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Summary

There has recently been increased interest in the use of Markov Chain Monte Carlo (MCMC)-based
Bayesian methods for estimating genetic maps. The advantage of these methods is that they can deal
accurately with missing data and genotyping errors. Here we present an extension of the previous
methods that makes the Bayesian method applicable to large data sets. We present an extensive
simulation study examining the statistical properties of the method and comparing it with the
likelihood method implemented in Mapmaker. We show that the Maximum A Posteriori (MAP)
estimator of the genetic distances, corresponding to the maximum likelihood estimator, performs
better than estimators based on the posterior expectation. We also show that while the performance
is similar between Mapmaker and the MCMC-based method in the absence of genotyping errors,
the MCMC-based method has a distinct advantage in the presence of genotyping errors. A similar
advantage of the Bayesian method was not observed for missing data. We also re-analyse a recently
published set of data from the eggplant and show that the use of the MCMC-based method leads to
smaller estimates of genetic distances.

1. Introduction

Estimating the marker order and the distances be-
tween markers from controlled crosses is a classical
problem in statistical genomics. There are many sol-
utions to this problem. Most methods will proceed by
first identifying linkage groups and then subsequently
estimate marker order and distances between markers
within each linkage group. Linkage groups are typi-
cally identified by examining the likelihood function
for the recombination rate between pairs of markers.
For example, the popular program Mapmaker
(Lander et al., 1987) assigns a pair of markers to the
same linkage group if the LOD score in favour of
linkage exceeds a certain threshold (the default value
is 3.0). After markers have been assigned to linkage

groups, marker order is usually estimated by finding
the marker order which minimizes or maximizes some
statistic, typically using a heuristic optimization. The
two most common statistics are the Sum of Adjacent
Recombination fractions (SAR) and the LOD score.
Keller (1999), George et al. (1999) and Rosa et al.
(2002) considered Bayesian approaches for determin-
ing marker order and estimating adjacent recombi-
nation fractions. In these studies it has been argued
that the Bayesian method has an advantage over
previous methods in that it can directly incorporate
uncertainty due to genotyping errors into the
estimates of marker order and marker distances.

Here we will discuss an extension of the previous
Bayesian methods that makes the method applicable
to even very large data sets. We also demonstrate how
the Bayesian approach may be used for inferences
regarding linkage groups and to quantify uncertainty
regarding marker order. Using simulations we com-
pare our new method with the method implemented
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in the popular program Mapmaker (Lander et al.,
1987) and analyse the statistical properties of these
methods in the presence of genotyping errors and
missing data. The new approach is applied to a large
data sets from the eggplant and we compare our
results with the likelihood approach implemented in
Mapmaker (Lander et al., 1987). A computer pro-
gram implementing the method is made publicly
available.

2. Theory and methods

The statistical method we will use is a Bayesian
approach which combines the likelihood function
with a prior distribution to form a posterior distri-
bution. Inferences are then based on the posterior
distribution. The priors we will use are uniform priors
that assign equal probability mass to all possible
observations. This implies that the obtained posterior
distributions can also be interpreted directly as likeli-
hood functions (or integrated likelihood functions).
The method described here is essentially that of Rosa
et al. (2002), but it is extended and improved in two
ways: (1) we extend the method to F2 data in addition
to backcross data; (2) and we present some algor-
ithmic improvements. As a result, our method can
handle realistic data sets with hundreds of markers on
multiple chromosomes. In the following, we will first
briefly describe the likelihood function in the case
of no errors and no missing data and our choice of
priors. In the subsequent sections we will then de-
scribe how the model incorporates errors and missing
data and we will then provide details of the simulation
algorithm.

(i) Model description

Our approach differs from previous approaches by
directly modelling the presence of chromosomes. For
dense sets of markers, this will alleviate the need for
prior identification of linkage groups. Consider m
markers in some arrangement l on C chromosomes,
of which Cne are non-empty, i.e. have markers on
them. There are then mxCne adjacent pairs of
markers and corresponding recombination fractions
hj. For now, we assume that the set of genotypes, G, is
known perfectly at each marker for each of n in-
dividuals, and that for each marker pair we can find
the number of recombinations between them, which,
summed over individuals we call R. The likelihood is
then:

p(Gjl, h)=2xRmaxCne

YmxCne

j=1

h
Rj

j (1xhj)
(RmaxxRj), (1)

where Rmax=kn is the maximum possible number of
recombinations, and k is 1 for backcross data and 2

for F2 data. This expression assumes that there is no
interference among marker intervals. For the purpose
of defining the likelihood function, this assumption is
typically made (e.g. Lander et al., 1987; Rosa et al.,
2002). However, estimates of recombination fractions
can still be converted to genetic distances using map-
ping functions that do not assume independence.

The prior distribution for each recombination
fraction hi is taken to be Uniform(0, 1

2). We let the
prior probability of a marker and chromosome order
be p(l)!1/(2C1+C0C0!) where C0 and C1 are the num-
bers of chromosomes with exactly 0 and 1 markers on
them, respectively. This prior arises from a process of
translocations and inversions at stationarity (Durrett
et al., 2004). Note that two marker orders differing
only by a reordering of markers within a chromosome
have the same prior probability. For the special case
of C=1 the prior distribution is discrete uniform. The
joint posterior for marker order and recombination
fractions, is then given by

p(l, hjG)!p(Gjl, h)2mxCnep(l)

!2x(Rmax+1)Cne

YmxCne

j=1

h
Rj

j (1xhj)
(RmaxxRj)p(l): (2)

We are interested in estimating p(l, h|G), and for
this purpose we devise a Markov Chain Monte Carlo
(MCMC)-based algorithm. In brief, we define a
Markov chain with state space on the set of possible
values of l and h. We then simulate paths of
this Markov chain using the Metropolis–Hastings
algorithm and sample values of l and h from the
chain at stationarity. For more information regarding
MCMC methods applied to marker orders see,
for example, Durrett et al. (2004), and for a general
introduction to MCMC see, for example, Larget
(2004). The Markov chain is simulated by repeatedly
updating the values of h and l. The jth component
of h, hj, is readily updated by drawing from
p(hjjl, G)!h

Rj

j (1xhj)
(RmaxxRj), a beta distribution.

Marker order is updated using a Metropolis–Hastings
step with a proposal distribution (described below)
which preferentially picks inversions and translo-
cations which replace some recombination fractions
with smaller ones.

(ii) Errors and missing data

Let the observed genotypes (including errors and
missing data) be M, and let G, the true genotypes,
now be a parameter of the model, which also now
includes parameter m, the missing data rate, and p, the
error rate. Following Rosa et al. (2002), updates to
G are made by sampling from its full conditional
distribution (i.e. using a Gibbs update) :

p(Gjl, h, M, p, m)!p(MjG, p, m)p(Gjl, h): (3)
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In the backcross case there are 3 observed geno-
types (homozygous (aa), heterozygous (aA) and
missing data (ax)) and 2 possible true genotypes (aa
and aA). The probability of missing data is m, and the
probability that a genotype not coded as missing is in
error is p ; i.e. :

p(mij=axjgij=aa)=p(mij=axjgij=aA)=m,

p(mij=aAjgij=aa)=p(mij=aajgij=aA)=(1xm)p,

p(mij=aajgij=aa)=p(mij=aAjgij=aA)=(1xm)(1xp),

where mij and gij are the observed and true genotypes,
respectively, of individual i at locus j. It is convenient
to update the gij one at a time using

p(gijjGxij, l, h, M, p, m)

!p(mijjgij, p, m)p(gijjGxij, l, h): (4)

The second probability on the right depends only
on the neighbouring genotypes and recombination
fractions ; i.e., (dropping the ij subscript, and sub-
scripting with L and R for left and right neighbouring
quantities) :

p(gjgL, hL, gR, hR)!hrL
L (1xhL)

(1xrL)hrR
R (1xhR)

(1xrR),

(5)

where rL is 0 (1) if g and gL are the same (different),
and similarly for rg. This is for a marker with neigh-
bouring markers on both sides ; for the leftmost
marker on a chromosome, for example, the factors
involving hL and rL become 1.

In the F2 case, an added complication arises when
considering two heterozygous markers. Notating
parental genotypes as AB/AB and ab/ab and the F1
genotype as AB/ab, the pair of heterozygous markers
is either AB/ab (no recombinants) or Ab/aB (2
recombinants). This can be handled within the same
framework by including linkage phase information in
G, i.e. gijs{a/a, a/A, A/a, A/A}; lumping together of
A/a and a/A as heterozygous is a form of missing
data.

There are then 6 observed genotypes (aa, AA,
aA, ax, Ax, xx) and 4 possible true genotypes (a/a, a/
A, A/a, A/A). In the absence of missing data we
assume the probability of a genotype being miscoded
is p, i.e. given a true genotype, one of the three
possible observed genotypes is correct and occurs
with probability 1xp ; we assume each of the two
incorrect observed genotypes occurs with probability
p/2. We assume the probabilities of missing data are
m1 (data missing for one allele) and m2 (data missing
for both alleles). When both errors and missing data
are present we model their effects as follows (using the

notation pm, gwp(m|g, p, m1, m2)) :

paa, a/a=pAA, A/A=paA, a/A=paA, A/a=(1xm1xm2)(1xp)

paa, A/A=pAA, a/a=paA, A/A=paA, a/a=paa, a/A=paa, A/a

=pAA, a/A=pAA, A/a=(1xm1xm2)
p
2

pax, a/a=pAx, A/A=m1(1x
3
4
p)

pax, A/A=pAx, a/a=3
4
m1p

pax, a/A=pax, A/a=pAx, a/A=pAx, A/a=
m1

2

pxx, g=m2:

Now p(gjgL, hL, gR, hR)!hrL
L (1xhL)

(2xrL)

hrR
R (1xhR)

(2xrR), where now rL is 0 if g and gl are
equal, 1 if one is homozygous the other heterozygous,
and 2 if they are different but both homozygous (a/a
and A/A) or both heterozygous (a/A and A/a).

The parameter p is updated using
p(p, m1, m2|G, M, l, h)!p(M|G, p, m1, m2) p(p, m1, m2),
where p(MjG,p, m1, m2)=

Q
i, j p(mijjgij, p, m1, m2) ; this

is proportional to mn1
1 m

n2
2 (1xm1xm2)

n3pn4 (1xp)n5

(1x3
4
p)n6 , where the exponents ni depend on Gand M

and are easily found by counting how often each fac-
tor appears in the product. We use p(p, m1, m2)=p(p)
p(m1, m2) with a uniform prior for p. The error rate is
updated by sampling from (p(pjG, M)!pn4 (1xp)n5

(1x3
4
p)n6 using a Metropolis–Hastings step with

proposal distribution q(p)!pn4 (1xp)n5+
3
4n6 . The

fully conditional distribution for G (equation 3), is
independent of m1 and m2 when normalized, so it is not
necessary to update m1 and m2 to estimate G, l and h
properly.

(iii) Dynamic updates of G

For efficiency, rather than updating each gij one at a
time, we update, for each individual, the genotypes of
all the markers on a chromosome at once, using a
dynamic programming approach akin to the Viterbi
algorithm. Our algorithm differs in this respect from
that of Rosa et al. (2002). Given marker order l, let
g=(g1, g2, …, gk) represent the true genotypes and
m=(m1, m2, …, mk) the observed genotypes, with gj
the genotype at the jth marker from the left, and hj the
recombination fraction between markers j and j+1.
To draw g from p(g|m, h, p, m) we first obtain the
probability distribution of gj conditional on observed
genotypes and recombination fractions from the left
end of the string of markers up to marker j,
pL(gi)wp(gj |mfj, h<j, p, m). For the first marker at
the leftmost end of markers, pL(g1)=p(g1jm1, p, m)=
pm1, g1 : Because m1 affects pL(g2) only through
pL(g1), pL(g2)=p(g2|pL(g1), m2, h1, p, m), and in gen-
eral p(gj|mfj, h<j, p, m)=p(gj|pL(gjx1), mj, hjx1, p, m).
Upon reaching the rightmost end, pL(gk)=p(gk|mfk,
h<k, p, m)=p(gk|pL(gkx1), mk, hkx1, p, m) is

Estimation of genetic maps 161

https://doi.org/10.1017/S0016672305007494 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672305007494


conditional on all mi and hi. We then draw gk from
pL(gk) and work back towards the left, next drawing
gkx1 from pL(gkx1|gk, hkx1), etc. The advantage of
this method is that the correlation in the unknown
missing data (or errors) among markers for the same
individual can be taken into account when
proposing updates.

(iv) Proposal distribution for l

In order to analyse data sets with many markers it is
important to propose new marker orders in an
efficient way. It is helpful to break down the problem
of finding a good way of proposing new marker
orders into two parts : choosing a basic rearrangement
operation (for example swapping the positions of two
markers) and choosing a proposal distribution speci-
fying the probability of each such rearrangement
(which two markers to swap). The basic rearrange-
ment operations we use are inversions and, in the
multiple chromosome case, translocations. Rosa et al.
(2002) use inversions (which they call ‘rotation of
random length segments ’) and swapping the positions
of two markers. By inversion is meant reversing the
order of some sequence of markers on a chromosome,
e.g. abcdefgpabfedcg. Translocation means cutting
two chromosomes and then joining the pieces
together at the cut ends so as to get two new chro-
mosomes, each containing material from both the
original ones. Both these operations leave the total
number of chromosomes unchanged. The number of
chromosomes, C, that the program will work with is
supplied by the user. If this number is larger than the
actual number of chromosomes in the genome, this is
not a problem as translocations can redistribute the
markers so that some chromosomes have no markers.
Formmarkers on a chromosome there arem(mx1)/2
distinct inversions and Rosa et al. (2002) propose each
with equal probability (and similarly for marker
swapping). In order to be more efficient for genomes
with many markers, we use a non-uniform proposal
distribution. The proposal distribution makes use of a
table of estimated recombination fractions for each
pair of markers, ĥ, which is calculated just once,
before starting the Markov chain. We use for ĥij the
maximum likelihood estimate considering only the
data for markers i and j and assuming no coding
errors. We expect that for the correct marker order it

will usually be true of adjacent markers a and b that b
is among the closest few markers to a (as measured by
ĥ) and vice versa. We use this idea to choose the first
end of a section to propose inverting. Specifically we
define rab to be the closeness rank of marker b relative
to marker a, such that raa=0, and if marker b is the
closest distinct marker to a then rab=1, etc. We de-
fine Rab=(rab+rba)/2 and define Ravg to be the aver-
age ofRab over all adjacent marker pairs. The break at
the first end of the proposed inversion is chosen to lie
between adjacent markers a and b with relative prob-
ability f(Rab). The end of an inversion can also lie
between a chromosome end and an adjacent marker ;
this is proposed with a relative probability of f(Ravg)
for each such pair. The function f should be increasing
in order to preferentially propose breaking apart
markers which are not likely to belong together.
(Specifically, we use f(x)=min(1.6xxm/C, 1), where C
is the number of chromosomes. The idea is that
approximately m/C markers will be on the same
chromosome as marker a and their rankings will be
informative, but the rest of the markers are on differ-
ent chromosomes and are all equally poor candidates
to be adjacent.) Having chosen the first end between a
and b, the other end is preferentially chosen between c
and d so as to have smaller recombination fractions at
the newly created adjacencies compared with the ad-
jacencies which are lost in the inversion, i.e. inversions
for which D=ĥac+ĥbdxĥabxĥcd is small are pro-
posed with higher probability. (In particular, the
probability is ex20D.) We define ĥavg to be the average
of ĥab over all adjacent marker pairs and use ĥ=ĥavg
for adjacencies between chromosome ends and
markers when calculating D. When a new marker
order is proposed, new recombination fractions are
needed for the newly adjacent marker pairs ; these are
drawn from

p(hjjl,G)=h
Rj

j (1xhj)
(RmaxxRj)

.

Z1
2

0

hRj (1xh)(RmaxxRj)dh: (6)

With this proposal distribution for the recombi-
nation fractions, the acceptance probability of an
inversion . .ab. . ..cd. .p. .ac. . . .bd. . is

Pa(l! lk)=min 1,

q(lk! l)
R12
0
hRab (1xh)(RmaxxRab)dh

R12
0
hRcd (1xh)(RmaxxRcd)dh

q(l! lk)
R12
0
hRac (1xh)(RmaxxRac)dh

R12
0
hRbd(1xh)(RmaxxRbd)dh

0
BBBBB@

1
CCCCCA
, (7)
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where q(lplk) is the probability of proposing order
lk from order l. All factors depending on recombi-
nation fractions cancel out.

(v) Estimation

Marker orders and distances sampled from the
Markov chain can be used for inferences. For ex-
ample, the maximum a posteriori probability (MAP)
estimate of marker order is given by the marker order
that appears most often in the chain (for chains that
have been running long enough). Because of the use of
a uniform prior, this estimate is also the integrated
maximum likelihood (ML) estimate. The use of the
word ‘ integrated’ means here that there may have
been nuisance parameters, such as error rates, which
have been integrated out using theMCMC procedure.
Likewise, the map distance or recombination fraction
between a particular pair of markers, given a par-
ticular marker order, can be estimated either by using
the posterior expectation (estimated as the average
value of the recombination fraction along the chain)
or as the MAP value, which in our case again equals
the integrated ML estimate. One of the issues we will
explore here is whether the posterior expectation or
the MAP estimate is a better estimator of the recom-
bination fraction and map distances.

We monitor convergence by running N>1 chains
and looking for agreement among them. In particular
we use the Gelman & Rubin (1992) statistic applied to
the map distance and error rate. For each state in a
chain a total map distance L is calculated by summing
the map distances between each pair of adjacent
markers. For each chain the mean and variance of L
are kept track of, and a between-chain variance, B
(the variance of the N means), and a within-chain
variance, W (the mean of the N variances), are
defined. Convergence is indicated when B becomes
small compared withW. We typically define the burn-
in to end when B/W becomes less than 0.1.

A program for performing this analysis is available
from http://www.binf.ku.dk/users/rasmus/webpage/
ras.html.

3. Results

(i) Simulated data

In this section we describe results based on simulated
data that will help illuminate the statistical properties
of the Bayesian methods. We have analysed sets of
simulated data using both our Bayesian method and
the widely used mapping program Mapmaker
(Lander et al., 1987). All the results in this section are
for data simulated from genomes with 8 markers on 1
chromosome, with the markers evenly spaced with

separation d and assuming no interference. We
describe results for backcross and F2 crosses, and for
various marker spacings (d), error rates p and num-
bers of individuals n. Each data point shown in this
section is based on 200 data sets or more. For these
data sets our criterion for end of burn-in, B/W<0.1,
was reached at typically 250 updates, requiring 1 CPU
second on a 2.8 GHz processor. The small number of
markers was chosen so that Mapmaker’s ‘compare ’
function, which searches exhaustively for the best
marker order, would run in a reasonably short time.
Mapmaker has other ways to find the marker order
suitable for larger numbers of markers but these tend
to require interaction with an intelligent user, and are
therefore less appropriate for the automated analysis
of many data sets.

(ii) Estimation of genetic distances

The first question we will address is how well the
Bayesian method estimates genetic distances and
whether use of the posterior expectation or the MAP
(corresponding to the ML estimate) provides the best
point estimator of genetic distance. Data were simu-
lated assuming no interference for 8 markers, for
backcrosses (BC) with n=50, BC with n=100, and F2
crosses (F2) with n=50. Let L=7d be the distance
from leftmost to rightmost marker. We estimate L
considering only states with marker order l̂ (the MAP
estimate of marker order). Using either the posterior
expectation or the MAP method to estimate hj, the
corresponding Haldane’s distances are summed:
L̂=g

j
dH(ĥj), where dH(h)=xln(1x2h)/2. As seen in

Fig. 1, using the MAP estimator of h gives a con-
siderably better estimate than using the posterior
expectation. The estimate based on the posterior ex-
pectation is very biased because of the long tail of the
likelihood function. In addition to the bias, we also
evaluate the root mean square error (RMSE). The
RMSE is equal to the square root of the variance plus
the bias squared, and is, therefore, a measure of the
performance of the method that considers both vari-
ance and bias. The MAP method also has a much
lower RMSE than the posterior expectation, showing
that the bias in the posterior expectation is not com-
pensated by a similarly reduced variance.

When considering the superior MAP estimator, we
also notice that the F2 method has higher bias than
the BC for samples sizes of n=50. The reason is pre-
sumably that the marker state in F2 data is not known
for double heterozygotes. However, when considering
the RMSE, the F2 with a sample size of n=50
performs intermediately between the BC with n=50
and n=100. The well-known good performance
by the F2 cross is a consequence of the fact that F2
data have twice as many informative meioses as BC
data.
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(iii) Estimation of marker order

We use two different measures to determine how well
a method performs in terms of estimation of marker
order. First, we use the proportion of times the
method estimates the correct marker order. Second,
we use the average distance between the true and the
inferred marker order. Distances are defined in terms
of number breakpoints, i.e. the number of times in the
inferred marker order that marker j from the true
marker order is not followed by marker j+1 from
the true marker order, j=1, 2, …, 7. The estimate of
the marker order chosen is the marker order that
appears most often in the simulation of the Markov
chain, i.e. the MAP estimate which is also identical to
the (integrated) ML estimate.

As seen in Fig. 2, the estimate from Mapmaker and
our MAP estimate have essentially identical proper-
ties in terms of identification of correct marker order,
in the absence of errors and missing data. Despite the
differences in implementation, this is not surprising
since both methods are ML methods under the same
model. It also confirms that the MCMC method is

able to reproduce accurately the results obtained
using exhaustive searches in Mapmaker.

We also notice that the estimate for 50 F2 crosses is
almost as good as the estimate from 100 backcrosses
for genetic distances up to about 5–10 cM. For small
genetic distances, the chance of a double heterozygote
resulting from two recombination events is small and
an F2 cross provides essentially twice as much infor-
mation as a backcross. As the probability that a
double heterozygote results from two recombination
events increases, the advantage of the F2 method
diminishes.

(iv) Correcting for genotyping errors

To illustrate the effect of genotyping errors we simu-
lated data with varying error rates. The MCMC
method can take errors into account without a priori
knowing the error rate (see Section 2). We can then
compare the performance of the method with and
without correction for errors (Fig. 3).
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n=100, and F2 n=50, for the maximum a posteriori
probability (MAP) estimate and the estimate based on the
posterior expectation. It is assumed that there are no
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Without error correction the estimate of L is biased
towards larger values because genotyping errors are
interpreted as recombinations; this is equally true
of our Bayesian method and Mapmaker. For the
Bayesian method with error correction the bias in
L is small for all error rates, although there is
some negative bias for the smallest error rates. Error
correction improves the RMSE in L for larger error
rates while giving equally good estimates at small
error rates. The difference in RMSE is large for error
rates of 0.005 or larger. Mapmaker has a form of
error correction which assumes a prior error rate, p*,
supplied by the user. Compared with the Bayesian
method with error correction, Mapmaker with
p*=0.01 gives estimates of L which are equally good
at small error rates but somewhat worse at higher
rates due to greater bias.

Errors in the data (miscoding of genotypes) de-
grade inferences regarding marker order (Fig. 4), with
Mapmaker and our Bayesian method performing
similarly when error correction is not used. In the
Bayesian method, error correction improves these
inferences when errors are present, an effect which is
quite small for BC data but larger for F2 data.

Furthermore, there is no penalty for using error cor-
rection when analysing error-free data. Mapmaker’s
inferences regarding marker order show little benefit
from using error correction, and there is a penalty for
using error correction when analysing error-free data.

The estimate of the genotyping error rate, based on
the posterior expectation, is shown in Fig. 5. Notice
that the estimate of the error rate is approximately
unbiased.

(v) Missing data

We generated simulated data with m1=0.03 and
m2=0.03; these values are close to the rates of missing
data seen in the eggplant data discussed below. We
analysed these data sets with both Mapmaker and our
Bayesian method. The results are very similar both for
estimation of L and estimation of marker order, as
may be seen in Figs 6 and 7. The RMSE is similar for
the two methods, showing that the Bayesian method
does not have the same advantage when correcting for
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missing data as it has in the correction of genotyping
errors.

(vi) Marker order results for eggplant data

The method described here is computationally cap-
able of handling large data sets of hundreds ofmarkers

and individuals. To illustrate this, we re-analysed the
data by Doganlar et al. (2002). They published a
genetic map of eggplant based on a data set consisting
of genotypes at 233 markers for 58 F2 individuals
obtained using Mapmaker (Lander et al., 1987).

Although the present method can explicitly model
the presence of chromosomes, it is computationally
simpler first to identify linkage and then to analyse
each of these linkage groups separately. Therefore, we
first generated MCMC output for the full data set and
analysed it for linkage groups, and then did a separate
run for each linkage group to determine the marker
order within each linkage group. We define linkage
groups such that markers which belong to the same
linkage group should almost always be found on a
single chromosome, rather than being spread over
two or more chromosomes. For a set S of markers we
define its linkage fraction, f(S), as the fraction of the
MCMC output states for which all markers in S lie on
the same chromosome. For threshold linkage fraction
f1 we define the set of linkage groups by dividing the
markers into sets Si (with every marker belonging to
exactly one of the Sj), in such a way that f(Si)>f1 for
all i, and taking the union of any two distinct sets Si

and Sj gives a set with linkage fraction less than f1.
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Setting f1=0.9 we found a set of 13 linkage groups.
These correspond exactly to the chromosomes found
by Doganlar et al. (2002) with the exception of their
chromosome 9, which appears in our analysis as two
linkage groups that we refer to as 9a and 9b.

Table 1 shows the linkage fractions of our 13 link-
age groups and their pair-wise unions. Linkage frac-
tions less than 0.1 are not shown. Our 13 groups all
have linkage fraction o0.96. The union of groups 9a
and 9b has a linkage fraction of only 0.37, and there is
another pairing – groups 9b and 10 – which is actually
more strongly linked. Mapmaker defines linkage
groups by looking at each pair of markers, finding the
maximum likelihood recombination fraction, ĥ, and
the likelihood ratio L(ĥ)/L(1/2). Two markers are
considered linked if log10 (L(ĥ)/L(1/2))>LODl ; fur-
thermore, linkage is transitive, i.e. if A and B are
linked and B and C are linked then A and C are
linked. By increasing LOD1 the number of linkage
groups can be increased, but it was not possible to get
our set of 13 linkage groups with the Mapmaker
analysis by adjusting this threshold. With LOD1 in the
range 2.8–3.5 we find the 12 groups reported by
Doganlar et al. (2002) and with LOD1=3.6 we find 13
groups, but with chromosome 3 split into two instead
of chromosome 9. For defining linkage groups the
Bayesian method has the advantage of taking marker
order into account, unlike Mapmaker. However, in
this case it seems very likely that the identification of
the chromosomes, in particular chromosome 9, in
Doganlar et al. (2002) is correct since the markers on
chromosome 9 are all found on the same chromosome
in tomato.

(vii) Comparison of maps for each linkage group

In our analysis we first lumped together any pair of
markers with identical sets of genotypes; if mij=mij

for all i ; then markers j and jk were lumped together.

This left 229 markers with distinct genotypes. For
each of the 13 linkage groups found as described
above we did a MCMC run with four replicate chains.
By considering the Gelman–Rubin statistic applied to
L and p, requiring B/W<0.1 for both, we chose 1000
updates as a conservative burn-in length, for all link-
age groups except number 12 for which a burn-in of
3000 updates was needed. Run lengths of 50 times
burn-in were used. Linkage group 8, for example,
with 16 markers, was run for 50 000 updates for each
chain, taking 600 CPU seconds on a 2.8 GHz pro-
cessor. In several cases adjacent markers are separ-
ated by an estimated map distance of zero; in each of
these cases reversing the order of the markers gives an
order with almost the same posterior probability, so
we have lumped such pairs of markers (and in 1 case
three markers) together. Having done this the marker
order from our Bayesian analysis agrees perfectly
with the results of a Mapmaker analysis we per-
formed, as well as with the map of Doganlar et al.
(2002). Map distances also agree well, with the
Bayesian error corrected estimates being consistently
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Table 1. Linkage fractions for the 13 identified linkage groups of the
eggplant data

1 2 3 4 5 6 7 8 9a 9b 10 11 12

1 1.00
2 1
3 0.10 0.97
4 1
5 1.00
6 0.99
7 0.21 1.00
8 1.00
9a 1
9b 0.37 1
10 0.17 0.38 1
11 0.96
12 1.00

Estimation of genetic maps 167

https://doi.org/10.1017/S0016672305007494 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672305007494


slightly smaller. Summing all the estimated Kosambi
distances between neighbouring markers gives
1441 cM (Bayesian) and 1508 cM (Mapmaker).

(viii) Estimation of error rate

The posterior density for the error rate for the egg-
plant data set is shown in Fig. 8. The error rate seems
to be relatively low, most likely less than 0.01.
Therefore, it is not surprising that the map distances
agree well between the map of Doganlar et al. (2002)
and the results of the MCMC analysis.

4. Discussion

The results presented here show that the new MCMC
approach has a distinct advantage over previous
methods in estimation of genetic distances and
marker order in the presence of genotyping errors.
However, genetic distances are best estimated using
the MAP or maximum likelihood estimator and can
be biased if estimated using the posterior expectation
based on a uniform prior. Part of the problem appears
to be that in small data sets there is so little infor-
mation regarding the genetic distance for each set of
markers that the information introduced by the prior
tends to dominate the information provided by the
likelihood function. It is possible that for very large
data sets the posterior expectation performs con-
siderably better as a point estimator.

The commonly used program Mapmaker (Lander
et al., 1987) performs as well as the MCMC-based
method when the genotyping error rate is low.
However, when the genotyping error rate is reason-
ably large, the new MCMC method performs con-
siderably better. The new Bayesian method is
applicable to real data sets, as illustrated by the

application to the eggplant data, and should be used
instead of more traditional methods when the geno-
typing error rate may be larger than 0.005.

A program implementing the method discussed
here is available from http://www.binf.ku.dk/users/
rasmus/webpage/ras.html.

This work was supported by NSF/NIH Grant DMS/
NIGMS – 0201037.
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