; R)) satisfying Hp = 0 weakly on B(g; R) one has

d
S 1A -t
k B(g:r)

d
< oo /R Y [ 1A~ (Aol + o [ 9P
k B(g:R) B(g:R)
forall 0 < r < R. Moreover, the constants cp and c,; depend on the coefficients of
H only through pc and ||C |-

PROOF. Arguing as in the proof of [E1R6 Proposition 3.4] it suffices to consider
g=e.

Let || - || be the Euclidean norm on g with respect to the basis ay, ... , a,. For all
s > 0set B(s) = {a € g: |la]l < s}. Thereexist Ry € (0, 1], ¢ > 1 and aieal analytic
funcgon o:B(Ry) — [c7!, c] such that exp is a diffeomorphism from B(2R,) onto
exp B(2Ro), ¢ 'llall < |expa| < clla| for all a € g with [|la|| < R,,

/: dao(a)p(exp(a)) = / dg ¢(g)
B(Ro) G

for all ¢ € CX(exp g(Ro)) and 0(0) = 1. Then B.-i; C exp §(s) C B, for all
s € {0, c"'Ry]. Let D; be the closed operator on L,(g) of left differentiation in the ith
direction. So

d
(Diy)(a) = V@ —ta)

=0

Define the operator A on B(Ro) by A (p oexp) = (A; (p) o exp. Then there exist real

analytic functions b;; on B(ZRO) such that D, = A, + Z - b;;D; and b;;(0) = 0.
We compare the operator H on G with the operator H=- Y ¢i;D;D; on the

commutative group §. By {Gial, Theorem I11.2.1], applied to D, there exists a
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constant cpc > 0, depending on the coefficients only thrgugh te and ||Cll, such
that for all R € (0, 1] and all ¥ € H,.,(B(R)) satisfying Hyy = 0 weakly on B(R)
one has

Z/ | Dt = (D)5 <cDG(r/R)““Zf | Dt — (D) wy
B(r)

B(R)

forall 0 < r < R, where {¢) 3, denotes the average over the ball §(r).

Now let R € (0, Ry], ¢ € H,.1{B(R)) and suppose that Hgp = 0 weakly on B(R).
Set R, = ¢'R. Define ¢ € H>,(B(R,)) by ¢ = ¢ o exp and let n € Hy.(B(R,)) be
such that

Hn=0weaklyin B(R)), x=¢—ne Hu(B(R)).

Then, since y — [, |¥ — y|? attains its minimum at y = (¥),, one has

f~ DG — (D)5
B(r)
< '/; | D — (DkU)Z?'(r)'Z
B(r)
< 2ﬁ [Dyn — (D) 5| +2/~ | Dy x |?
B(r) B(r)

Den — (Damsen, +2/~ Dex[?

B(Ry)

< ZCDG(r/Rl)d+2‘/:

B(R)

Din — (De)30m +2f~ Dex[?

B(Ry)

< 2¢pe(r/R)™? f~

B(R))

(10) < depo (/R f D — (D)5 + @+ deoe) [ IDux P
B(R|) B(R))

forall0 < r < Rjandk € {1,...,d}.
Next introduce ¥ € H,.,(B(R)) such that x = ¥ o exp. Then

0= (x,Hp) = Z/C,]A XAjp = Z[ oc,,A X

B(Ry)

Therefore

=RCZ/ CijDiXDj¢
Br)

iJj

—ReZc,,f <p—axixxj¢).

B(Ry)

ue Y [ 1DixP < Re(x. fix) = Re(x. 9
k B(R))
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Since the functions o and b;; are real analytic, 0 (0) = 1 and b;;(0) = 0, one easily

estimates that
172 1/2
(Z/ IDXI> (Zf |Ai¢|2)
B(R) T JB®R)

Dfow—OAx iP

B(r))

for some ¢’ > 0 which depends only on G and the basis ay, ... , a;. Hence
, 12
[ oot = @@iChane) [ R1VP
. JB®R) B(R)
So
> [ 1D D < deoetr/RY [ 1016~ (Debin
— JBEn Bern)

+ (2 +4cpg) (| Cllooptg')’ RZ/ [Vel®

B(R)

for all 0 < r < R;. Again using the real analytic functions o and b;; one deduces as
above that there exist a ¢” > 0, depending only on G and the basis a, . .. , a4,.such
that

/~ IDv@ — (Di@) 5 |* < /: |Dy@ — (Ac@)er |
B(r)

B(r)

52[ 1A — <Ak¢c,|+2/
B(r) B(r)

<2 f A — (Aol + 7 f Ve
B(cr) B(cr)

Zbkj 1%

J

and

f Ao — (A 2 < 2c f Di6 — (D) en + €7 f Vol
B(r) B(cr)

B(cr)

for all » € (0, R;]. Combining these estimates it follows that

d
> [ i - i <16c"+"cDG<r/R1>"“Z | 14— it
k B(r)

B(R)
+ el R f Vol
B(R)

for some c,; > 0, uniformly forall0 < r < ¢ 'R and R < R,. One can now extend
the estimates to the range 0 < r < R < 1 by the argument at the end of the proof of
[EIR6, Proposition 3.4].
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2.2.2. Subelliptic operators on stratified groups with constant coefficients Let G be
a (connected, simply connected) stratified Lie group and a;, . .. , a, a basis for g, in
the stratification (g, ),¢1.... - 0f G.

LEMMA 2.5. Let H = — Z:{’jzl cijA; A; be a pure second-order subelliptic operator

with constant coefficients. Then for all v € (0, 1) there exists a cpg > 0 such that for
all R € (0,1], g € Gand ¢ € H}, (B'(g; R)) satisfying Hp = 0 weakly on B'(g; R)
one has

d

d
S i — it = eoctr/RP Y [ 14— (Al
B'(g;r) k=l VB

k=1 (g R)
Jor all 0 < r < R. Moreover, cpg depends on the coefficients of H only through pc
and ||C|| -

PROOF. Again it suffices to consider g = e. Since G is nilpotent, connected and
simply connected it follows that the exponential map is an analytic diffeomorphism
from g onto G. Extend the algebraic basis ay, ..., a, to a basis ay, ... ,a, for g
such that g; € g, for some n, foralli € {1,...,d}. Foralli € {1,...,d’} define
xi:G — R by X,»(Z;.;l Ea;)) =& forall§ € R?. Then y; is a C*°-function and
Ajx; = —6; foralli, j € {1,...,d’}, since g is stratified. Hence A;A;x; = O for all
i,j,kell,..., d}

Now the proof of this lemma is a modification of the proof of [EIR6, Proposition
3.3]. We use the notation of [EIR6]. In particular, let Ry € (0, 1], o € (0, 1) and let
the cut-off functions nx be as in [EIR6, Lemma 2.3].

Let R € (0, Ry], ¢ € H. (B'(R)) and assume Hy = 0 weakly on B'(R). For
alli € {1,...,d}seth, = (Ai@)p. ¥ = @0+ Y~ bix; and T = ¥ — (). Then
(t)r =0, A;t = A;¢ — b, and hence (A;7)r =Oforalli € {1,...,d'}. Moreover,
Ht = Hy = 0, since the second-order derivatives of the x; vanish. Hence it follows
as in the proof of [EIR6, Proposition 3.3], with ¢ replaced by A, 7, thatforallr < oR
one has

4 1/2 4 1/2
(Z / | Axg — <Ak¢>on,|2) < <Z f | A — <Akr>a-.,|2)
k=1 Y B'(@~'r) k=1 v B'(c7'r)

p
/2
<P lineActlic -
k=1

But
12
IAkTIZ)

172
|Avp — (Ak(/’)R|2>

D2~ _D'/2-
e Astller: < &P Ny, (ne Agt) + ce =2 (f
B'(R)

= RPN, (nrAit) + cR7P/2 ( /
B'(R)

https://doi.org/10.1017/5144678870000094X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000094X

312 A. F. M. ter Elst and Derek W. Robinson [16]
where we have set ¢ = R and used inequality (23) of [EIR6]. Next,

Né;n(nRAkt) = N2,:n+l(nRT) + Né;n((AknR)T)

v 12 & 12
<R~ (/ IV’IIZ) =k (Y[ ag - (el
B'(R) i=1 YB'(R)

by [EIR6, Lemma 3.1.11], where we used Ht = 0 weakly on B’(R) and (t)z = 0.
Combining these estimates one deduces that
& &
Y[ = P =Y [ g~ (gl
B(o-r) i=1 B

k=1 "(R)

forall0 < r <o~ 'R < R < Ry and the proof of the lemma is complete.

2.2.3. Operators with variable coefficients Finally we derive De Giorgi estimates
involving derivatives for operators with C”-coefficients. In the sequel we need various
parameters to denote the smoothness of the coefficients of the subelliptic operator H.
Hence we define the C-seminorm of the matrix C of principal coefficients by

IC e+ = sup{llicijllice- : &, j € {1, ..., d'}},
the C¥-norm of the first-order coefficients by

llclller- = sup{llicillice = i € {1,...,d'}},
lic'ller- = sup{llicillc-- : i € {1,...,d'}}
, , 1,2
and the L-norm of the first-order coefficients by ||c||.c = (ZLI Ilc; ||§<>—|—Z:1=l llc; ||§o) .
Note that the definition of ||c]| involves both the ¢; and the c;.

PROPOSITION 2.6. Let v € {0, 1) and H = — Zi;zl A;cijA; a pure second-order
subelliptic operator. Suppose either

(a) H is strongly elliptic, or

(b) G isstratifiedanda,, ... , ay is a basis for §, in the stratification (&, )mec(1.... 1)
of g.

If c;j € C"'(G) then there exist cpg, Cpg > O such that forall R € (0,1, g € G
and ¢ € H, (B'(g; R)) satisfying Hp = 0 weakly on B'(g; R) one has

.
> / | Ak — (Ax)s.r
B'(g;r)

k=1
&
D'+20 2 ’ 2v r 12
<eoe@/R Y. [ (g (Apheal + o R [ 170l
B(g:R) B'(g:R)

k=1
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forall 0 < r < R, where v = 27'(1 + v). Moreover, cpc and Cpg depend on the
coefficients of H only through pic, |Clle and IClllcv -

PROOF. For g € G define the operator H® = — Y7 j=1 Aicij(g)A; by fixing the
coefficients. By Lemmas 2.4 and 2.5 it follows that there exist cpg > Oand ¢f; = 0
such that for all R € (0, 1], and n € H,.,(B'(g; R)) satisfying H®'n = 0 weakly on
B’(g; R) one has

P

> f |Aen = (An)g.
k=1 Y B'(g:r)

)
<eoor/RPF Y [ 1A~ (Aol + o R [ (v
k=1 Y B'(g:R) B'(g;R)

forall0 < r < R. The cp¢ and ¢}, ; depend only on p¢ and ||C || and are in particular
independent of g.

Let R € (0,1], g € G, ¢ € H, (B'(g; R)) and suppose Hp = 0 weakly on
B'(g; R). Then let n € H,,,(B'(g; R)) be such that

H®y =0 weaklyin B'(g;R),  x =9 —n€ Hj, (B(g R).
Arguing as in the proof of inequality (10) one deduces that

g
> f | Ak — (Axp)g.,
k=1 Y B'(g;r)

< dcpg(r/R)PH Z/ [Avp — (Ar@)g ]

B'(g:R)

+ 2¢)6 R? / IVnl? + (2 + 4cpe) IV'x|?
B'(g:R) B'(g;R)

.
<4cpo(r/R)P Y f |49 — (Ap) g rl’
k=1 Y B'@&R)
+4C’DGR2/ IVol* + (2 + dcpe + dc)) [V x|2.
B'(g:R) B'(g;R)

Next, since x € 101’2:1(3’(g; R)) and H® y = H®¢ one has as in [EIR6, Proposi-
tion 3.6]

uc/ |V'xI> <Re(x, (H® — Hp)gp)
B'(g:R)

12 1/2
<d'w.(C; R) ( / |V'x|2) ( f |V’<p|2)
B'(g:R) B'(g;R)
172 12
<d'|IClllc+-R" (f IV'X|2> (/ |V'<Plz) .
B'(g;R) B'(g:R)
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Hence
g ’ —1)\2 v y
[ VX2 < (@IClle 12 Rz/ Vol
B’(g;R) B'(g:R)

and the proof of the proposition is complete.

3. Operators with C"-coefficients, v < 1

In this section we prove that Holder continuity of the coefficients of H ensures the
corresponding semigroup kernel is differentiable with Holder continuous derivatives.
The proof is an extension of the arguments of [Aus] and [EIR6]. It relies on the De
Giorgi estimates and uses Morrey and Campanato spaces. For a brief introduction to
Morrey and Campanato spaces on Lie groups we refer to the appendix of [EIR6].

PROPOSITION 3.1. Letv € {0, 1) and let Hp = — Z?.lj=l A;ci;A; be a pure second-
order subelliptic operator with C*’'-coefficients. Suppose either

(a) H is strongly elliptic, or

(by G isstratifiedanday, ... , ay is a basis for §, in the stratification (8,,)meq... r)
of g.

Lety € [0,D'), n € (0,2v], 8 € (0,2) withn <y +8 < D +n, ¢ € L},
treM,,and,,... 14 € M5 Suppose Aip € My .5, foralli e{l,...,d')

and Hpp = 1 + ZL A;t; weakly. Then A;p € M, s foralli € {1,...,d'} and
there exists an a > 0 such that

i=1

)
V0l ke, < a (ez-“uruMz., + 3 Nl + 1Vl + e-wf”uwngﬂ)

uniformly for all ¢ > 0. The value of a is independent of ¢, T and the t;, and depends
on v and on Hp through e, ||C |l and |||Cllcv

PROOE. Let cp; and ¢,; be as in Proposition 2.6 and R, the radius and c¢p the
constant in the Poincaré inequalities for the Dirichlet Laplacian, Proposition 2.2 of
[EIR6]. Let g € Gand 0 < r < R < Rp. There exists an n € H, ,(B'(g; R)) such
that .

Hpn=0 weaklyin B'(g;R),  x=¢ —ne€ H,,(B'(g;R)).

Using Proposition 2.6 it follows as before that

d d
Y[ 14— i), = 20000/ R Y[ A~ (g
k=1v B'(g:r) k=1 B'(g:R)

1 +4C/DGR2"/ IV'o|* + (2 + 4cpe + dc)) IV x 2.

B'(g:R) B'(g:R)
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We estimate the two error terms in (11) separately. Since A;¢ € M, 5_, one has
2v 12 2v 4 2 y+6— 4 2 y+3
R fm IVl = R IVl | R < 19, R
¢

where we used that n < 2v.
The integral of |V'x |? in (11) can be estimated as follows. By construction one has

d' d
(x, Hpx) = (X, Hpo) = (X, T) = Y _(Aix, T) = (X, ) — I_(AiX, T — (Ti)gr)
i=1 i=1

since y € ;1 5.1(B'(g; R)). Hence, by ellipticity and the Cauchy-Schwarz inequality,

172 1/2
ucf |V’x|25(/ |x|2) (f |r|2>
B'(g:R) B'(g:R) B'(g:R)
4 172 1/2
+ (f |A,-x|2) (/ lr,-—<r,->.R|2)
; B'(g:R) B'(g:R) ¢
1/2
<t s, RV (c»RZ / ;V'x|2>
B'(g:R)

d 1/2
8)/2 2
+ZIIuII/{MR‘” u (f IV’XI) -
i=l B(g:R)

Therefore

, 2
d
2 -2 1/2 (2-8)/2 5
f IVixI® < uc (CD/ R\ T, + E ”ti”le.y»,J) R,
B'(g:R)

i=1

Combining these estimates one deduces that
P
Y it it
k=1 v B'(g:r)

)
<4coat/R”F Y [ 1A (Al
k B'(g:R)

4 2
+b (ndpnMw_n + ROy, + Y T nmm> R

i=l1

<dcpg(r/R)P T Z/ |Avp — (Ar@)g rI?

B'(g:R)

2
d’
+b (nwnmm + 7, + Y I ||/,2_M) R
i=1
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uniformly forall e € (0,11and0 < r < R < Rp A &2, where b = 4che + /LEZ(I +
¢p)(2 + 4cpg + 4cp). Since y + 8 < D’ + 20 one has, by [Gia2, Lemma II1.2.1]
(for a precise statement of the version we need, see [EIR6, Lemma 3.5]), there exists
an a > 0, depending only on ¢pg, ¥ + & and v, such that

,
> / |Awp — (Aep)g.r I
k B'(g:r)

<a ((r/R)”‘S Z/ |Av@ — (Ac)g.rl?
B’

(&:R)
4 2
2 2-48 3
+b (nwnmm + Tl + ) ur,»umm) rr )
i=1

uniformly forall g € Gand 0 < r < R < Rj, A 2. Choosing R = Rpée? it follows
that

&
Y L
k=1 v B'(g:r)
< a(RL—)(V+2)8—2(y+6)/ |v/(p|2
G

s 2
+b (uv«pumm + &l + ) I ””’“‘”") ) "

i=1

uniformly for g € G and 0 < r < Rpe?.
Finally, if Rpe? < r < 1 then

d d
> ] 1A — (A, <) / Al < Rp"P ("ol )
k B'(gir) k B'(g:r)
and combination of the last two inequalities completes the proof.

Next we consider estimates on the Davies perturbation of the semigroup S generated
by the subelliptic operator H on L,.

Let ¥ € C°(G) be a real-valued function and define the family of bounded multi-
plication operators U, p € R, by U, = e *Y¢. Then S” is the strongly continuous
semigroup on L, given by S = U, S, U;' where we suppress the dependence on ¥
in the notation. The generator of S/ is denoted by H,. In [EIR6] we established, by
an iterative argument, that S* is bounded from L, to Cy ¢’ whenever the principal
coefficients of the operator are uniformly continuous. Now we establish that if the
coefficients are Holder continuous then each A; S” satisfies similar estimates.
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First, for each y € [0, D’ + 2), introduce the hypothesis P(y) by

SP(D®(H,)) C M, A;SP(D®(H,)) C My, forallt > 0, p e R

andi € {1,...,d'}. Moreover, there exist b,, w, > 0, depending on H
through pic, ICllss, IICllic+, llclloo, llic”lllc+- and lcolloo such that

(12) 15201y, < byt e N g
and

(13) 1AiSP @, < byt 417 e 0 g

forallt > 0,pe R,¢ € D*(H,)andi € {1,...,d'}.

Since L, N M,, = L, N .4, for all y < D', with equivalent norms, (see [EIR6,
Lemma A.1.III]) we know that P(y) is valid in many cases. As an intermediate step
in the proof of [EIR6, Proposition 4.3] we have already proved that P(y) is valid for
all y € [0, D') if D’ > 2. (In fact we proved that the constants depend merely on the
modulus of continuity o/ (C; -) instead of ||C|llc.- and |l|¢'||c--.) In [EIR6] we used
De Giorgi estimates which were valid only for D’ > 2. But the estimates of Section
2 are valid in any dimension. If D’ = 1 then obviously P (0) is valid. But then one
can use Proposition 3.1 with n = § instead of [EIR6, Proposition 4.2] and argue as in
the proof of [EIR6, Lemma 4.4] to establish that P(y + 8) is valid for all y € [0, D')
and § € (0, 2v] with y + 8 < D', whenever P(y) is valid. Therefore P(y) is valid
forall y € [0, D’) in case D' = 1. This argument also works in higher dimensions.

As in the proof of [EIR6, Proposition 4.3] it follows from (13) for P(y) with
y € (D' — 1, D) that

(14) I e e )
for all ¢ € D*(H,), where a and w depend only on the allowed parameters.
The main step in the proof of the new proposition is the observation that Holder

continuity of the coefficients ensures P(y) is valid for all y € [0, D’ + 2v].
For ¢ € C(G) set

ny(Y) = sup }IIAHPIIOOV sup )”AiAjl/f”oo-

ie{l.... d ijefl,...d

PROPOSITION 3.2. Let H be a subelliptic operator in divergence form (1). Suppose

either

(@) H is strongly elliptic, or

(b) G isstratifiedanda,, ... , ay is a basis for §, in the stratification (8,,)meii.... 1)
of 8.
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If cij, ¢, € C*' and c¢;, ¢y € L for some v € (0, 1) then A;S{L, C C1'(G)N
L2 (G) forallt > 0and p € R and there exist a, w > 0 such that

—(D 2
(15) | AiSPlly, < ar™ PFPe 0 g,
and
—p _ 2
(16) (1A S2@lllcy < ar™ P+ =240 )

uniformly for ¢ € L,(G),t > 0, p € Randi € {l,...,d'). The constants a and o
depend on v and on H through pic, [|Cllso ICHIcvr, licllos, liclllce and ficollo. They
depend on the perturbation functions y € C°(G) only through n,(yr).

PROOF. Set § = min(2,27' +2v) and let y € ((D' — §) v 0, D' + 2v — §). Note
that this interval is not empty. We show that P(y + §) is valid. Fix ¢ € D*(H,).
Then (12) for P(y + &) follows from (13) and the Poincaré inequality, [EIR6, Lemma
A.2], in a similar manner to the proof of [EIR6, Lemma 4.4].

Next we use the decomposition

d d
HpSP@ = SPH,p — 'SP — ) " AiSto — ) Aic PSP

i=l i=1

with perturbed lower-order coefficients as in [EIR6, Lemma 4.4]. This time we apply
Proposition 3.1 to S/ with t again the first three terms on the right, 7, = ¢/* 'SP
and n = 2v. The proof of (13) for P(y + &) is almost the same as the comparable
proof in [EIR6, Lemma 4.4], so we indicate the differences.

First we have the term |V'S7¢]| M., Which is not present in [EIR6]. Since
y < D'+2v—§onehas y +8 —2v < D' and hence by (13) for P(y + 5 — 2v) one
has

—(p+6— —1/2 _a(14p?
IV'SP@ls, sy < byasant™ VT2 2e0ro2 000 g

< a/t-(y+8)/4t—1/28w’(1+p2)t”(pnz.

Secondly, we have to estimate the ||7;]|.4,,.,. Since y + & > D’ it follows from
[EIR6, Lemma A.1.V] that there exists a constant @ > 0, depending only on y 4 4,
such that

e} S0l s, s < alle;” SPllcs

where we have set © = (y + § — D) /2. Moreover,

() (o) ()
lle;™ St el < e ™ llea 187 @llo + llei™ ool S @lllcs
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and

)
e ee < (14 p»'72 (lnc; e+ > llssllic;lles + |||v/,-|||cw||c,»,»||oo))

j=1

p
< @'tV et (u|c;n|o~ + Y ¥l Ulleis e + lle, ||oo>)
j=1
for suitable a’ and w, by Lemma 2.1 and (6). Together with the bounds (14) one
deduces that

-D - 2 - - ’ :
I, e ISPQI2, < ar=P7 7122040 g, < @/¢= 0812 g 0D g

for suitable a, a’, w and «’, depending only on v, ¢, ||Cllees ICIllcv s Nl ooy i€ Ny s

licolloe 1Ai ¥ lloo and [[A; A; ¥ [ o
Alternatively, by [EIR6, Lemma A.1.V], and (12) for P(y)

—(y+8)/4 jw(1+p?
NSPellics: < alllS @, + 187 12) < @'t~ et g,
Combining these estimates one deduces that
(p) —(y+8)/4,-1/2 jw(1+p?
1e;” SP @, s < @t™ V7120 g

for suitable @ and w, as required. Thus (13) for P(y + &) follows for all y in the
interval (D' —8§) v 0, D' + 2v — §).

Now let y € (D’ v 8, D' + 2v). Then by Lemma A.3 of [EIR6] and (13) for P(y)
one has

oy ny pna 2
A SIS < eY P2 AP0 4, + ce DA SP @l < at™P T e g,
for suitable a and w, by setting ¢ = ¢'/2. But then

-D'/4,—1)2 1402
IA:SP@llm,, <a't™P/ 2+ g|,

by an application of [EIR6, Lemma A.LIV].
Finally we prove P(D’ + 2v). We argue as above, with y = D’ + 2y — §, but in
the first step we now use

-D'/4,-1/2 jw(1+p*
IV'SP @ty s o = IV S @M, , < at™ P72 g,

This was the only place where we previously used y # D’ — § 4 2v. The details are
left to the reader.
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It remains to translate the semigroup bounds into kernel bounds. Since we have to
do this repeatedly in the sequel as we assume more smoothness of the coefficients, we
immediately treat the general case of divergence form operators.

For N,, N\, N{, Ny € Ny, vy, v;,v,v € [0,1), o > 0 and M > O such that
N+ v, >0,

amn Ny + v, > Ny 4+ v, = Ny + v, Ny + v, > N+ v, > Ng+ v

let &%(N, + vy, Ny + vy, N{ + v}, Ny + v, ., M) be the set of all second-order
subelliptic operators of the form
d d
H==Y Ac;A;+ ) (A + Ac) +cl

ij=I i=1

such that ¢;; € L.y, llcijlio.n, < M, the ellipticity constant p¢ > p and if v; > 0
then |||A%c;jlllc»- < M forall @ € Ju,(d’) and similar conditions on the ¢;, ¢; and c.
Since N, + v, > 0Oitis clear that  and H* generate semigroups on all the L ,-spaces.

Because of the inequalities (17) it follows that H, € (J,.o & (N, + v, N; +
vy, Ny + v}, No+ vo, b, M) forall H € ,,., & (N; + vo, Ny + v, N + v}, No +
vo, u, M), p € R, u > 0and ¥ € C*(G). Moreover, for all M > O there exists
an M’ > 0 such that H* € &W(N, + v, Ny + v, N| + v}, No + v, u, M') for
all H € &%(N, + vy, Ny + vy, N| + v}, Ny + vy, u, M), where the operator H*,
defined at the end of [EIR6, Subsection 2.4}, is formally givenby H® = A™2HA?,
The generator H* is obtained by replacing each A; by A; + 27!, in H, where
bi = (A;A)(e).

Obviously H* € &*(N, + vy, Nj + v;, N, + v;, Ny + vy, ., M) if, and only if,
H € &% (Ny + vy, Ny + v, N + v, Ny + v, ., M).

We reformulate Proposition 3.2 and weaken an intermediate result of [EIR6}:

PROPOSITION 3.3. Adopt the hypotheses of Proposition 3.2.
Let v > 0. Then for all M, u > O there exist a, w > 0 such that A,-S,"Cf"(G) C
C'"'(G)NLy(G) forallt > Qand p € R,

—p 2
1AiSFlloe < ar™P*2Aeet+20 g5,

and
_(D'+2 _ 2
IA; S @lllce: < ar= P23~ g5

uniformly for all H € &% (v,0,v,0, 4, M), ¢ € C*(G), t > 0,i € {1,...,d},
p € Rand ¢ € CX(G) with ny() < 1.

PROOF. This follows as in the proof of [EIR6, Proposition 4.4].
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PROPOSITION 3.4. Adopt the hypotheses of Proposition 3.2. Let v > Q. Then for
all M, i > O there exist a, > 0 such that S{C>(G) C C*’(G) N L(G) for all
t>0andp e R,

I1820llo < at™P e +0 )5,

and
—D'/j4,—v/2 2
IS @lice: < ar=P/4 =21+ g5

uniformly for all H € &%(v,0,0,0,u, M), ¢ € C*(G), t > 0, p € R and
Y € CX(G) withn,(¥) < L.

PROOE. This follows from the inequalities (30) and (34) in [EIR6]. In fact, one
only needs a uniform bound on the modulus of right continuity of the second-order
coefficients.

The next proposition establishes that one has kernel bounds starting from bounds
on derivatives of S and §;° = U,e™"""U", provided these bounds are uniform for
all H in a set &% (N> + va, Ny + vy, N| + v}, Ny + vy, u, M) for each u and M.
The seemingly surprising fact is that for this proposition there is no relation needed
between the number of derivatives posed on S7 and S; and the N, v,, etcetera.

PROPOSITION 3.5. Fix N, N* € Ng and v,v* € (0, 1). Next, let N,, N;, N{, Ny €
No, vo, v, v, € [0,1), w > 0 and N' € N. Assume N, + v, > 0 and the
inequalities (17). Suppose for all M > 0 there exist a > 0 and w > 0 such that
SfC®(G) C L)y, A*STCP(G) C CY'(G) N Ly(G) for all a € Jy(d'), where A
is the L,-derivative, S;*C2°(G) C L. ., AS"C>(G) C CV'(G) N Loo(G) for all

B € Jy-(d),
D' — 2

(18) |A%SP@| o < at~D/4712ge 100 g1

(19) | A*SP@llcvr < at P13 aln/2guolid oy
—-D'/4,—|B|/2 142

(20) AP S 2 @lo < at™D/4~1B112e00+001 | g5,

Q1) (AP @llcw < ar™P A= WBID2g00+0%00

uniformly for all H € &% (Ny + vy, Ny + vy, N] + v}, No + v, u, M), ¢ € C2(G),
a € Jyd), B ey(d)peRandyy € CX(G)with ||A" Y|l < lforally € J(d')
withl <|y| < N'.

Then for all k > 0 and M > 0 there exist a, b > 0 and w > 0, such that for each
H € &%(N, + va, Ny + vy, N| + v}, No + vo, b, M) the kernel K of the semigroup
S generated by H is N-times differentiable in the first variable, the derivatives with
respect to the first are N*-times differentiable with respect to the second, the derivatives
are continuous,

(22) I(AaBﬁK,)(g; hy| < at—D'/2t—(lvll+Iﬂl)/Zewfe—b((gh"I’)Zr"
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and

I(A*BPK,)(k™'g;1"'h) — (A*BPK,)(g; )]

(23)
o k|’ i 1y O W
< gt~ P12 =el+1BD/2 got b(lgh™'")t
=a € t1/2 + [gh—ll/ + tl/2 + |gh—ll/ ¢

uniformly for all a € Jy(d), B € IJv-(d'), t > 0, g,h € G and k,l € G such that
(k" + (1" < kt'? 427 gh™ !

PROOF. The proof of this proposition is an elaboration of the proof of [EIRG6,
Proposition 4.5], so again we indicate the differences. Let A} = U, AU, It follows
from [Rob, p. 191], that for all « € Jy(d’) there exist c,5(p; ¥) € R such that
(AP = Zwﬁlal cap(0; Y) AP with p > cos(p; ¥) a polynomial of order || — |B], in
p, which depends on ¢ only through the derivatives A”y with |y| € {1, ..., |le|—|8]}.
So

HAYSEPlloo < D Ieap(ps YN AP SL Q) o

[Bl<ler]

< Z a +pZ)(IaI-IﬁI)/2at—D’/4t—Iﬂ|/2ew(l+p2)t lells
1BI<let]

-p - - - / ’
<a'tPM Z ¢~ (I=IBD/2 =181/ 20 (U021 | |15
1Bl<ie|

. , 2
(24) — a//t—D /4’—|a|/2ew (1+p )1”40”2-

Here a” depends on v only through the ||A”{r|| with [y]| € {1,... ,N VvV N'}.

Similarly,
I = LEDAY S0l = Y IU = LUNCus (03 WA S0
1Bl<laf
< Y (I = LD (03 Wl APl
1Bl<le|
25) + IL0)Cas (03 W)l ll(T = LU AP S )

by (5). Now [|(I — L(k))cap(0; ¥)lloo < a'lk|' (1 + p*)1*I=18D/2 where a’ depends on
¥ only through the [|A¥ ¥ [l With [y| € {2, ..., [a| — B[ + 1} by (6). Therefore

I = L)) cas (03 W) Il AP SP@lle <l (14 p2)HI=18D/2q =D 1Ay —IB2 4000 |
< arr,k'ft—D’/4t—{al/Zew’(l+p2)t|,¢II§

< am(IkI/)Ut*D//4t—(Ia|+u)/26w"(l+p2)t ”‘P“i
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forall k € B’(1) and r > 0. The second term in (25) can be estimated similarly and
hence for all M > O there exist a > 0 and w > 0 such that

I = LD A™ SP@lloo < a(lk]')'t™ 0102 g 5

uniformly for all H € &% (N, + vy, Ny + vy, Ny + v;, No + v, b, M), ¢ € C2(G),
a € Jy(d), k€ B(1),p € Rand ¢ € CZ(G) with |[A?Y [l < 1 forall B € J(d')
with 1 < |B] < N v N’ + 1. But then it follows from (24) that these estimates are
valid for all £ € G by increasing a, w and N'.

Now let $** denote the Ls-adjoint of S*. Then S** is the semigroup generated by
the subelliptic operator (H*)_,, where H* is formally given by H* = (A™'HA)*.
Precisely, H * = H2%* Hence, arguing as above, given M > () there exist a > 0 and
w > 0 such that

Her, Sf;‘\pﬁfpzﬂ = [(APPSP 0, @o)| < at P20 16 s s 5
for all ¢, ¢, € CZ(G), where ;\\, = A, — b;1. Therefore
ISP (APYgls < ar=P g B2gu0 e g1
and similarly,
ISPCAPYP (I = ADT LA Dells < (i) s=P 1 2ee 4o g

for all ¢ € C(G) and ! € G. Combining these estimates one deduces as in [EIR6]
that for all M > 0 there exist a > 0 and w > 0 such that

(26) I (A”)"S,"(Xp)%lloo < at Pl HB 2 golitodr ) )
and

JA@Y ' Lk)(A*)*SP(APYP L) — (AP)*SP(AP)P ||, e
27)
<a ((lk'/t—-]/Z)u('”/t—]/:Z)u‘+('klrt—]/2)v+(illltél/Z)v‘) t—D'/2t7(]a]-Hﬂ])/2€w(H-pz)l

uniformly for all H € &™(N, + va, Ny + vy, N| + v, Ny + vy, u, M), k1 € G,
a € Jyd),petyv(d)pecRandyy € CX(G) with |AY Y|l < lforally € J(d')
withl <|y|<NVvN*VN +1

Now it follows as in the proof of [EIR6, Proposition 4.5] that for all ¢ € Jy(d')
and B € Jy.(d") the operator A“S,A? has a continuous kernel K™*?  Of course
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K, = K®# is the kernel of S, if |«| = |8] = 0. But for all ¢,, ¢, € C*(G) one has

(—1)""*"3'[ dg /dfzK,(g; 1) (A1) (8) (AP 02) (h)
G G
= (=DA%, 5,4%0) = ()" (g, A°S, APp2)

= (—1)"3'[ dg ¢,(2)(A*S,AP0,)(g)
G

= (—1)"5"/ dg/dfl K“P (g; h)p) (g)pa(h).
G G

So by density
(— 1)+t / dg / dh K,(g; h)(A*Bp)(g; h)= (—1)#! / dg / dh K (g; h)o(g; h)
G G G G

for all ¢ € C*(G x G) and the (=DBIKP are the successive distributional de-
rivatives of K,. Since the K ,(“'ﬂ ) are continuous one deduces from the lemma of Du
Bois—Reymond that K, is N times differentiable in the first variable, the derivatives
are N*-times differentiable in the second variable and all derivatives are continuous.
Then the bounds (26) give

|(A"BﬂK,)(g; h)| < at—D'/2t—(Ial+lﬁl)/26w(l+pz)tep(‘#(g)~\0(h))

for all g, h € G and minimizing over p and ¥, using [Rob, pp. 201-202], gives the
bounds

(28) |(A“BBK,)(g; h)| < at—D'/Zt—(Ial+lﬂ|)/2ew’!e~blgh"lzt" ,

where | - | is the strongly elliptic distance. This enters because the estimates involve
the second and higher derivatives of the yr. Note that in the strongly elliptic case we
have now proved the bounds (22).

Next we use a scaling argument to deduce that the bounds (22) are also valid in the
stratified case. For u > 0 let y, be the dilations on G. For u € [1, co) let H, be the
operator with coefficients c{;’ = c;; 0y, ¢/’ =u~'c; oy, ¢ =u~'cjoy, and
cs” = u"2cooy". Then H, € EW(No+vy, Ni+vy, Ni+v!, No+vj, i, M), uniformly
for all u > 1. Moreover, (H(¢ oy,)) oy, = u?H,p and hence (S,(poy,)) oy, ' =
S% ¢, where S® is the semigroup generated by H,. Therefore the kernel K of
the semigroup S satisfies K% (g; ) = u P K,(y, ' (g); v, '(h)) for all t > 0.

t
Consequently, setting # = ¢ ~'/? one finds

Ki(g; h) = 17K (v (8); Vi (h))
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forallt € (0, 1)and g, h € G. Similarly,
(29)  (ABPK,)(g: h) = 1P/~ (42 BRI (3, 1n(g); y-in(h))

forallt € (0,1]and g, h € G.
By [VSC, Proposition 111.4.2] there exists an n > 1 such that |g| > n]|g| for all
g € G with |g|" = 1. Then

(30) g blal’t! < ebnebnlie!
forall g € G and t € [1, oo). Therefore, by (28)
|(AaBﬂK,(u))(g; h)| < at~D'/2t—(Ial+|/3|)/26w'fe—b(|gh_'l’)zl"

uniformly forallu > 1,7 > 1 and g, h € G, for some redefined a and b. So for all
t > 1 the estimates (22) follow by setting « = 1.
If t € (0, 1] a combination with (29) yields
|(A*BPK,) (g3 )| = 170 2R (A B K ) (g )
< qr D2l HB) /2 p=blgh !

uniformly for all ¢+ € (0, 1] and g, h € G and one deduces the estimates (22) for the
subelliptic operators.

Next we turn to the Holder bounds. Starting from the semigroup bounds (27) it
follows as in [EIR6] that there exist a, a’, b, @ > 0 such that
|(A*B®K,)(g; h) — (A"B’K)(k'g; 17" )]

ﬁa((lkllt—l/Z)V(ll|/t—1/2)u‘+(|klrt—l/2)u+(|l|/t—l/2)u‘)t—D’/2t—(|a|+|ﬂ|)/26wte—c|gh"Izt"
_|_a’|gh—1|t—l/2(}k|+|[|)t—1/2820t"|3h"I(Ik|+lll)t—D'/2t—(Ial+|ﬂl)/2ew'te—b(lk"gh’lll')zt"

uniformly for all g, h, k,! € G, t > 0 and large w, where ¢ = (4w)~!. Note that the

strongly elliptic distance enters even in the subelliptic case. By increasing w one can
make c¢ arbitrarily small. Obviously,

lgh-l|,—1/2(|k|+|l|),—1/262Ct"Igh"l(lkl+lll) < |gh—l|/t—l/2(|kl'+‘llf)t—l/2e2a"lgh"I’(Ik|’+!l|’)

since |g| < |g|. Moreover, e~#""'""" < grng=enleh IV by the estimates (30) if
t €1, 00).
Now suppose either H is strongly elliptic and ¢ € (0, 0o) or G is stratified and
t €1, 00). Then
(A“BPK,)(g; h) — (A*BPK,)(k"'g: 17'h)|
Sa((lklzt—l/z)vq”/t—1/2)u'+(lk‘zt—1/2)v_i_(|ll/t—1/2)\;*)t—D'/zt—(m|+Iﬂ|)/2emre~c(|gh-'|’)2r‘
+a/1gh"|/t“/2(|k|’—+—|l|/)t"/2e2“""g""""""+"")t""/2t“""+""Vze“’"e"’("“13"'1”')2"'
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for some redefined constants. One can now continue to argue as in [EIR6] and deduce
that for all M > 0 and « > O there exist @, b, w > 0 such that

|K:(g; h) — K.(k'g; 17" h)|

<at """ W + _w blah !
112 + |gh™l) 112 + |gh-

uniformly forall H € &% (N,+v,, Ny+vi, N;+v}, No+vo, u, M)and g, h, k,l € G,
whenever |k|' + |I|' < «t'/? + 27" |gh™!|’. This establishes the estimates (23), except
in the stratified case if + € (0, 1). But these can be deduced by a scaling argument
from the bounds with t = 1.

We combine Propositions 3.3, 3.4 and 3.5.

THEOREM 3.6. Let v; € (0, 1), v;, vy € [0, v,] and H and subelliptic operator in
divergence form (1). Suppose either

(a) H is strongly elliptic, or

(b) G isstratifiedanda,, . .. , ay is a basis for §, in the stratification (8, )me(1.... 1}
of g.

Let N,N* € {0, 1}, v, v* € [0, 1) and suppose that N +v < 1 + v, and N* +v* <
1 + v, with the exception of the case N + v = 1 if vi = 0 and with the exception of
the case N* +v* = 1ifv, = 0. Ifc;; € C*', c; € C" ' ifv, > 0,¢, € CV ' ifv] > 0
and ¢y € Ly, then for all k > 0 there exist a, b > 0 and w > 0, such that the kernel
K of the semigroup S generated by H is N-times differentiable in the first variable,
the derivatives with respect to the first are N*-times differentiable with respect to the
second, the derivatives are continuous,

[(A*BPK ) (g; h)| < at=D12p=el+1BD/2 go't p=blgh ™'Y
and

I(A*BPK,)(k™'g;17'h) — (A°B?K,)(g; h)|

D k| ! 1y N
< gt =Dl HIBD/2 yot o -blleh™ 1)
= i gn ) T\ e

uniformly for all € Jy(d'), B € Jy-(d'), t > 0, g,h € G and k,l € G such that
K+ W < K12 427 gh™ .

Moreover, for all M, u > 0, N, N*, v, v* and k the constants a, b and w are
uniform for all H € & (v,, vy, v}, 0, u, M)

PROOF. This follows immediately from Propositions 3.3, 3.4 and 3.5.
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COROLLARY 3.7. Adopt the hypotheses of Proposition 3.2. If c;;, c; € C’ for some
ve(0,1)andc;, cog € Ly then S, maps L, into L;J;l and there exista > Oand w > 0
such that

IS7¢ll, < ae” ™ lgll,,

A SPoll, < at™'?e7 g,

and
(I ~ LN A Sipll, < a(lkl')’t= e o],

uniformly for allt > 0, p e (1,00, i € {1,...,d}, k€ G, ¢ € L, p € Rand
¥ € CX(G) with |[Aj¥ |l < Y forall j € {1,...,d'}. Moreover, forall M, n > 0

the constants a and w can be chosen uniform for all H € &% (v,0,v,0, u, M).
Similar results are valid on L ;.

PROOF. The operator U,A;S,U," has kernel (g, h) e PVE-VI (A K,))(g; h)
and
|e_p(“'(g)_"'(h))(A,~K,)(g; h)l < at'l/zew’G,p(gh_l)

where G?(g) = t~0'/2¢=b0s’™" gloligl for some @, b > 0 and @ > 0. So
|(U,A:5.U, " p) (9)] < / dh eV @VI(AK,)(g; b)| lp(h)]
G
< [ dhar e Gk Dlp] = ar™ e (G + o) (o).
G

Therefore
WU,ASU, oll, < at™ e |G| lIpll, < a't™' e g,
Similarly ||S7¢], < ae*"**||p||,. Then
APl = NU,AS U 0 — pyiSPolly < at™' e Mgl .
Next we prove the Holder bounds. If |k|' > ¢'/? then
I(I — LNASoll, < 2lA;Sell, < 2at™e” |lpll, < 2a(kl')'t e ||gll,.
Alternatively, if |k|" < ¢'/? then
(A KDk g5 h) — (AiK,) (g b)| < a(lkl)' e~ %e” G, (gh™")

where G,(g) = t~2/2e=01e""""" for some a, b > 0 and @ > 0. So for all g € G one

has
(I — L(k)AiSi@) (&) < a(k])'1~2e” (G, * |9])(g).
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Therefore
I = LGN A Spll, < a(k])' 1= 2 |G i llgll, < a' (k)12 gl
and the corollary follows.
COROLLARY 3.8. Adopt the hypotheses of Proposition 3.2. If ¢;;, c; € C"' for some

v € {0, 1) and ¢;, ¢y € L then there exist Ay > 0 and a > 0 such that (A + H)™!
maps L, into L, and |A;(A + H) ||, , < ar™'"? uniformly for all A > X, and

p € [1, oo]. Moreover, forall M, u > 0 the constants a and Ay can be chosen uniform
forall H € &% (v,0,v,0, u, M)
Similar results are valid on L.

PROOF. This follows from the Laplace transform of the bounds
1A;Sipll, < at™"2e”|oll,

of the previous corollary.

COROLLARY 3.9. Let H be a subelliptic operator in divergence form (1). Suppose

either

(a) H is strongly elliptic, or

(b) G isstratifiedanda,, ... , aqs is a basis for §, in the stratification (8, )meq1.... 1)
of g.

If cij,ci € CV' for some v € (0,1) and c/, cy € Ly, then there exist Ay > 0 and
a > 0 such that A1 + H)™' maps L. _, into L, and

IO+ HY ' Al < ar™7

uniformly for all A > Ay and p € [1, 00). Similar results are valid on L.

4. Resolvent estimates

Let H be a subelliptic operator in divergence form (1). We next examine properties
of the resolvents (A/ + H)~' acting on the L,-spaces, L,(G; dg), with p € (1, 00},
and on the associated spaces L; = L,(G; d 2).

The operator H is initially defined on L, through the sectorial form & given by (3)
and the resolvents (A] + H)~' do not necessarily extend to the L ,-spaces or the related
Sobolev spaces (see [ACT]). This requires some smoothness of the coefficients.

If the principal coefficients of H are right uniformly continuous then H generates
a continuous holomorphic semigroup § on L, which extends to all the L,-, and
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L;-, spaces by [EIR6, Theorem 1.1]. The action of S, is determined by a kernel
K, which satisfies Gaussian bounds and is Holder continuous. One cannot expect a
Gaussian kernel to exist for general strongly elliptic, complex, operators [ACT]. Itis
essential that the principal coefficients are real or satisfy some smoothness condition
such as uniform continuity. The existence of a kernel satisfying (Holder continuous)
Gaussian bounds does, however, imply many more structural properties of H and S.
For example, it follows as in [EIR3] using arguments as in the proof of Theorem 4.6
below, that H has a bounded holomorphic functional calculus on each of the L -, or
L 3-, spaces with p € (1, oo). This in turn implies some domain properties for H and
its fractional powers.

If » > 0 is large enough then Al + H generates an exponentially decreasing
semigroup uniformly on all the L,-spaces, where p € [1, 00]. Then the fractional
powers (Al + H)Y, y € [0, 1], are defined on L,. Note that the (graph-)norms on
the spaces D((A,I'+ H)?) and D((X,I + H)") are equivalent whenever A;, A, > A
(see [Rob, Lemma I1.3.2]). Next the existence of a bounded holomorphic functional
calculus implies D((AI + H)") = [L,, D(H)],, for all y € (0, 1), and D((AI +
H)) = [L,, D((A\] + H)'H),,, for all y € (0,1/2), where [-, -], denotes the
complex interpolation space. But these identities are not particularly useful in relating
the domains with the Sobolev spaces unless one has some further identification of
D(H) or D((AI + H)'?).

The Kato problem consists of establishing conditions under which D((AT +
H)'?) = L, ,. Once this condition is verified one then has D((AI + H)"/?) = L, for
¥ € {0, 1]. Note that it follows from [Kat1, Theorem 3.1], that D((AI +H)"*) = L},
for all y € (0, 1) even if the coefficients are only measurable. The difficulty is with
the value y = 1.

If G = R? and the coefficients are Holder continuous the Kato problem has been
resolved positively by Lions [Lio], Mclntosh [McI] and [AMT]. In [McI] domains
in R? are also allowed under some weak smoothness assumptions. On (general) Lie
groups these results are slightly weakened.

THEOREM 4.1. Let H be a subelliptic operator in divergence form (1). If ¢;; € C”’
for some v € (0, 1) and ¢;, ¢}, ¢y € Lo then D((M + H)'*) = L)), for all large A.

Moreover, for all M, u > O there exists a Ao > 0 such that for all y € (0, v) and
A > Mo there exists ana > O such that L, < D((A] + H)Y*/?y and

I + H)Y 20l < allolly,,,
uniformly for all ¢ € L) ., and for all operators H with uc > p, liClllc:- < M,
[Clloo <M, liclloe <M and |lcollec < M.

Similar conclusions are valid on L;.
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PROOF. This theorem is basically proved in [EIR5]. The lower order terms ) A;c;+
¢ol can be added directly to the principal part in [EIR5] and then the lower order terms
3" c¢;A; can be added by the perturbation-interpolation argument. The uniformity of
the constants follows from the proof, together with the next lemma.

LEMMA 4.2. Forall M, u > Othere existsary > OQsuchthatforally € (0, 1) there
exists an a > 0 such that for all subelliptic operators H of the form (1) with [Lc > L,
IClle < M, lIcllc < M and||colloc < M one has D((A] +H)") = [Ly, D(Al+ H)],
and

-1
a el porvay, < AL+ H)Y ¢l < all@lli,.oarvmy,

uniformly for all . > Ag and ¢ € D((AI + H)Y). Moreover,
3D (Aol + H)Y @l < IA + H) ¢,
forall & > hgand ¢ € D((Agl + H)?).

PROOF. Let A, € R be such that (A — 1)/ + H is a maximal accretive operator. The
constant A, depends only on M and w. Then for all A > A, the operator A/ + H is an
injective closed maximal accretive operator. So by [ADM, Theorem G], the operator
Al + H has a bounded H,, (A (8))-functional calculus, in the sense of [CDMY], for
any 8 € (0, 7/2), and

AT+ H) 2wz < sup{| f(2)] : z € A(6)}

forall f € H.(A(6)). Therefore the operator A7 4+ H has bounded imaginary powers
and |[(A] + H)"||2 < €™"V2 for all t € R. Then the first part of the lemma follows
from [Tri, Theorem 1.15.3].

Finally, applying the bounded H,, (A (#))-functional calculus of the operator A¢/ +
H to the function f(z) = z"2(A — Ay + 2)~ (1472 yields

ol +H)"* 20l < || f (ol + H) a2l + HY' 20|, < | +H) 20|,

forall A > Ao and ¢ € D((AI + H)tV/72),

COROLLARY 4.3. For all M, u > O there exists a Ag > 0 such that for all § €
(0, 1+ v) and X > A there exists an a > O such that L, ; € D((AI + H)*?*) and

I + HYoll, < allglly

uniformly forall ¢ € L, ; and for all operators H in divergence form (1) with jic > u,
ICllcr =M, IClloc < M, llclloo <M and ||colloc < M.

Similar conclusions are valid on L.
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It follows from Theorem 4.1 that L, ; € D((AI + H)*?) on a general Lie group if
ci; € C""and ¢, ¢}, cg € Lo. We next show that the spaces L) ; and D((A] + H)*/?)
are equal, if, in addition, the c; are Holder continuous and the operator is strongly
elliptic or the group is stratified, by exploitation of the heat kernel bounds developed
in Section 3.

THEOREM 4.4. Let H be a subelliptic operator in divergence form (1). Suppose

either

(a) H is strongly elliptic, or

(b) G isstratifiedanday, ... , ay is a basis for §, in the stratification (8, ) me1.... 1}
of g.

Ifve(0,1),y € (0,v), c;;,c; € C*',and c;, cy € Lo then D((AI + H)!HV72) C
214y Jor large i and the embedding is continuous.

Moreover, for all M, . > 0 there exists a Ay > 0 such that for all y € (0, v) there
exists an a > 0 such that

L

Tolhi,, <alitn? + BV,

uniformly for all H € &% (v, 0,v,0, u, M), > > rgand ¢ € D((A + H)'+7/?),

Similar conclusions are valid on L;.

PROOF. The proof consists of several steps.

STEP 1. First we reintroduce the Lipschitz spaces associated with left translations
on L, of [EIR1]}, but now we clearly indicate the p-dependence in the notation. Let
O be a fixed bounded open neighbourhood of the identity of G. For p € [1, oo] and
y € (0, 1) define | - ||L-7: L, — [0, o] by

: I/p
lells? = llell, + (/,;- dg (11" (g7 Id — L(g))sollz)")

if p < oo with the obvious modification if p = co. Then define the Lipschitz
space L(Zf’;(L) = {¢ € L2(G) : llgll;? < oo}. It follows from Corollary 3.7 that

AiS,¢ € LY)(L) and
1AiSilly > < ayt™ e gl

forall y € (0,v] and ¢ € L,. The constants a, and w, depend on H through M
and u.

STEP 2. For any interpolation pair (2 ,%), ¥y € (0,1) and p € [1,00] let
(&, %), p.k be the interpolation space by the K-method of Peetre (see [BuB, Defini-
tion 3.2.4]). Then it follows from [EIR 1, Theorem 3.2], that L(z’;’; (L) = (Ly, L. )y pixs
with equivalent norms. Therefore

—(1+y)/2
nAiSt‘pn(Lz,L'Z:])y,x;K =a,t HN2emt ol
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for all y € (0, v], and some redefined value of a,. But this means that S, maps L,
continuously into (L,, L).,)), , k., the once-differentiable functions with derivatives
inthe Lipschitz space. But (L,, L}.,), p.x;1 = (L2, L3.5)(144)/2.p:x by [EIR1], Theorem
2.1.111, with equivalent norms. Hence

—(1 2
”Sf(p”(LZ-L'Z;z)(Hy)/z.oo:K = ayt e ewYI|‘(pHZ

for all y € (0, v], for some redefined a,. Then, by the reiteration theorem ([BuB,
Theorem 3.2.20 and Corollary 3.2.17]), one can deduce information about the inter-
polation spaces with p < co. In particular the foregoing bounds can be transferred to
the spaces (L3, L).,)14y)/2.2:x- One deduces that

ISPl Loty pripmnan < @yt~ gl
for all y € {0, v).
STEP 3. Now fix y € (0, v). We shall prove that
(32) : (L2, D(H)) 4y 226 S (L2, L)) 14y 2.2:5

and the inclusion is continuous. Let § € ((1 + y)/2, (1 + v)/2) C (27}, 1) and set
0 = (28)"'(1 + y) € (0, 1). By the reiteration theorem it suffices to prove that

(L2, D(H)) 4y 2.2:x S (L2, (L2, L35)s 2.k )6.2:x

with continuous embedding. Now each ¢ € L, can be decomposed as ¢ = (I —
Si«)¢ + Si«, where @ = §~'. Then one can argue as in Step 4 of the proof of [EIRI,
Theorem 3.2], using the bounds of the present Step 2 instead of [EIR1, Lemma 3.3],
that

”(p”(LZ-(LZ»le;z)s.Z:K)G.Z:K = C”¢”(Lz»D(H))(|+y)/242:K

for some ¢ > 0, independent of ¢, but dependent on y and H through M and (.. Then
(32) follows.

STEP 4. The spaces (L,, D(H))q+y)22:x and (Ly, D(/H|))(1+y)2.2:x are €qual,
with equal norms. Next, for all § € (0, 1) there exists an a > 0 such that
(Ly, D(T))g2.x = D(T?) and

—1 ]
a  Nelw..oayex < NT @l < all@llw,.perc

for any positive self-adjoint operator T and all ¢ € D(T?) (see [LiM, Theorem
1.15.1)). But D(T®) = [L,, D(T)]s, with equivalent norms, the norms are inde-
pendent of T (see {Tri, Theorem 1.15.3]). Finally, [L,, D(|H )]s = [L,, D(H)]p,
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with equal norms. So if A is as in Lemma 4.2, then (L, D(H))q+y)22x =
(L, D(H))11y)2 = D((ho + H)'*7/%), with equivalent norms, independent of the
operator. Repeating these estimates for the Laplacian H; and using the equality
L), = D(H,) it follows that there exists an @ > 0, depending only on y, M and p,

such that
gl <alGo+ H)Y* 20|,

uniformly forallg € L), .
Finally the bounds uniformly for all A > A, follow from inequality (31) of

Lemma 4.2.

COROLLARY 4.5. Adopt the assumptions of Theorem 44. For all v € (0, 1),
M, i > 0 there exists a Ao > O such that for all § € [0, 1 +v) and & > A, there exists
ana > 0 such that D((\I + H)*?) = L), ; and

a '\ + HY Pl < llollys < alM + H) ol

uniformly for all H € &% (v,0,v,0, u, M) and ¢ € L ;.
Similar conclusions are valid on the Ls-spaces.

Next we extend the Kato regularity to other L ,-spaces.

THEOREM 4.6. Let H be a subelliptic operator in divergence form (1). Suppose

either

(@) H is strongly elliptic, or

(b) G isstratifiedanda,, . .. , a, is a basis for 8, in the stratification (8,))me(1.... 1)
of g.

Ifcij,c; € C”' for some v € (0, 1) and if p € (1, 00) then D((A I + H)'?) C L,
for all large A. Moreover, for all M, u > O there exists a Ay > O such that for all
p € {1, 00) there exists an a > 0 such that

el < allA + H)ol|,

uniformly for all H € £ (v,0,v,0, u, M), > > Agand ¢ € D((A + H)'/?).
Similar conclusions are valid on the L ;-spaces.

PROOF. The proof is nearly the same as that of [BER, Theorem 2.3], so we only
indicate the significant differences. We prove the embeddings and inclusions on the
spaces with the right Haar measure. They then follow for the left Haar measure by
the arguments given in [BER, Lemma 2.1].

It suffices to prove the bounds for one particular A since the uniform bounds then
follow by the argument used in Step 4 of the proof of Theorem 4.4. This latter
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argument relies on the fact that there exists a A > 0 such that A/ + H has a bounded
H,.-functional calculus on the L,-spaces uniformly for p € (1, 00). If p = 2 this
follows because A1 + H is maximal accretive (see [ADM, Theorem G]) and for the
other values of p it follows from a similar adaptation of the proof of [EIR3, Theorem
3.1] as the present proof is an adaptation of the proof of [BER].

We may assume that / generates an exponentially decreasing semigroup uniformly
on all the L,-spaces. Fix N € N, N > D’ and fix a large A > 0. It will be clear from
the proof which value of A is required. For j € N consider the operators

X; =jYGI+ H)™NGI+ H)™V2
Then for fixed i, € {1, ... ,d’}
1Ay X0l < I + HY X0l = i IGT+ H) Vell; < llell;

uniformly for all j € Nand ¢ € L; by the bounds of Theorem 4.4. Thus the operators
A, X; are uniformly bounded on L;.

It follows, as in [BER], that the X; have ‘good’ kernels, but now they are functions
of two variables,

(X;0)(g) = / dhk;(g: h)o(h),
G

where k;: G\{e} — Cisdefinedbyk;(g; h) = f0°° dt f;(t)K,(g; h) and f;: (0, o0) —
R is a function such that

(33) fit) <at™'(jtye™

for some a > O, uniformly forallt > 0,A > 0,7 € [0, N]and j € Nwith j > 2A (see
[BER, Lemma 2.4]). Choosing T = D’ and using the Gaussian bounds of Theorem
3.6 together with the estimates in the Appendix of [EIR3] one can then show that k;
is differentiable in the first variable,

(Aik;) (g h) =] dt fi(t)(Ai, K) (g5 h)
0

and
(k) (g5 h)| < c;jeblsh I

if A is large enough. In particular the bounds show that the action of X; can be defined
with the kernel k; on all the L ;-spaces, and in particular on L;, for all large A. These
bounds depend on j. Similar bounds starting from 7 = 0 give j independent bounds
for the A; k;,

(34) |(Aigk;) (g3 h)| < c(lgh™"])~P e-ttsr 17
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if A is large enough. But the integral of the latter bounds with respect to left or right
Haar measure is logarithmically divergent. Therefore one has to apply the methods
of singular integration theory, for example [CoW, Theorem III.2.4j, to obtain L;-
boundedness properties of A; X.

At this point a problem occurs. The usual theory of singular integrals is restricted
to spaces of homogeneous type, for example, spaces with the doubling property. This
is sufficient to deal with operators on compact Lie groups or Lie groups of polynomial
type but it is not adequate for Lie groups whose volume grows exponentially. In
particular it does not apply to non-unimodular groups. For groups of exponential
growth one needs a supplementary argument which was first given in {Bur] and later
used in [BER] and [DuR].

The starting point is the observation that each Lie group G has a local doubling
property. Therefore one can use the estimates in [CoW] on any bounded subset of G,
whether or not this subset has the doubling property. In the appendix we explain how
one can adapt the resuits of [CoW] to this more general situation.

Because of the bounds (34) we localize the problem as in [BER]. Let x, x; €
C>(B'(2)) be such that x(g) = xi(g) = 1 forall g € B'(1). Consider the operator
T;: L;(G) — L;(G) defined by

(To)(g) = / dh (g Mp(h)
G
where
ki (g h) = (Aik;)(g; h)x (gh ") xi(h) =/ dt f;(t)(A, K)(g; ) x (gh ) xi(h).
0

Sok;j(g;h) =0if g & B'(4) or h & B'(4). Obviously k; € L,(G x G,dg ®dfz) and
by the arguments [BER] there exists a ¢ > 0 such that ||T;||5_,5 < ¢ uniformly for all

J € N. These are the first two conditions of the theorem of [CoW] (see the appendix).
For the third and most difficult condition, it suffices to prove that

sup sup / dg lkj(g; h) — k;(g; ho)| < 00
QU(h,hg)

J  hhoeG

where Q(h, hy) = {g € G : d'(g; hy) > 4d'(h; hy)} with d'(-; -) the subelliptic
distance on G. One deduces from the triangle inequality that the integral is zero if
h & B'(6) or hy € B'(20/3).

Then by right invariance

sup sup / dg lk;(g; h) — x;(g; ho)l
Q(h.hg)

j  hhoeG

< sup sup f du(g) |x;j(gho; h) — k;(gho; ho)l,
Q) (h.ho)

j  h.hoeG
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where Q,(h, hy) = {g € B'(11) : |g|' > 4|hhy'|'}.
Leth € B'(6), ho € B'(7), g € B'(11) and suppose that |g|' > 4|hh;'| > 0. By
the definition of «; we estimate

[(Ai, Ko )(gho; h) x (ghoh™") x1(h) — (A, K:)(gho; ho) x (8hohg ') X1 (ho)|
< (A K (gho; h) — (Ai, K,)(gho; ho)llx (ghoh™ )1 x1(h)]
+ (A, K (ghos ho)llx (ghoh™') — x (&)1 1x1 (B)]
+ [(Ai, K) (8ho; ko)l x (®)Ix1(h) — x1(ho)

-D'/2.,— — 2=l —
S a/(lhholl)vt D/Zt (1+V)/2e b(|gl')t e(ﬂ) At

by the bounds of Theorem 3.6. These can be applied to the first term since |hh;'|" <
4 gl =47Y ghohy 'I" and for the last two terms one estimates the differences of the
functions x and x; in terms of their derivatives. Using the bounds (33) and estimating
as in the Appendix of [EIR3] one deduces that

o0
Ik (ghos ) —1;(gho; ho)] < f dt at™Pe™Ma (o[t~ P2 (2SI gl
0

<a"(Igl") "2 (lhhol)

uniformly for all j > 24, if A is large enough. But if ¢ = sup, 4, 1|B]],
s = d'(h; hg) = |hhy'| and N, € Ny is such that 2V~ < s~ < 2¥73 then we obtain

N
f dgs"(g) P <Y / dgs*(gl)™>™
B

"(1D\B'(2s) n=0 v B'Q "\ B (27"+3)
Ny
< E Csv(z—n+3)—D’—u(2—n+4)D'
n=0

= 2P et () — 1)@ 1) < 2P0 — ),

Hence

dg k;j(gho; b)) — k;(gho; ho))| < 2°*(2" = 1)7'a”,
Q) (h.ho)

which is the third and last condition of Theorem Al in the appendix, uniform in j.
So the operators T; satisfy uniform weak-L; estimates and arguing as in Theorem
2.3 in [BER] we obtain the estimates

p({g € G : (Fp)(@)| > v) < Moy lloll;

uniformly for j € N with j > 2), fory > 0and ¢ € L,(B'(1)) N L,(B'(1)), where

(Po)(g) = / dh (A, k) (g; h)x (gh™ e (k)

G
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and p is the right Haar measure. The value of M, can be chosen uniformly for all
H e &%(v,0,v,0, u, M) for each prescribed M > 0.

By [BER, Lemma 2.5] there exist g;, g2,... € G and Ny € N such that G =
Uiz, B'(1)g; and each g € G is an element of at most N, balls B'(3)g;. Let (),
be a partition of unity relative to the cover G = | J-, B'(1)g;. Then supp P;(¥;¢) <
B’'(3)g; forall ¢ € L;(G) and i, j € N and

plg € G:I(Fe)@] > v}
<2 _r(lg € G (PR R (i) @) > ¥ N;'})

(35) =Y p({g € G |(Ry PR R, (i9)) (®)1 > ¥ N;'})

=1

if j >2) Butifk € Gand ¢ € L; then

(Ri P Ri-19)(8) =f dh (Aik;)(gk; hk)x (gh™ ") (h).
G

Now if one replaces the operator H with coefficients ¢;;, ¢;, ¢; and ¢, by the operator
H* with coefficients R,c;; etcetera, then the kernel k; has to be replaced by (g, &) >
kj(gk; hk). But H* € &V (v,0,v,0,u, M) if H € &Y(v,0,v,0, u, M) for all
k € G. Therefore

p(lg € G : (R P;Ri-19) ()] > ¥ < Moy 'lloll;

uniformly for all H € &%(v,0,v,0,u, M),k € G, j € Nwith j > 2v, ¥ > 0and
@ € Ly(B]) N Ly(B;). So with (35) one establishes that

p({g € G:[(Pi¢)(@) > ¥D < ZMoNoy"IIRg,(llfi<p)lli = MoNoy ~'llolls-
i=1
The remaining part of the proof is precisely as in [BER]. It follows that the operators
A;, X; satisfy a uniform weak-L; estimate and by interpolation the theorem is valid
forall p € (1, 2].

Next assume p € [2,00). Now it suffices to show that the operators (A;, X j)’*
satisfy a uniform weak-L; estimate since this implies that the (4; X j)”; are uniformly
bounded on L; for all g € (1, 2] and then the A, X; are uniformly bounded on L.
Here % denotes the dual operator with respect to the right Haar measure. But the
operator (A;, X;)* has the kernel

(8, h) = (Aik;)(h; g) =f dt f;(t) (A, K)(h; 8).
0
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Since (A;, K,)(h; g) is Holder continuous in #, with the right kind of Gaussian bounds,
by Theorem 3.6, one can repeat the above arguments to deduce the validity of the
theorem if p € [2, 00).

COROLLARY 4.7. Adopt the hypotheses of Theorem 4.6. If c;j, c; € C”’ for some
v e (0,1) and ¢, co € Lo, then L), C D((AI + H)'?) for all large 1 and each
p € (1,00). Moreover, for all M, u > Q there exists a Ay > 0 such that for all
p € (1, 00) and A > Ay there exists an a > 0 such that

A+ H)'Poll, < alell,,

uniformly for all H € &% (v, v,0,0, u, M) and ¢ € L,
Similar conclusions are valid on L ;.

PROOF. This follows by duality as in [BER, p. 182].

COROLLARY 4.8. Adopt the hypotheses of Theorem 4.6. If ¢;j, ¢;, c; € C”' for some
ve (0,1)andcy € Lo then L), = D((A + H)'7?) for all large A > 0 and for each
p € (1, 00). More generally, L), = D((A I+ H)Y"?) forally € [-1, 1]and all large
A >0. Hence A\l + H)y™™?L, C L, . forally e[-1, 1 a €[] —y,1 -]
and all large » > 0.

Similar conclusions are valid on the L ;-spaces.

PROOF. The first statement follows from combination of Theorem 4.6 and Co-
rollary 4.7. The second statement follows by the complex interpolation argument
discussed prior to Theorem 4.4. The third statement is a straightforward consequence.

By definition of the quadratic form operator one immediately concludes that the
operators A;(Al + H)™'A; are bounded on L,, even if all the coefficients are merely
measurable. Now we prove bounds on A; (Al + H)™'A ; on L, for Holder continuous
principal coefficients. In Taylor [Tay, Theorem 2.2.H], it was established, for pure
second-order strongly elliptic operators in divergence form on R, that

d
IA/T + H) " Ajpll, < ¢ DI + HY ' Agpllr,, + cllll,
k=1

ifl<g<p<ooqe€ C’(RY) and 0 > 1 — v, using the machinery of pseudo-
differential operators. The next theorem improves these bounds.

THEOREM 4.9. Let H be a subelliptic elliptic operator in divergence form (1).
Suppose either
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(a) H is strongly elliptic, or

(b) G isstratifiedanda,, ... , aq is a basis for §, in the stratification (8,,) me(1.... )
of a.

Ifci;j € CV', wherev € (0, 1), and c¢;, ¢}, co € Lo then (A1 + H)_IL;);—I C L;;l
forall p € (1, 00) and large .

Moreover, for all M > 0 and p € (1, 00) there exist Ay, a > 0 such that

AT+ H)™! ”L’pﬁl—>L;,.] =a,

I+ H) My~ <ad™? and |G+ H) e, < ad P

uniformly for all . > A9 and H € £*(v,0,0,0, u, M).
Similar statements are valid on the L s-spaces.

PROOF. Let Hy = — Zilj=l A;cijA; +col. It follows from Theorem 4.6 and duality
that the operators A; (A + Ho)~™'/? and A; (Al + Hy)~'/* are bounded on L, and L.,
respectively, uniformly for all large A, where 1/p + 1I/p* = 1 and p € (1, oc).
Therefore there exists a A, > O such that for all p € (1, 00) there exists an a, > 0

such that
AT + Ho) ' Ajllpesp = AT + H)™'? (A, + HY) ) ey < @

uniformly for all A > 4,. Moreover, Corollaries 3.8 and 3.9 give the bounds || A; (A1 +
Ho) Mpep < ar™'? and (AT + Hp) 'Ajllp», < ar™"? for a suitable a > 0,
uniformly for all A > Aq and p € [1, oo], possibly by increasing A,.

Nextlet V =3 ¢;A;. Then

.,
IVOI + Ho) Mlpmp < Y Nekllooll AT + Ho) ' ey < @772
k=l

is independent of p. Therefore, if A > Ao Vv (2a’)? the series

and similarly ||V (A + Hp) 'Ajll,—, < a, uniformly for all A > Ay. The value of a’

o0

R” = (A + Hp)™ Z (=V I+ Hp)™')'

n=0

is norm convergent on L,. But a standard perturbation argument establishes that
R = (A 4+ H'™)~" where H'” is the L,-closure of the operator sum Hy + V.
Moreover, by comparison of convergent series R”¢ = R\W¢ forall ¢ € L » NLg,
each pair p,q € (1, 00) and all appropriately large .. Now we must argue that
the H? are the L,-versions of Hj, the sectorial operator with coefficients c;;, ¢;, ¢o
defined on L, by the form (3). Thus we must establish that (A] + H,) ¢ = Rf)(p for
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all ¢ € L,. If h, and h are the sesquilinear forms defining the operators H and H,,
respectively, then it suffices to prove that

AY, RP9) + by, RP9) = (¥, )
forall y € L, , and g € L,. But R’p € (A + Hp)™'L, C D(Hy) C L), and
RPp = i(u + Ho) ' (~VI + Hy)™")'
n=0
inL),. So
AW, RP9) + hi(y. RPp)

=AY, RP9)+ Y ho (¥, M + Hp)™ (—V (AT + Hy)™")" )+ (¥, VRPp)

n=0

=AY (¥, M+ Hy)"' (~VOM I + Ho) ") )
=0

+ Y (W, Hohd + Hy)™ (~VM + Hy)™')" )

n=0

+ ) W VO + H) ™ (VI + H) ™) ¢) = (v, 9).

n=0

Therefore (A + H,)~! = R,
Next it follows that

Ai(M 4+ H) = A + Hy)™! i (=VI + Hy)™)"
n=0
and
1A: T + H) " llpmp < NAIT + Ho) 7l i(a’k‘”z)”
n=0
<al "2 —ad AV < 200712,
Alternatively,

A;(M + H) A

=AM+ Hp) 'Aj— A, (M + HO)"Z(—V(AI + HO)-’)"‘1 VA +Hy) ' A

n=1
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and

AT + H) ' Ajllpep < TAQT + H) T Al p + Y ad ™ 2@y a)

P
n=1

< A + H) ' Ajllpmp + aa 2721 —ad'A™) 7 < a)

for some al’)’ > 0, independent of A whenever A > Ay Vv (2a’)%. Analogously, |[(A] +
H)'Ajllpsp < a;k‘l/z.
By duality one then obtains bounds
1AL + H) e p < apd™'2, A+ HY ' Afllpep < 2ar712

and |A;(M+H)'Ajllpmp < a, uniformly forallA > Ao and p € (1, 0o). Therefore
by repetition of these arguments one can add the term V' = — ZZ/:I c,Ac to H and
deduce the required bounds on the derivatives of (Al + H*)~'. These bounds require
thatajr~'/> < 1/2, so now Ao depends on p. Then, by duality, one obtains the bounds
on (A + H)~!. The uniformity of the constants for all H € &% (v,0,0,0, u, M)
follows from the proof.

5. Operators with L .. ,-coefficients, n € N

In this section we consider strongly elliptic operators in non-divergence form (4),
d d
H=— Z C,'inAj + ZC,’A,‘ + C()I,
ij=1 i=1

with coefficients ¢;; € L., and ¢;, ¢y € L, and again examine differentiability and
smoothness of the corresponding kernels. Since the operators are no longer expressed
in a symmetric form one would expect an imbalance between the differentiability
properties of the kernel with respect to the first and second variable. For example, the
kernel should be less smooth with respect to the second variable than in the earlier
case of divergence form operators. What is less evident is that the kernel is even
smoother with respect to the first variable. There is an improvement of regularity by
two derivatives and not just one as before.

For N, € N, N, Ny € Ny, vp, v, 99 € [0,1), o > 0 and M > O such that
Ny + vy > Ny + v > Ny + v let £%Y(N, + v,, N| 4+ v, Ny + vo, 4, M) be the set
of all second-order strongly elliptic operators of the form (4) such that ¢;; € L. y,,
llcijlloo:n, < M, the ellipticity constant e > p andif v, > O then ||A%c;;lllcc < M for
all @ € Jy,(d) and similar conditions on the ¢; and ¢y. Since ¢;; € L., each operator
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in non-divergence form can be written as an operator in divergence form without the
terms with c;. Explicitly,

gnondiv(Nz + vy, Ny 4+ vy, No + vy, K, M)

(36)
C EN (N, + vy, (N + ) A (Na + 2 = 1), P, No + vo, 1, (d + M)

for all P > 0. Moreover, if N| € N and v] € [0, 1) then

EY(Ny +va, Ny + vy, N+ v, No +vo, 1, M)
c éonondiV(A]2 + vy, (Nl + vl) A (Nll + U;) A (N2 + v, — 1)!
37 (Ng + v) A (N{ + v{ -1, u, (d+2)M).

Similarly,

{H*: H € & (Ny + vy, Ny + vy, Ny + vo, ., M)}

(38)
C EY(Ny+ vy, P, (N1 +v) A (N2 + vy — 1), No + vo, i, (d + 1)M)

forall P > 0.

PROPOSITION 5.1. Let H be a strongly elliptic operator in non-divergence form (4)
with complex coefficients ¢;; € Lo, and ¢;, ¢y € Lo. If p € (1,00) then (A1 +
H) 'L, C L, for large A.

Moreover, for all M, v > 0 there exists a by > O such that for all p € (1, co) there
exists an a > 0 such that

(39 1A + H) Y|, < ar= @7l

Sfor all a with |a| < 2 uniformly for all A > o and H € &£V (10,0, 1, M).
Similar statements are valid on the L ;-spaces.

PROOF. By Corollary 3.8 the bounds (39) for |o| = 1 are valid for large A, uniformly
forall p € [1, 00].

For the case |a] = 2 it suffices to prove the bounds (38) for one particular A,
dependent on p, by the argument at the beginning of the proof of Theorem 4.4.
So fix p € (1,00). Let H, = —Y ! _ Aic;;A;. Then H = H, + H,, where

H = Z?,j:l ((Aicij) + Cj) A; +col.
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Next let ig, jo € {1, ..., d}. Then the operators A; (A] + Hz)“AJ-0 are uniformly
bounded for all large A by an application of Theorem 4.9. Moreover,

Ay + Hy) ™' = W + H) ' Ajy — M + Ho)7'[A,, HoJ(M + Hy)™!
d
=M+ H) A+ Y ek T+ Hy) 7 Ay A;(A + Hy)™!
i,jk=1
d
+ YOI + Hy) ' Ai(Ayci) A (M + Hy)™!
ij=1
d
+ 3 A+ H) A Ac(A + Hy) !

JoJ
ijk=1
where c,’.‘j are the structure constants of the Lie algebra with respect to the basis
a, ..., ay. Therefore

A A, (M + Hy) ™' = A (M + Hy)T'A)

iy

+ k(AW + H) T A) ey (A; M + Hp)™Y)

1

+ (A (A + H) 7 A)) (Ajcip) (A, + Hy)™Y)

L= 509-

ij=I

+

M-

P
1

k(AT + H)T'A) ¢ (AcMT + Hy) ™).

i.j.k=1

It now follows easily from Theorem 4.9 that the operators A;,A; (Al + H,)™! are
uniformly bounded on L, for all large . Again by Corollary 3.8 one has

|H (A + H) ey < ar™'7?

for some a > O uniformly for all large A and p € [1, oc]. Then the perturbation series

W+ H)"' =Y "+ H) (—H O + H)™")

n=0
converges and

AnAj, O + H)™' = (A, A + Hy)™") (H T + Hy)™)"

n=0

is a bounded operator on L.
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COROLLARY 5.2. Let H be a strongly elliptic operator in non-divergence form (4)
with complex coefficients c;;, ci, ¢y € Loy, where n € N. If p € (1, 00) then
D((AM + H)Y"D2y = L.\, for all large ), with equivalent norms.

Moreover, for all M, . > O there exists a Ay > O such that for all p € (1, 0o) there
exists an a > 0 such that

”Aa(AI + H)_(n+2)/2“p—>p < ak—(n+2—|a|)/2

uniformly for all H € & (n,n,n, u, M), A > Ay and a € J,,(d). Also, for all
A > Agand p € (1, 00) there exists an a > 0 such that

I+ H)" 29|l < all@llpnsz

uniformly for all ¢ € L,.,.2 and H € &% (n,n, n, u, M).
Similar statements are valid on the L ;-spaces.

PROOF. For each n € Nj introduce the hypothesis P(n) by

forall M, 1 > 0 and p € (1, 0o) there exist A > 0 and @ > 0 such that
M+ H)Y "2, CL,,.,and

IA“(AT + H)= D)) _ < gp~r+2-lab2
uniformly for all A > A, & € J,,2(d) and H € & ™(n v 1,n,n, u, M).

Then Proposition 5.1 states that P(0) is valid. If we can prove that P(n) is valid for
all n then one deduces again from the holomorphic functional calculus that the first
part of the corollary is valid uniformly for all large A, independent of p.

Let n € N and suppose that P(n — 1) is valid. We have to distinguish between
even and odd n.

CASE 1. Suppose n = 2m — 1 withm € N,
Let H be a strongly elliptic operator in non-divergence form with n-times differ-
entiable coefficients. Fix i € {1, ..., d} then

[+ H)" A]=) (’:) (ad HY*(A) (M + HY™™

k=1

and

(40) @H(A) = Y gaA"

aelpii(d)

with g, » € L. Therefore
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. (m
A, AL+ H)"IA + H) " pep < <k> Z lgkallooll AT + H) ™|l

k=1 €Jin(d)

IA

m m N |
3 (7) T hseer o <

k=1 a€Jyy(d)

by the induction hypothesis P(n — 1), uniformly for all large A. Hence

Ai(M + HY "2 = A (M + H)Y " (M + H)™'?
=M+ H)Y™AMI + H)™'?
+ A+H)™ ([ +HY, AN+ H) ™) M+ H)™'2

Soforall @ € J,;\(d) = Jo.(d) one has

|A“A; (M + HY "2,
< (AT + H) ™) (AT 4+ H)Y ) ey
+ I (A* T + H)Y™) ([Ai, AT + HY" YT + H)™) A+ HY 2|,

< ap "~ m=lal/2) _+_a’)\—(m—lal/2))\—l/2 < a’»~H2—(el+1)/2

uniformly for all large A, by the induction hypothesis P(n — 1). Therefore P(n) is
valid if n is odd, since one always has the bounds ||(A] + H)~"*2/2|,_, , < aA~ (/2
for large A.

CASE 2. Suppose n = 2m withm € N.
Let H be a strongly elliptic operator in non-divergence form with n-times differ-
entiable coefficients. Now one has

m

[+ H)" A=) ('Z)(ad H)*(A;A))(MI + H)"

k=1

and
@dH}(AiA) = ) gaA”

actia(d)

where g; , € Lo,. One concludes, again, that ||[A; A;, A I+H)"J(AI+H)~m+D72||
is bounded uniformly for large A by the induction hypothesis. On the other hand,

A A; M + HY "2 = W + HY " A Aj(AM + H)™!
+ M+ H)Y ™" (L + H)"™, A A I + HY @2y (AT + HY™'?
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and, arguing as above, one deduces that P(n) is valid for n even.
Finally we show that L,.,., € D((A + H)"*?/2) for each A > Ag. Fix A > A,.

Suppose n = 2m is even, with m € N. Then

(A'I + H)(n+2)/2 — (A.I + H)m+l — Z faAnt

a€l,,2(d)

with f, € L, and || f, |l depends only on M, A and m. Then

I+ B PPl < 3 | fallaol@llpinsa-

a€Jyr(d)

The case n = 2m + 1, with m € N is slightly more complicated. By Corollary 4.7
there exists an a > 0, depending only on u, M and p, such that ||(A] + H)"?¢||, <
allglly. forallg € L,,,. Now

WM+ H)"2 =+ Hy ' = Y f A

aE.I,,+1(d)

with f, € L., and || f,|«:1 depends only on M, A and m. Hence one has

1T + HY* P, = |0 + HY'POd + HY"™ o), < all(M + H)™ ¢l
<a D 1£Alp < alllnse

€ Jni1(d)

forall ¢ € L., and an appropriate a;, > 0.

Next we use these bounds to improve heat kernel bounds for semigroups generated
by non-divergence form operators with differentiable coefficients. We need several
lemmas.

LEMMA 5.3. Foralln € {—1,0,1,2,...}, p € (1,00) and M, u > O there exist
a,w > 0 such that | A*S; || 55 < at™®2e* 1+ yniformly for all H € ™™ (n v
LnvOonvOo,u M), a € J,d),t >0, p € R and perturbation functions
Y € CX(G) with ||APY|loo < | forall B € J(d) with1 < |B| <n+2.

PROOF. The proof is by induction on n. The case n = —1 has been proved in
Corollary 3.7.

Letn € Ng, H € &% (n v 1,n,n, u, M) and a € J,,,(d). We may assume that
| =n+2. Set H, = — Z:i,j=1 cijA;A;. By Corollary 5.2 there exist a, Ay > 0,

depending only on M, p and p, such that

Il pinsa < allhol + Hp)" 2205, ol + H2)"2nll5 < allnlln
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uniformly for all n € Lj.,.>. Then forall ¢ € L., one has

1A%l 5 < 1800l pinsz < all (Mol +Ho) " ol +Hy) SP 0\l 5 < a* | (oI +H2) SP @ pin-
Now

d d d d d
H, = Hp‘f‘[)z Ciin¢j+PZ CijYiA; +,OZZ cii iy —Z CiAi —PZ i —col
ig=1 izl i=1

ij=l1 ij=1

=H,+p’Vi +pVo+ Vi,

where V,, V,, V; are differential operators in non-divergence form of order 0, 1 and
1 with L., coefficients, whose L,.,-norm depend only on M and the || A?v/ ||, with
1 <|B] <2. So

”Aan(P”ﬁ =< az}\OHS,p‘p”ﬁ:n + azlalS;p‘p”ﬁ;n + a2p2” VIS,p‘p”ﬁ;n
+ @ 1plIVaSP @l pon + @I V3 S Nl i
We estimate the five contributions separately. First, by the induction hypothesis
“S,p‘p ”ﬁ;n < a/t—n/.?ew(l+02)l “(p“ﬁ < a//t—(n+2)/2ew'(l+pz)l ”‘p“ﬁ

Secondly, it follows from Corollary 3.7 and [Rob, Lemma I11.4.4], that
(41) ||HpS:7|II;_,ﬁ < a/t—lew(l+pz)t
for suitable a’, w > 0. Hence, by the induction hypothesis,

1H, S0l pin = 1S, 2 HoStn@ll pin < ISl Ly 1, | Ho Sl 5 sl 5
< a//t—(n+2)/28w'(l+p2)t“go"ﬁ.

Thirdly, p*||ViS/@llp.n = P> Maxges,@) |APV,S7@ll;. But APV, is a differential
operator in non-divergence form of order |8| < n with L -coefficients, whose L .-
norm depends on M and the ||AY ¢ ||, with 1 < |y| <r + 2. So

2 _1,—nj2 2 —(n+2)/2 &' (1+p?
PHVISI@lipn < PPa't™ 2T g5 < @'t 7D e N g 5.

Fourthly, for all B € J,(d) the operator A?V, is a differential operator in non-
divergence form of order |8| + 1 < n + 1 with L,-coefficients, whose L.-norm
depends on M and the ||AY Y|, With 1 < |y| <n+2. So

2N1/2 1 — 2 _w(l+p? —(n+2)/2 o' (14+p?
oIIVaSP@llpm < (1 + ) 2a' =220+ g5 < @t~ D2 1400 g5,

The fifth term can be estimated similarly to the fourth. Adding the five contributions
one obtains the required induction step.
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PROPOSITION 5.4. Let n € N and H a strongly elliptic operator in non-divergence
SJorm (4) with complex coefficients c;j, ¢;, co € Loon.

Then A*S’L; C CY(G)NLy(G) foralla € J,;,(d),t >0, p € Randv € (0, 1).
Moreover, forall v € {0, 1) and M, u > O there exist a, w > O such that

— — 2 2
IA“SFgllos < at™/41 72w+ g

and
—d/4,— 2
1A“SPplllce < ar=@/4p=IFI2eete0t g5

uniformly for all H € & (n,n,n,u, M), ¢ € L;(G), t >0, p € R, a € J, 1 (d)
and perturbation functions y € C2(G) with |APY |l < | for all B € J(d) with
1<|Bl<n+2

PROOF. It follows by interpolation from the L;-version of (7) and from (29) in
[EIR6] that for all p € [2, oo] there exist a, @ > 0 such that

”S,p||§_,5 =< ar=2 '@ =P getl+e%n

uniformly for all ¥ € C*(G) with ||A;¢|lo < 1foralli € {1,...,d}. Hence by
Lemma 5.3 for each p € {2, oo} there exist a, @ > 0 such that

=274 —p "y, — 1)/2 1407
IATSE@ll 1 < ar ™ 407 7P et D2ge o g | 5

and
_21d@ —p ) —lal/2 w142
NA*SP@ll; < at R L L 1

uniformly for all ¢ € L;, @ € J,41(d), t > 0, p € R and perturbation functions
¥ € CZ(G) with |AP Y|l < 1forall B € J(d) with1 < |B| <n + 2.

Next, if p € {d, oco) then there exists a b > 0 such that
@l < €77 ll@ll 50 + b~ ll@ll 5

uniformly for all ¢ € L;, and ¢ € (0, 1] by inequality [Rob, (IV.5.25)]. Setting
& = t'/2 one obtains the bounds

—dja,—1 2
IA®SP @l < at™ 17 e 0 ]|,

forall ¢ € J,,,(d) and ¢t < 1, and then, by the semigroup property, for all 1 > 0 with
increased values of a and w.
Finally, the Holder bounds follow from the Sobolev inequality

—v—-d —v—d
llgllc: < &' ="~ "Pligll 5 + bpe™ " Pllgll 5

forall p > d(1 — v)™~'. The latter inequality follows as in [Rob, Section IV.5].
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We can translate the bounds for non-divergence form operators into bounds for
divergence form operators.

COROLLARY 5.5. Foralln e N, v € (0,1) and M, > O there exista,w > 0

such that
1A% S @lloo < ar™#/417W2ew 1+ g |

and

A4St @lle: < ar™gmGeri2ee 4 g
uniformly for all H € &%(n,n — 1,n,n — 1, u, M), ¢ € L5;(G), t > 0, p € R,
a € J,(d) and perturbation functions ¢ € C>(G) with || AP || < 1forall B € J(d)
withl <|B|<n+ 1.
This follows from Proposition 5.4 and (37).

The following is a non-divergence form version of Proposition 3.5. The proof is
almost the same, with minor changes, which we leave to reader.

PROPOSITION 5.6. Fix N, N* € Ny and v, v* € (0, 1}. Next, let N, € N, Ny, Ny €
No, v2, Vi, Yy € [0, 1), u > Oand N’ € N. Suppose forall M > Othere exista > Qand
w > Osuchthat S{C*(G) C Lyn, A*S/CX(G) C C*(G)NLw(G) foralla € Jy(d),
where A is the L,-derivative, S;”C>*°(G) C Ly n-, A“’S,*"C;”(G) C C"(G)N Lyo(G)
Jorall B € Jy-(d),

1A% S! @l < ar™ 172247 g 3,
1A SPplllce < at™/4= =920+t o1
IAP S @ll < ar™ g 11200000 g1,
HAPS P @lllcn < =yt g,
uniformly for all H € & (N, + vy, Ny + vi, No + vp, , M), ¢ € CZ(G), a €
In(d), B € In-(d'), p € Rand y € CX(G) with |A7Y |l < 1 forall y € J(d)
withl < |y| < N

Then for all k > 0 and M > O there exist a,b > 0 and w > 0, such that for

each H € &"(N, 4+ vy, N\ + vy, Ng + vy, i, M) the kernel K of the semigroup S

generated by H is N-times differentiable in the first variable, the derivatives are N*-
times differentiable with respect to the second variable, the derivatives are continuous,

|(A”BﬂK,)(g; m)| < at—d/Zt—(IaI+IﬂI)/Zewfe—blgh"IZI"
and

I(A*BPK,)(k™'g;1"'h) — (A*B"K,)(g; b)|
< at~ 2+ 2 ot k| ' + I p—blgh™ P!
tl/2+,gh—l, tl/2+,gh—l,
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uniformly for all o € Jy(d), B € Jy-(d), t > 0, g, h € G and k,]l € G such that
k| + 1] < Kt'2+27Ygh™!|.

THEOREM 5.7. Let n € N and let H be a strongly elliptic operator in non-
divergence form (4) with complex coefficients c;;, ¢;, ¢o € Log,,. Then for all k > 0
andv € (0, 1) there exista, b > O and w > 0, such that the kernel K of the semigroup
S generated by H is (n + 1)-times differentiable in the first variable, the derivatives
are (n — 1)-times differentiable with respect to the second variable, the derivatives
are continuous,

[(A*BPK,)(g; h)| < at 4121 +B/2 gt ,=blgh™' Pt
and
I(A*BPK,)(k™'g;1"'h) — (A*B’K,)(g; h)|

K+ ' o
< qr=/2~(al+1D/2 gor 1 |2 |+ 1) : o -blgh™ !
172+ |gh™!|

uniformly forall ¢ € J,.1(d), B € J,_1(d), t > 0,g,h € Gandk,l € G such that
k| + (7] < wt'? 427" gh™!|,

For all v, k, M and . the constants a, b and w can be chosen uniformly for all
He &%, n,n, pu, M).

PROOF. This follows by a combination of the inclusion (38) with Propositions 3.4,
5.4, 5.6 and Corollary 5.5.

6. Operators with C"*-coefficients,n € N,0 < v < 1

In this section we consider strongly elliptic operators in non-divergence form (4)
with coefficients ¢;;, ¢;, co € C"** and again examine differentiability and smoothness
of the corresponding kernels. The aim is to prove that the kernel is again almost
(n + 2 + v)-times differentiable in the first variable. Precisely, for all ¢ € (0, v} we
shall prove that the kernel is (n + 2)-times differentiable and the (n + 2)-nd derivative
is Holder continuous of order v — ¢ in the first variable.

For all k € G introduce the operator §; = I — L(k) on the L,-spaces with respect
to the left-, or right-, Haar measure. Since L(k)A;L(k™") = dL(Ad(k)a;), it follows
that [§;, A;] = —[L(k), A;] = dL((I — Ad(k))a;)L(k). Moreover, |[L(k)pl|; =
A(k)~"?|lell; and k + Ad(k) is a continuous representation of G in the finite-
dimensional space g. From this it easily follows that for all o, 8 € J(d), i €
{1,...,d}and p € [1, o] there exists an a > 0 such that

(42) N14%(8,, AdAP@ll; < alkll@l pojaripis

https://doi.org/10.1017/5144678870000094X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870000094X

[55] Second-order strongly elliptic operators 351

uniformly for all ¢ € L, jq45+1 and k € B(1). This is essential in the proof of the
next lemma.

LEMMA 6.1. Foralln ¢ N, v € (0,1), p € (1,00) and M, u > O there exist
a, w > 0 such that

I8¢ AS? 1 pmrp < k] s~ g0 He

uniformly for all H € £&"(n +v,n+v,n+ v, u, M), a € J,»,(d), k € B(l),
t > 0, p € R and perturbation functions ¥ € C>*(G) with |APY |l < 1 for all
Belldywithl <|Bl<n+2.

PROCF. Let H € &(n + v,n + v,n + v, u, M). First by Lemma 5.3 and the
L ;-version of (6) one has

18:A“SP@ll; < (14 AGk) VP A*SPpll5 < ct™@12e2 40 o) 5

and
o (| w 2
18cA%SP0ll; < dIkIIA*S @51 < clk|e1eTD2eo 3ot 1) o

for all @ € J,4 (d), for some ¢ > 0 which depends only on n, M, u, | A |« with
1 <]y] <n+2and p. Hence, by interpolation,

(43) 18 A*SP @l < clk|’t 124D )

foralla € J,.1(d) and k € B(1).

Next we use the notation of Lemma 5.3, in particular the operators H,, H,, V|, V,
and V; for the proof of the bounds of the lemma if [¢| = n 4+ 2. Now, however, the
operators V), V, and V; are non-divergence form operators with C"*"-coefficients of
order 0, 1 and 1, respectively.

Letk e B(1),l,me{l,... , d},acJd),|a|=n,t >0, pe Rand g € L;,,.
We estimate |{8,A;A, A”S{¢||;. By Corollary 5.2 there exist a, Ay > 0, depending
only on M, u and p, such that |05, < all(A¢l + Hy)n||; uniformly for all n € L;,.
Therefore,

6 A1 A A*SP @l 5 < A1 ARSKA®S] @l 5 + I3k, AiARIAS! o]l 5
< all(ol + H)8ASP@ll; + 1186 A1AR1AS 0115
< arolidA*SPll; + all H:0.A% ST ol 5
+ 1 Ai[8, AmlA®SP@ll 5 + 1[0k, AlAR A% ST ol 5.
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Next,

Hy5,A*SP ¢
=8 H,A"S o + [Hs, 8, ]ASP
= 8A"H,S ¢ + 8 [Hy, A®1SP¢ + [H,, 8, 1A SP o
= 8 AH,S 0+ p 8 AV 5P o+ p8i A*Vy 8P+ 8. A* V3 S o + 8, | Ha, A%1SP9

d d
=Y ey BIAAA"S o + Y cylde, AilAAS!p

ij=1 ij=1

d
+ D cijAilS, Aj1A%S!g.

i.j=1
So
18 A AnA*SP 01l
< aoll8 A pll5 + I All8e, AnlATS @5 + I8k, AlARASS 915
+ all8 A" H, S0l + ap® (18 A* Vi SP ol 5 + alpll| 8 A* VaSP ol 5
+all&A*VsSP ol + all8l Ha, A*1S7 95
d d
+ay ey, 8AAAS ol +a Y N[, AA;AS o5

ij=1 ij=l1

d
+ay llciAild, AAS ol 5,
ij=1
a sum of eleven terms. We give the details of the estimates of four terms, the other

are similar, or follow easily from Lemma 5.3 and (42).
The fourth term can be estimated as follows. By (41) and (43) it follows that

—(n+2 2 14p°
18 A% H,SP @l 5 < 18AS ol p sl Ho SEpll 5 < clk| 12402005000 1) 5

for a suitable ¢ > 0.
The fifth term, p?||§:A* V57 ¢l 5, can be estimated by a finite sum of terms of the

form p?||8, A%t S’ || 5» With T € C"*”. Then Leibniz’ rule together with (5) gives

1
PU8A“TS 0l < D Y PPISLA T8, AT Pl

181+1yi=n j=0

1
2 i —1/2yv(l—j) 4 — 2
< Z Zpalkln(lklt 1/ )v(l D=1/ pell+p )r”(p”ﬁ

|1Bl+lyI=n j=0
< a/pZ]klut—(n+v)/26ru(l+p2)t”(p”ﬁ < a//IkIvt—(n+2+u)/2ew'(l+p2)t|,¢I|ﬁ’
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where we have used (43).
The sixth term can be estimated by a sum of terms of the form |p|||8;A*T A; S/ ¢ll 5,
with T € C"*". By Leibniz’ rule one deduces as for the fifth term that

— v)/2 2
o118 AT A; SOl 5 < alk|t~ "2t g 5.

All the other terms can be estimated with a better ¢ singularity. For example, in the
second term one has

A8, AnlA*SPoll; < alkllISf @l pins2

< a'[k|e= PR gl 5 < g k| O g

where we have used (42), Lemma 5.3 and {k| < |k|" for k € B(1). We leave the other
parts to the reader.

PROPOSITION 6.2. Letn € N, v € (0, 1) and let H be a strongly elliptic operator in
non-divergence form (4) with complex coefficients c;;, c;, co € C"**. Let y € (0, v).
Then A*S/L; C CY(G) N Loo(G) foralla € J,15(d), t > 0, p € R.

Moreover, for all M, u > O there exist a, w > 0 such that

—d - 2
(44) IA*S lloo < at™ /4712204000 1015

and
—d/4 ,—(la|+y)/2 jw(1+p°
|||AQ5,p§0|||Cv =at [ lalnifzgute )'“‘P”i

uniformly for all H € & (n +v,n+v,n+v,u, M), ¢p € L;(G), t >0, p € R,
a € J,.2(d) and perturbation functions € CX(G) with |A?Y |l < 1 for all
BelJdywithl <|Bl<n+2

PROOF. Arguing as in the proof of Proposition 5.4 it follows that for all T € (0, 1)
and M, o > O there exist ¢, w > 0 such that

— — 1402
8 A*S plice < alk|s=/ 4= trevanizgeeenn g,

uniformly for all H € & (n+v,n+v,n+v, u, M), 9 € L5;(G),k € B(1),t > 0,
p € R, a € J,;1(d) and perturbation functions ¢ € C*(G) with [|A?¥]l < 1 for
all € J(d)withl < |8l <n+2. So

I — L(g)(I — L(k)A*S?@llo < alg|"|k|" s 744~ et 402004000 )

v+rt—d/4t—(|a|+U+t)/Zew(l+p2)t

<as llells
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uniformly for all s € (0, 1] and g, k € B(s). As a consequence, using the uniform
Lipschitz spaces in [EIR1, p. 185] and [EIR1, Theorem 3.2], one then deduces that
AaStp(p € (Loo’ LOO;Z)(v+r)/2,oo;K and

—d/4,— 2
(45) A®SL Il L Locidus e < @I 20400 g5,

Choosing t = 14+y—v and using the identity (Lo, Loo:2)(147)/2.00.k = (Looy Looi1)y.00:k:1
= C'*7, with equivalent norms (see [EIR1, Theorem 2.1.1I1]), it follows that A*S/¢ €
L., and

1A A°SPlllcr < at™/ (I 1H2gu (0 g5

uniformly foralla € J,.(d) andi € {1, ... ,d}.
Finally, interpolation (see [EIR1, Proposition 4.3.1]) between the bounds (45) and
the first bounds of Proposition 5.4 then gives the bounds (44).

This proposition immediately leads to the next theorem.

THEOREM 6.3. Letn € N, v € (0, 1) and let H be a strongly elliptic operator in
non-divergence form (4) with complex coefficients c;;, c;,co € C"**. Then for all
k > 0and y € (0,v) there exist a,b > 0 and w > 0, such that the kernel K of
the semigroup S generated by H is (n + 2)-times differentiable in the first variable,
the derivatives are n-times differentiable with respect to the second variable, the
derivatives are continuous,

I(AaBﬁK’)(g; h)| < at 2= el +BD/2 got ,—blgh™! !
and
[(A“BPK,)(k™'g;17'h) — (A"BPK,)(g: h)|

id
< qr412=Gal+IBD/2 gor k| + 11| bl P!
12+ |gh]

uniformly for all @« € J,.2(d), B € J,(d),t >0, g,h € G and k,] € G such that
k| + (1] < kt2 4+ 271 1gh™!|. Moreover, for all y, x, M and p the constants a, b and
w can be chosen uniformly forall H € £&%(n +v,n4+v,n+ v, u, M).

Finally we discuss the regularity of the operators (Al + H)? on L, if all the
coefficients are in C"*",

THEOREM 6.4. Let n € N, v € (0, 1) and let H be a strongly elliptic operator in
non-divergence form (4) with complex coefficients c;;, ¢;, co € C"*". Then

D((AT + H)(”+2+V)/2) = Lp:n+2+y
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forall large ), y € (0, v) and p € (1, oo}, with equivalent norms.
Moreover, for all M, i > O there exists a Ay > 0 such that for all y € (0, v) and
p € {1, o0} there exists an a > 0 and for all . > Xy and a; > 0 such that

a | + )20 < 1@l pniary < alld + HY2 2|,

uniformly forall H € & (n +v,n+v,n+ v, u, M) and ¢ € L, ,12.,-
Similar conclusions are valid on the L ;-spaces.

PROOF. For the upper bounds it suffices to prove the bounds for one A, dependent
on p. It follows from Corollary 5.2 that D((AI + H)**?/2) = L,,., ., with equivalent
norms. So by interpolation the operators (I + H;)*(AI + H)™® are bounded on L,
for all § € [0, (n + 2)/2]. Moreover, the operator (Al + H)~*?/2 is bounded from
L, into L, 4, if A is large enough. We have to distinguish between even and odd n
in the proof. We only prove the case for odd n, the other case is slightly easier and is
left to the reader.

Letm € Nbesuchthatn + 1 = 2m. Write (\I + H)" = Zaelz,,,(d) foAY, with
fo € C'*V. Foralla € J,,(d) there exists by Proposition 2.3.IV a continuous operator
Fy: L,y — L, such that

Fop = [fu, (I + H )"

forall ¢ € L,.;,. Moreover, by [EIR2, Theorem 3.13], there exists a continuous
operator Dy: L,.omty — L, such that

Dy = [A*, (I + H)" g
forall ¢ € L,.2mt14,. Then

W, T+ HY"( + Hy)"™0) — (, (I + H)PP (U + H)")
= Y (W FA0) + (. fuDu®)

a€lyy (d)

forall g € L,sn414y and ¥ € L,. Now H* € &%(n+v, P,n — 1 +v,n+ v, u,
(d+ M) forall P € [0, 00), by (38). So D((A+H*)™y C D((A+H")'?) =L,
by Corollary 4.8. Therefore

(M + HY", (I + H)"™P0) — (I + Hy)' ¥, (I + H)? (W + H)"p)
(46)
= Y (, FA9) + (Y, fuDutp)

A€ So(d)
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forall ¢ € Lynyi4, and ¥ € DA + H*)"). But ¢ — (I + H )*(M\] + H)"¢
is continuous from L ;. into L, (Corollary 5.2) and L3414, is dense in Lo .
Hence (46) is valid for all ¢ € L, ;4 and € D((AT + H*)™).

Now letp € D((A + H)™**/%yand ¢ € L,.p424,. Then (I + H )"y € L, and
A+ HY™( + H)™y € D((AM + H*)™). Moreover, ¢ € D((Al + H)®™1/2) =
L ,.2m1. Therefore

[ + Hp) ™2y, )
= [((AM + HY" W + H)™(I + H)"y, (I + H) "))

< (U + H)'POI + HY ™ + Hyy"y, (I + HY'* O + H)"9))|
+ Y W+ HY (I + H)", F.A%)]

a€Jym(d)

+ (AL + H)Y™U + H)" ¥, foDup)l.

We estimate the contributions of the three types of terms. The first can be bounded
by
(I + H)Y2GI + B ™+ H)", (I + H)" (M + H)"9)]
= 10, (U + HY" G+ H)™) (U + H) PG+ HY 007)
F A+ H)™ 20l
S Ml + HY A + H)Y " |l
N+ HYTPQL + H)T2) L |+ H)H ),

For all « € J,,(d) one has for the second term

(L + HYY ™I + Hy )", FyA%9)|
= (¢, (4 + H)" (M + H) ™) (F,AY(M + H) ®"072)
(A + H)_V/Z(AI + H)(n+2+y)/2‘p)|
S WYl + HY QL+ H) " oo p N Ealliysmt I+ HYZE
NAT + H)Y 2o | + H)H 20

Finally,

l(()\'l + H*)—m(l + HL)mwv faDa¢)|
= (¥, (I + H)" M + H)™) fo (Do + H)~™4072)
(M + HY77P(A + HY 2
=< ”'lﬁ”q”(l + HL)m()‘I + H)_m”p*’[’”fa”oo”Da”L,,;zm+1—>L,,
NI+ HY 2N NI+ HY P s [+ HY g .

p2m+1
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Hence
(A + H) ™24 )| < el ¥l I + H)HP 2,

for a suitably chosen ¢ > 0 and ¢ € D((AM + H)"*/2)*y = L, ,,5,. Thus
D(M + HYR2) C Ly,

Conversely, by Corollary 5.2 and interpolation, again, there exists an a, > 0 such
that ||(A] + H)™/2(1 + Hp)="* 29|, < a;ll¢ll, uniformly for all ¢ € L,. Then
by duality || (I + H )~ "2 (01 + H*)" 24|, < a,||¥ ||, uniformly forall y € L,.
Nextlet ¥y € D((A + H*)"*?*Y/2y and ¢ € L, 5424, Then

(L + H) "0y, )
= |((I + Hy) ™20 + HH™ 2y (I + H) "2 (A + H)g)|
S all¥llg AT + H)@llpinsy
by the Cauchy-Schwarz inequality. Since all the coefficients of H belong to C"*”

it follows from Proposition 2.3.1I that there exist a, a’ > 0, depending only on M,
such that | Ho|lpinyy < asupyejw I1A*@lpinty < @' ll@llpini2+y. Combining these

estimates then gives
(I + HH" 24, 0)] < ax(h+ a) @l sy 1¥ llg-

Sog € D((I+H")™72)%) = D((A+H)"™ %) and || A +H)™> g, <
a, (A + a'}||@ll pin+2+y. This completes the proof of the theorem.

Appendix 1: Singular integration

The standard theory of singular integration, [CoW, Sections III.1 and 1I1.2], is
developed for homogeneous spaces with the doubling property. In particular it does
not apply directly to spaces which only have a local doubling property such as non-
unimodular Lie groups with Haar measure and the metric associated with an algebraic
basis. Nevertheless the arguments underlying the theory can be adapted to the general
situation.

THEOREM A.l. Let X be a space with metric p and Borel measure p. Assume that
for each bounded set X, C X and M > 0 there exists a ¢, > O such that

0 < u(B(x;2r)) < cqgu(B(x;r)) < o0

uniformly for all x € Xgandr € (0, M]. Letk € L,(X x X, du ® du) and suppose
that supp k is bounded in X x X. Define the operator T: L,(X) — L,(X) by

(Te)(x) =/ du(x) k(x; y)o(y).
X
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Suppose there exists ac, > Osuchthat | Toll, < c|l@ll2forall ¢ € L,(X). Moreover,
suppose there exist c;, ¢z > 1 such that

sup f du(x) |k(x;y) —x(x; )| < ¢
Y yeX JQ(yv. )

where Q(y,yo) = {x € X : p(x;¥) > c20(y; Yo)}. Then there exists a constant
A > 0 such that

p(x € X : (To)(x)| > v} < Ay el

uniformly for all ¢ € L\(X) N Ly(X) and y > 0. The constant A depends on the
constants ¢, ¢; and cs, a suitable doubling constant c, and the set Y, but is independent

of k.

PROOF. The proof is very similar to the proof in [CoW, Sections III.1 and II1.2] for
homogeneous spaces which have the doubling property. If there were a measurable set
Y C X such that suppx € Y x Y and the set Y, with the relative metric and measure,
had the doubling property then one could apply [CoW, Theorem II1.2.4] directly. The
problem, however, is that subsets often fail to have the doubling property, even if X
itself has the doubling property. This depends crucially on the geometric details of
the subsets.

In the proof of this theorem one has to make the functions local, and exploit the
localized doubling property, to obtain a Calder6n-Zygmund decomposition, as we
show below with some care.

There exist xo € X and Ry > O such that suppx C B(xg; Rg) X B(xo; Ry). Let
¢y > 0 be such that

0 < u(B(x;2r)) < cqu(B(x;r)) < o0

uniformly for all x € B(xo; 6R,) and r € (0,24R, vV 27 'c, Ry).

THEOREM A.2. ([CoW, Theorem II1.1.2]). Let E € B(x¢;2Ry), J C X, andr:J
— (0, 8Ro). IfE € U,., B(x; r(x)) then there exists a sequence x,, x,, . . . € J, pos-
sibly finitely many, such that the B(x;; r(x;)) are disjoint and E C UZI B(x;; 5r(x;)))

PROOF. This theorem is well known, see also [Ste, Section 1.7].
THEOREM A.3. ([CoW, Theorem II1.1.3]). Let & < B{xy;, 2Ry) be open. Then
there exist x, x5, ... € O and p,, ps, ... € {0, Ry] such that € = U?Z, B(x;; p;),

each point of € is in at most ¢ balls B(x;; p;) and, moreover, B(x;; 4p;,)N(X\€) # 0
foralli € N.
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PROOF. Apply Theorem A.2 with J = & and r(x) = 107" p(x, X\ &), the distance
from x to X\&. Then set p; = Sr(x;), where the x; are obtained by Theorem A2.
It remains to estimate a maximum on the overlap of the balls. Let x € £ and sup-
pose x € B(x;; p;) = B(x;; 27 p(x;, X\6)). Arguing as in [CoW] one deduces that
20(x, X\O)/3 < p(x;, X\O) < 2p(x, X\O) and therefore B(x;, 107! p(x;, X\ O))
CB(x,6p(x, X\0)/5). Conversely, B(x, 6p(x, X\€)/5) C B(x;, 23p(x;, X\ 0)/10).
Then by the localized doubling property one has u(B(x, 6p(x, X\6)/5)) < cf,u
(B(x;, 107 p(x;, X\£))) and it follows from the disjointness of the balls
B(x;, 107! p(x, X\ 6)) that x is in at most ¢, balls B(x;; p;).

The next lemma with its corollary are the key elements for the localization. We set
ca =14 ciu(Bxo; Ro))™".

LEMMA A4. Ify € B(xg; SRy) andr € [27' Ry, 4Ry) then u(B(y; 1)) > c; .

PROOF. Since B(xy; Ro) C B(y; 12r) one obtains by the localized doubling

w(B(xo; Ro)) < u(B(y; 12r)) < csu(B(y; r)).

For ¢ € L(X) with supp¢ C B(xp; Ry) define the local Hardy-Littlewood func-
tion Mg: X — [0, oc] by

(M@)(x) = sup u(B(y;r)”" lel.
rvee<g.(i{€ro)] B(y:r)

Moreover, define M(p: X — [0, oo] by

(M@)(x) = sup wu(B(x;r))™ ol

re(0.8Ro) Blxir)
COROLLARY A.5. Let ¢ € Ly(X) with suppg C B{(xy; Ro). Then
(Me)(x) < callgll
for all x € X\ B(xy; 2Ry).

PROOF. We may assume that ||¢||; # 0 and (M@)(x) # 0. Let r € (0,4Ry],
y € B(x;r) and suppose that fB(y;,) el #% 0. Then B(y;r) N B(xp; Ry) # 0.
Since x ¢ B(xy; 2R,) this implies that r > 27'R,. Moreover, using again that
B(y; r)N B(xy; Ry) # B, itfollows that p(y; xg) < r+ Ry < SRpand y € B(xy; SRp).
Then w(B(y; 1) [y, 101 < € [y 101 = callplls by Lemma A4, So (Mg)(x) <
callells.
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THEOREM A.6. ([CoW, Theorem I11.2.1]). If¢ € L(X) with suppp C B(xo; Ry)
and a > ¢4l then u(E,) < cie el and E, C B(xo; 2Ry), where E, = {x €
X : (Mp)(x) > al.

PROOF. It follows from Corollary A.5 that E, C B(xy; 2Rp).

Next, if x € B(xp; 2Ry), r € (0,4Ry] and y € B(x; r) then B(y;r) C B(x;2r)
and p(B(x; 2r)) < n(B(y; 3r)) < u(B(y;r)). So

w(B(y;r)”! lol < cau(B(x;2r)™" lpl < (M) (x)
B(y:r) B(x:;2r)

and (Mg)(x) < c2(Mg)(x) for all x € B(xo; 2R,). Therefore
E, C {x € B(xo; 2Ry) : (Mg)(x) > c;’a}.

If x € E, then there exists an r(x) € (0, 8 Ry] such that (B(x; r(x)))~" fB(X:r(x); lg| >
c;’a. Apply Theorem A2 with J = E = E,. Then llglli = 3.2, [5. .y 0] =
Y ctau (B r(x)) = Y0 el (B(xi; 5r(x))) = ¢l u(Ey).

THEOREM A.7. ([CoW, Theorem H1.2.2 and Corollary I11.2.3]). If ¢ € L (X)
with supp@ C B(xy; Ro) and a > c4||l@||) then there exists a sequence x, x,, ... €
B(xy; 2Ry), possibly finite many, and p,, p,, ... € {0, Ry] such that

L |p(x)| < a for almost every x € X\ 72, B(x:; pi),

IL w(BGs PN [y 0] < c2a foralli €N,

OL 37, w(B(x:; p) < claolh,

IV. each point of X is in at most cs balls B(x;; p;).

Moreover, there exist Y, Ty, 13, ... € L{(X) such that
V. o=y +37 5
VL ¢y (x)| < cle,
VIL (¥l < A+ )lelh
VII. supprt; € B(x;; pi) foralli e N,
IX. ft=0forallieN,
X Y2l <26 el
PROOE. Set 6 = E, = {x € X : (Mg)(x) > «} and apply Theorem A.3. Then I
follows from the Lebesgue differentiation theorem. For the proof of II, let i € N.
Then B(x;, ; 4p;) N (X\E,) # 0, so there exists a y; € B(x;, ; 4p;) N (X\E,). Then
p(xis yi) < 4p; < 4Rpand (M)(y;) < «. Therefore
pr(B(xi; pi)) " lol < cim(B(x;; 4;0,-))“/ lp] < 5 (Me)(y) < cha.
B(x;:pi) B(x;:40;)

The other statements follow as in [CoW].
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PROOF OF THEOREM A.1l. Let @Yo € Lj(X) N LQ(X) Set = @o- 13(10;1(0). Then
Tg, = Te. If we can show that u({x € X : |(Te)(x)| > y}) < Ay Yel|, fora
suitable A, uniformly for all @ > 0, then

px e X {(Te)(xX)| >y =ulfx e X : (Te)(x)} > vy}
< A)’_IH‘P”l < A)’_I|I<P0|||

and we have proved the theorem.

Leta > 0. If @ < cllgll then u({x € X : [(To)(x)| > y}) < u(B(xo; Rp)) <
cap(B(xo; Ro))a™" |lglly since supp T S B(xo: Ro).

So we may assume that @ > c4||a||;. Now one can use Theorem A7 and argue as
in the proof of [CoW, Theorem I11.2.4]. There is only one small step that needs care.
It is in the estimates of the measure of the set F, of all x € Ufil B(x;; c,0;) for which
(T e)(x)| = 27'a. Letn € Nj be such that 2" < ¢, < 2", Then the localized doub-
ling property gives u(B(x;; c20;)) < cj}“ w(B(x;; p;)). Soby Theorem A7.1II one de-
duces that u(F,) < pn(Ure, B(xi; c20)) < M Ui, B(xis ) < e loll).
Since n depends only on ¢, one obtains the required uniform bounds.
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