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1. Introduction, A celebrated theorem of Birkhoff ([1], [6]) 

states that the set of n x n doubly stochastic matrices is identical 

with the convex hull of the set of n x n permutation matrices. Birk­

hoff [2, p. 266] proposed the problem of extending his theorem to the 

set of infinite doubly stochastic matrices. This problem, which is often 

known as Birkhoffs Problem 111, was solved by Isbell ([3], [4]), Rattray 

and Peck [7], Kendall [5] and Révész [8]. From the viewpoint of proba­

bility theory, it is interesting to know analogues of the Birkhoffs 

theorem and Birkhoffs Problem 111 for Markov transition matrices. An 

analogue of the Birkhoff theorem for the set of n x n Markov (transi­

tion) matrices is known [6, p. 133]: the set of n x n Markov matrices 

is identical with the convex hull of the set of n x n Markov matrices 

with exactly one entry 1 in each row. The purpose of this paper is to 

give a solution (Theorems 1, 2 and 3 below) to a version of Birkhoffs 

Problem 111 for infinite Markov matrices. 

An infinite matrix A with non-negative entries a.. is called 

sub-Markov (Markov) if E.a.. <_ 1 (= 1) for each i. By a matrix we 
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shall always mean an infinite matrix unless the contrary is noted. We 

denote the set of sub-Markov matrices by m and the set of Markov ma-
o 

trices by m. Clearly m and m are convex sets and m <̂  m . A Markov 

matrix A - (a..) is called doubly stochastic if E.a.. = E.a.. = 1 

for each i and for each j. Let p be the set of those Markov matri­

ces with exactly one entry 1 in each row. In order to treat our pro­

blem we shall introduce a topological vector space. Let 1/ be the vec­

tor space of real infinite matrices A = (a..) such that E.|a..| < °° 

for each i. We define a neighborhood base at the zero matrix 0 by 

sets of the form {(a..) € 1/ :E.|a..| < e, i < N}. where e > 0 and 

N is a positive integer. Topologize 1/ with translates of these neigh­

borhoods. Then 1/ is a topological vector space with contains m . 

For each subset S of V, S denotes the closure of the set S in 

the topology defined above. We note the following facts. 

LEMMA 1. m is a closed convex subset of I/. 
a 

Proof. It is enough to prove 1/ - m c 1/ - m . We note that 
a a 

1/ - m is a disjoint union of the two sets: 

{(a..) € 1/ : a.. < 0 for some i and some i} 
ij ij 

and 

{ ( a . . ) € 1/ : a . . > 0, Z . a . . > 1 for some i } . 
i j i j - J ID 

Suppose that A = (a..) is in the first set with a ̂  < 0. Choose e 
r r
 IJ st 

such that -a ̂  > e > 0. Then for each B = (b. .) in m we have 
st ij a 

Z. la . - b . I > | a . - b l = - a + b > e , 
3 ' sj sj' — ' st st' st st 
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so A is in 1/ - wT . If A = (a. .) is in the second set we may assume 
a v ijJ 

yn = I.an. > 1. Since for each B = (b..) € m 

I.|a-. - b..| > l^.a,. - Z.b-.| > |y, - l| > 0 , 

A is also in 1/ - wf . 
a 

LEMMA 2. wi is a closed convex subset of I/. 

Proof. We shall show m - m <= m -m". Let A = (a. .) £ m - m 
a a ij a 

and 0 < E-a.. = x. < 1 for some i. We have for each B = (b. .) f m, 
- J ij i ir 

Z.la. . - b.. I > Iz.a.. - E.b. . I = |x. - il > 0 , 

and thus A £ m - m". The assertion follows immediately. 

2. Extreme Points and Approximation. We begin by proving 

THEOREM 1. A Markov matrix P is an extreme point of m iff 

P is in p. 

Proof. (^): Let A = (a. .) be a Markov matrix which is not 

in p. We may assume 0 < a,, < 1. We shall show that there are Markov 

matrices B and C that are distinct from A with A = (B + C)/2. 

Since E.a.. . = 1 and 0 < a., < 1, there is a1jt. such that 0 < a,^ < 1. 
J lj 11 It It 

Choose e such that 0 < e < min(an,,a,^). Define the matrix E = (e..) 
11 I t i j 

by e , , = e, e1dU = -e and e. . = 0 otherwise. Then B = A + E and J 11 I t i j 

C = A - E are Markov matrices with A = (B + C)/2. 

(<^=): Let P = (p..) € p. For each i, there is j. such that 

pi- = 1 and p.. = 0 for j ^ j.. Suppose that P = (A + B)/2 where 
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A = (a..) and B = (b..) are Markov matrices. It follows from 

\y iy 
p. . = (a. . + b. A/2 that, for each i, p.. = a. . = b. . = 1 and 

p.. = a.. = b. . = 0 for j ^ j. . Thus P = A = B and P is an extreme 
ij ij ij i 

point of m. 

For extreme points of m we have 

PROPOSITION. A sub-Markov matrix P is an extreme point of 

m if and only if P = 0 oj_ P ( p, 

Proof. (^): Suppose that A = (a..) is a non-zero sub-Markov 

matrix which is not in p. We may assume 0 < a,.. < 1. If A, = 

I. a,. > a,,, then there is a,^ with 0 < anj_ < A, - a, n . Choose e 
j lj 11' It It — 1 11 

such that 0 < e < min(a.... ,a, ). Define the matrix E = (e..) by 

e,, = e, e,^ = -e and e. . = 0 otherwise. Then A + E and A - E 
11 ' It ij 

are sub-Markov matrices with A = ((A + E) + (A - E))/2. Hence A is 

n . However, if A, = a.,, i.e., an . a 1 11 ' lj 

for j >_ 2, then we choose e with 0 < e < a... . Define the matrix 

E = (e..) by e,, = e and e.. = 0 otherwise. Then A + E and 
ij 11 ij 

A - E are sub-Markov matrices with A = ((A + E) + (A - E))/2. Hence 

A is not an extreme point of m . 

(^) : Plainly the zero matrix 0 is an extreme point of m . 

We may readily show that each P ( p is an extreme point of m by a 

similar argument given in the proof of Theorem 1. 

Let us denote by co(p) the convex hull of the set p. A simple 

example can be furnished to show co(p) c: m. For example, let A = (a..) 

be such that for each i = 1,2,..., a..= 1/i for j = l,...,i, and 
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a.. = 0 for j > i. What are those Markov matrices in co(p)? We have 

the following answer. 

THEOREM 2. Let A = (a..) be a Markov matrix. A £ co(p) if 

and only if a.. takes only finitely many distinct values. 

The following two lemmas will be useful in the proof of Theorem 2. 

LEMMA 3. If for each positive integer m, an infinite matrix 

A = (a..) with non-negative integers a.. satisfies the conditions: 

0 < a.. < m and Z.a.. = m for each i, then the matrix A/m is in 
- i j - j i j — 

co(p) . 

Proof. Let X. = min .{a . . : a . . > 0} , i = 1 , 2 , . . . , and X = 
l j i j i j 

m i n . X . . Then 1 < X < X. < m, i = 1 , 2 , . . . . I f X = m t h e n m = X. 
1 1 _ _ — ! _ > 1 

for each i. It follows that for each i, there exists j. such that 

a.. = m and a.. = 0 for j ̂  j .. Hence A = mP for some P e p . 

Now suppose that 1 <_ X < m. Let t be the smallest positive integer 

with X = X . For each i let j. be the smallest positive integer 

with a.. = X.. Define the matrix P = (p..) by p.. = 1 and 
ii i ij ij 

J i J J i 

p.. = 0 for j ï j . . Then the matrix C = A - XP = (c.) satisfies 

the conditions: c.. > 0 and 0 < Z . c . . = m - X < m for each i. 

Clearly the assertion holds for m = 1. If the assertion is true for 

each k < m we have C/(m-X) € co(p), so A/m £ co(p). Hence the 

lemma follows by the induction. 

COROLLARY. If A = (a..) is a Markov matrix such that a.. 

_ ±y 13 
takes only finitely many distinct rational numbers, then A € co(p). 

We state a lemma of Isbell whose proof will be outlined in the 

proof of Theorem 2 for ease of our argument. 
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LEMMA 4. (Isbell [4, p. 3]). For any finite set of positive 

real numbers A,,...,À , there exists a Hamel (vector) basis {b } 
l> n> _ ^ 1 a

j 

for the reals over the rationals such that each A. is ir..b with 
— • i il a . 

3 

non-negative rational coefficients r... 
_ & . . 13 

Proof of Theorem 2. Since (=>) is obvious, it remains to prove 

(<=) . Suppose that the entries a., of a Markov matrix A take n + 1 

distinct values: An,A1?...,A , where A~ = 0, 0 < A. < 1, i = l,...,n. 0 1 n 0 I — 

Let C be the convex cone (over the rationals) which consists of those 

E. -, r.A. with non-negative rationals r. such that E. . r. > 0. Then 
i=l i l fo l i=l l 

C is a cone with vertex at 0 and 0 ^ C. Since the cone C has an 

interior point, the set C - C is the subspace of the reals over the 

rationals which is spanned by A-.,... A . We pick a basis {b , . . . ,b } 

for the subspace C - C from {A-.,...,A } and extend it to a Hamel 

basis (see [4, p. 3]). In particular we have, for each i, A. = 

E. , r..b. with non-negative rationals r.. and t < n. Since each 
J = l 13 J 13 -

a., can be identified with some A, , and E.a.. = 1 for each i, it 
i] k 3 i] 

follows readily that 1 is in the cone C and 1 = E. -, s.b. with 
1 = 1 3 3 

positive rationals s.. It is also evident that A = E. -, b.B. where 
: 1 1 3 3 

the matrix B. has entries r.., i = l,...,n, and each B./s. is a 
3 il 3 3 

Markov matrix. It is easily seen from the corollary to Lemma 3 that each 

B./s. is in co(p) and so A £ co(p). This completes the proof. 

We establish the following approximation theorem by using an ar­

gument of Rattray and Peck [7, p. 56]. 

THEOREM 3. m = co(p) . 

Proof, Since we have co(p) <~- m from Lemma 2 and Theorem 2, 
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it remains to prove m ^ co(p) . Let A = (a..) be a Markov matrix and 

N a positive integer. Given e > 0, there is a positive integer n 

such that E. a.. < e/4 for each i < N. Then E. a.. > 1 - e/4 
3>n 13 - 3<n 13 

for each i <_ N. Choose a positive integer m such that n/m < e/4. 

Let p.. be a non-negative integer such that p../m < a.. £ (p.. + l)/m 

when a.. > 0 and p.. = 0 when a.. = 0. Define the sub-Markov ma­
il *ij 13 

trix B = fb. .1 by b.. = p../m. If we set r. = E.p. . for each i, 1 iy y ij Fi3 i 3 iJ 

then 0 < 1 - l.p../m = 1 - r./m < 1 and 1 < s. = m - r. <m. For 
3 13 i - i i 

each i, we increase some of b.. to c.. by addition of 1/m in s. 
13 ij l 

places. Clearly c.. > b... The matrix C = (c..) is Markov such that r J ij — ij v \y 

c.. takes only finitely many distinct rationals. Hence, by the corol­

lary to Lemma 3, we can identify the matrix C with a matrix in co(p). 

We have, for each i < N, 

E . l a . . - b . . | = E. ( a . . - b . . ) + £ . ( a . . - b . . ) 
J ' i l i j ' 3S1 i l 13 3>nv 13 13 

< 1 . 1/m + E . a . . 
j ^ n 3>n i j 

<_ n/m + e / 4 < e / 2 . 

On t h e o t h e r hand i t f o l l o w s t h a t , f o r each i <_ N, 

E . b . . > E. b . . > E. ( a . . - 1/m) 
j 13 3<n 13 - ;j<nv 13 

> 1 - e / 4 - n/m 

> 1 - e / 2 , 

and t h u s 

E. l b . . - c . .I = I.e. . - E . b . . 
3 ' 13 13 ' 3 13 3 13 

< 1 - (1 - e /2 ) = e / 2 . 
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The assertion follows from 

Z. a. . - c..I < E.la.. - b..I + Z. lb. . - c..| < e, i < N. 
j 1 13 13 ' - j 1 ij 13 1 j 1 13 13 1 

Remark. If we define an infinite column sub-Markov (Markov) 

matrix A = (a..) by the condition: a.. > 0 and I.a.. < 1 f= 1) 
ij 13 - 1 13 - l J 

for each j, and the set p by those matrices with exactly one entry 

1 in each column, the above results remain to be true with the obvious 

modification of the topological vector space I/. The results are found 

to be useful in approximation of Markov operators in L-. (-°°,°°) which 

will be discussed elsewhere. 
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