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ON THE OPERATOR IDENTITY ) 4,XB, =0
C. K. FONG AND A. R. SOUROUR

Let 4;and B; (1 = j = m) be bounded operators on a Banach space X and
let ® be the mapping on ¥(¥), the algebra of bounded operators on ¥, defined by

(1) &(X) = A1 XB1 + ...+ A,XB,.

We give necessary and sufficient conditions for ® to be identically zero or to
be a compact map or (in the Hilbert space case) for the induced mapping on
the Calkin algebra to be identically zero. These results are then used to obtain
some results about inner derivations and, more generally, about mappings of
the form

CS,1T): X—>SX — XT.

For example, it is shown that the commutant of the range of C(S, 7°) is ‘‘small”
unless S and 7" are scalars.

1. Main results. Consider the mapping ® defined by (1). We may arrange
the operators 4 ; and B; in such a way that, for some n < m, the operators
By, ..., B, form a maximal linearly independent subset of By, .. ., B,,. There-
fore there are constants ¢;; (1 £k <nandn + 1 = j < m), such that

(2) Bj = ZZZI ijBk (n + 1 é _7 é m)

Our first result gives a necessary and a sufficient condition for ® to be ident-
ically zero.

THEOREM 1. The mapping ® is identically zero if and only if:
(B) Ay = — Yo, 1=k=n).

(In case m = n, the identity (2) becomes vacuous and the condition (3) should
be interpretated as 4, = 4, = ... = 4,, =0.)

Vala [9] proved that, if 4 and B are nonzero operators in ¥(¥), then the
linear mapping which sends X to AX B is compact if and only if both 4 and B
are compact. The following theorem may be regarded as a generalization of this
result:

THEOREM 2. (i) If the linear mapping ® is compact and if B, ..., B, are
linearly independent, then

(4) A+ 2w i (1 =k=mn)
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are compact operators. (Again, in case m = n, the conclusion should be inter-

pretated as Ay, . .., A, are compact operators’.)

(ii) The mapping ® is compact if and only if there are compact operators
Cy, ..., C, (respectively, Dy, . .., D,) in the linear span of Ay, ..., A, (respec-
twely, By, . .., By) such that

q)(X) = ClXDl + “ e + C,—XD,
for all X in Q(X).

Now we let 4,,...,A4,, Bi, ..., B, be operators on a separable (infinite
dimensional) Hilbert space $. The mapping ® from ¢(9) into itself is still
defined by the identity (1). We suppose ®(X) compact for all X in ¥(9). Thus
if we write 7 for the natural projection into the Calkin algebra ¥(9)/f(9)

and a1, ..., 4y, b1, ..., b, for 7 (41),...,7(4,), =(B1), ..., w(B,) respec-
tively, then

(5)  awxby + ...+ apxb, =0

for all x in the Calkin algebra. As before, we assume that by, . . ., b, are linearly
independent for some n and there are constants ¢;;, 1 £k < nandn + 1 <
j = m such that

(6) b= 2k=1 b n+1=j=m).
Theorem 1 suggests that the identity (5) holds if and only if
g = D jent1 Crjd 1=k =n).

This turns out to be true and we rephrase it formally as follows:

THEOREM 3. Let Ay, ..., Ay, By, ..., By be operators on a separable Hilbert
space . Suppose By, ..., B, (n < m) are linearly independent modulo the

compacts and there are constants cx;, 1 Sk S nand n + 1 =< j < m, such that
B; = Y i1 cx;Br modulo the compacts (n + 1 £ j < m).

Then A\ XBy 4+ ...+ 4,XB, is compact for each X in (D) if and only if
Ay = — Yini1 i modulo the compacts (1 £ k < n).

Here we point out that the proof of the above theorem depends on a beauti-
ful result of Voiculescu [10].

2. Proofs. Now we start proving results that we have claimed in the pre-
vious section. For the proof of Theorem 1, we need the following technical

lemma.
LEmMMA 1. Let B, By, Bs, ..., B, be operators in R (¥). Then B is not in the
linear span of By, . . ., B, if and only if there are finitely many vectors xi, . . . , x,
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in X and equally many linear functionals fy, . . ., f, in ¥* (the dual space of %)
such that

Yi=1 fe(Bxy) =0 G=1...,n)
while Y i—1 fr(Bxy) # 0.
Proof. Let ¥ be the set of all linear functionals on ¥(¥) of the form
X — i1 fu(Xxy)

where x;,...,x,arein ¥ and f1, ..., f, are in ¥*. Then § is a linear space in
¥ (X)* which separates the points of (¥). That is, if X, V € (¥) and X # 7,
then there exists a linear functional F in § such that F(X) # F(Y). By

regarding B, By, ..., B, as linear functionals on {, the desired conclusion
follows from the following result in (4, V. 3.10]: if g, fi, .. ., f, are any linear
functionals on a linear space X and if f;(x) = 0 for + = 1,...,n implies

¢(x) = 0, then ¢ is a linear combination of the f..
For convenience, we write f @ x (where f is in ¥* and «x is in X) for the opera-
tor on X defined by (f ® x)y = f(y)x.

Proof of Theorem 1. First we consider the case that By, ..., B,, are linearly
independent. By Lemma 1, there exist finitely many vectors %y, ..., x, in ¥
and linear functionals fi, ..., f, in ¥* such that

o 0 ifi=2...,m,

Then we have

0= le:l (I)(fk ® x)xk = Z}:=1 Z’;l:lfk(BJxk)A]x = Alx.

Hence 4, = 0. Similarly we have A, = 43 = ... =4, = 0.
Now, suppose that By, Bs, ..., B, are linearly independent and (2) holds.
Then

B(X) = 2N AXB; + X AX (Xhay ciBr) = 2ie1 AR X By
+ ka1 2wt €A X By = ke (Ax + Xni1 x4 ) X By

Since By, ..., B, are linearly independent, we must have
Ax + 2w a4 = 0.
The proof of the ¢f part is straightforwa~d and hence is omitted.

Proof of Theorem 2. The proof here is similar to that of Theorem 1. We start
by considering the case when By, ..., B, are linearly independent and use
Lemma 1 to obtain xy,...,x,in X and fy, ..., f, in ¥* such that

22:1 Jr(Bjxi)
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vanishes for j = 2, ..., m and equals 1 for j = 1. Again we have
Yhet P(fr @ x)xp = Ay,

Since @ is a compact mapping, the set
Vit @(fx @ w)wy s [[x][ = 1Y

is precompact in X and hence A, is a compact operator. The rest of the proof
of (i) is similar to that of Theorem 1 and hence is omitted.

To prove the only if part of (ii), we observe that ® can be written in the form
®(X) =CXD,+ ...+ C,XD,where Cy, ..., C, (respectively, Dy, ..., D,)
form a linearly independent set in the linear span of 4,4, ..., 4, (respectively,
of By, ..., B,). (Here we assume that ® > 0; the case ® = 0 is trivial.) By
(i), Cy, ..., C,are compact. It remains to show that Dy, ..., D, are compact.
Since (4, . . ., C, are linearly independent, by Lemma 1, there exist x4, . . . , x,
in X and fy, ..., f, in ¥* such that X ;i fx(Csx;) vanishes for j = 2,...,7
and equals 1 for j = 1. Then

2i=1 O(f ® xp)*fi = Dy¥f.
Since ® is a compact map, the set
(i @ ® 0 I1f]] < 1)
is precompact in X*. Hence D * is compact and so is D;. Similarly we can show

that D», ..., D, are compact.
The if part follows from [9].

Proof of Theorem 3. The if part is easy to check and hence left to the reader.
To prove the only if part, let 3 be the separable C*-algebra generated by
I, 4y, ..., A, By, ..., B, lts image w(N) in the Calkin algebra is also a
separable C*-algebra. Let p be a faithful representation of 7 () on a separable
Hilbert space $,. Note that the direct sum of countably many copies of p,
denoted by pt, is also a representation of = () on a separable space, namely,
0,7

Now we can apply [10; Theorem 1.3] to obtain a unitary transformation
U:H—9H @ H, " such that, for each 7°in A, T ® o (x(T)) — UT U is
compact. Since ®(X) is compact for every X in ¥(9), the operator

T (A, @ p w(4;) Y (B; @ p w(By))

is compact for every Vin (9 @ $,7). By taking ¥V = Ogp @ 2™, where Z
is in ¥($,), we see that W, is compact, where

Wz = 25p(n(d,)Zp(m(B;)).

But a compact operator of the form 4 must be zero. Therefore W, = O for
every Z in ¥(9,). Since p is a faithful representation, we can complete the
proof by applying Theorem 1.
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From the proofs of Theorem 1 and Theorem 2, we can establish the following
two similar results:

TueorREM 1. If A XBy + ... + 4, XB,,=0forall X in®X) and 44, ..., 4,
(n £ m) are linearly independent, then By, ..., B, depend linearly on
]5n+lv ety ]Snw

Trarorem 2. If the mapping ® : Q(X) — (X) defined by ®(X) = 4. X B,
+ ...+ A4,XB, is compact and Ay, . .., A, (n = m) are linearly independent,
then By, . .., B, are linear combinations of B,11, . . ., B,, plus compact operators.

3. Special cases. For the purpose of illustration and affording facility for
later applications, we consider some examples of special cases of the mapping
® investigated in the previous sections. In the present section, we always
assume the underlying Banach space is infinite dimensional.

Example 1. Assume that &, : ¥(¥) — ¥(X) defined by ®y(X) = 4X — XB
is compact. If B is not a scalar multiple of 7, then I and B are linearly indepen-
dent and hence, by Theorem 2, .4 and — I are compact, a contradiction to the
fact that [ is not compact. Hence B is a scalar multiple of I, say B = 81I.
Similarly 4 is a scalar multiple of 7, say 4 = «al. Then ®,(X) = (@ — B)X.
Since @ is compact, a« = 3. We have proved the equivalence of the following
three statements: (i) ®, is compact, (ii) &, = 0, and (iii) 4 = B = scalar
multiple of I.

Lxample 2. Suppose that &;: ¢(X) — ¥(X) defined by ®;(X) = AX +
XB + CXD is compact. We may assume that C and D are not scalar multiple
of I; otherwise, ®, can be reduced to a map of the form &, considered in
[ixample 1. Since I and D are linearly independent, by Theorem 2, C must be
of the form N + K for some scalar N and some compact operator K. Hence
®;(X) becomes AX 4+ X (B 4+ \D) + KXD. By our assumption, K # 0.
Hence I and K are independent. By Theorem 2’, D must be of the form ul + J
for some scalar p and compact J. Thus

(X)) = (A4 + uK)X + X (B 4+ M + \) + KXJ.
Since the map X — KX is compact, the map
X > A4+ pK)X 4+ X (B 4+ N + M)

1s also compact. By example 1, we conclude that there are scalars «, 8, \, u and
compact operators K, J such that 4 = ol — uK, B =8I — \NJ, C =\ +
K, D = pul + Janda + B + M = 0. It is easy to check that these conditions
are sufficient for ®; to be compact.

Lixample 3. Suppose that the map ®; defined in Example 2 is identically
zero. Then, following an argument similar to, but simpler than that in Example
2, we deduce that either 4, C are scalars or B, D are scalars.

https://doi.org/10.4153/CJM-1979-080-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-080-x

850 C. K. FONG AND A. R. SOUROUR

Example 4. Assume that the mapping &, : ¥(X) — ¥(¥X) defined by ®,(X) =
A X 4+ XBy + 4:XBs + A,X B, is identically zero. We apply Theorem 1
and 1’ to this mapping with m = 4 and B, = 4, = I.

Since 4, = I # 0, the set = {1, B, B;, B4} must be linearly dependent.
If I, By, By are independent, then 4,, I, A3 must be scalar multiples of 4, and
hence A1, 43, Ay are scalars. In general, if there are three independent elements
among B, then all elements in A = {44, I, 43, A4} are scalars. Similarly, if there
are three independent elements among ¥, then all elements in B are scalars.
Henceforth we assume that there are at most two independent elements in
(respectively, in B).

If B, is a scalar, say By = B4/, then ®:(X) becomes (4; + B.4)X +
X By + 43X Bj and hence it reduces to a map of the form considered in Exam-
ple 3. Therefore either B,, B; are scalars or 4, + (8444, A3 are scalars.

Now we assume that B, is not a scalar. Then B,(= I), B, are independent
and hence by our earlier assumption, B, and Bj are linear combinations of [
and B, say

*) By =al + BB,
15:; ‘)/I + 5B|

I

By Theorem 1, we have
(**) A1 = “CV] — ’)’A;;
Ay —B1 — 843.

We conclude that if &, is identically zero, then one of the following four cases
must occur: (i) all elements in 9 are scalar multiples of I, (ii) all elements in B
are scalar multiples of I, (iii) A3 and B, are scalars, say 4; = a3l, By = B4,
and 4, + B4, = —Bs — a3B; = scalar multiple of I, and (iv) there exist
scalars «, 8, v, 6 such that both (*) and (**) are satisfied.

4. Applications. Let ¥ be a Banach space and S, 7" be operators on X.
We denote by C(S, 7) the mapping from ¥(¥X) into itself defined by

C(S, X = SX — XT.

Note that in case 7" is a scalar multiple of I, say 7" = NI, then C(S, 1) is the
left multiplication by N — S and in case S is a scalar, say S = ul, then
C(S, T') is the right multiplication by 7" — ul. Also note that C(S, S) is the
derivation 6 s.

Let € ={C(S, T):S, T €{X)}. It is easy to see that € is closed under Lie
multiplication; in fact, for S, 7, .5’, 77 in ¥(¥), we have

LC(S, 1), C(S', T)] = C(S, SN, |1, 1)

(where | X, V] is the commutator XV — VX). However, in view of the fol-
lowing proposition, the usual product of elements in € is rarely in €.
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ProrosiTiON 1. Let Si, Sy, 11, T be in ¥(X). Then
C(Se, T2)C(Sy, Th) = C(S, 1)

for some S, 1" if and only tf one of the following three cases occurs: (i) Both
C(Sy, T1) and C(Ss, Ts) are left multiplications, (it) both C(Sy, T1) and C(S,, 1)
are right multiplications, and (iii) C(Sy, T1), C(Ss, — 1) and the identity map I
are linearly dependent.

Proof. Obviously, if either (i) or (ii) is satisfied, then C(Sy, T2)C(S;y, 1) is a
left or right multiplication. Suppose that (iii) is satisfied. Then there are
scalars «, 3, v such that

lof + 8] + |v[ # 0 and
OZC(S], Tl) + ,BC(Sz, —]‘2) + ’)/I = 0
If @« =0, then C(Sy, —1%) is a scalar multiplication and hence by Example 1

in § 3 it is easy to see that C(S,, 1) is also a scalar multiplication. If a # 0,
then

C(Sy, T1) = ul + NC(Ss, —T17)
where u = —a 'y and A = —a~!8 and hence we have
C(Se, T2)C(Sy, T1) = nC(Sy, T2) 4+ NC(Ss, —15)C(Ss, 1)
= uC(Ss, 1) + NC(S%, 15%) = C(uSe + AS2?, uls + NTL?).
Thus we have shown the ¢f part.

To prove the only if part, we assume C(S., 17%)C(Sy, 71) = C(S, T). Ap-
plying both sides of this identity to X, we obtain:

(5251 - S)X + X(]}]jg + 7‘) - SlXT2 - SzXT} = .

By applying the conclusion of Example 4 in §3 with 4; = 551 — §,
Ay = =8, 4, = =8y, Bo=T11T.+ 1T, By =1, and B, = T, we arrive
at the following four cases: (a) S, and S. are scalars, (b) 1, and T, are
scalars, (c) S; and T are scalars, and (d) there exist scalars 8, v, § such that
Se = 81 — Sy and Ty = vI + 671. Obviously, case (a) implies (i) and case
(b) implies (ii). In case (c), C(S1, 711) is a scalar multiplication and hence (iii)
holds. In case (d), we have C(Sy, —1%) = (8 + v)I — 6C(Sy, T1) and hence
(iii) holds. The proof is complete.

In what follows, we say that a pair of operators (4, B) intertwines an opera-
tor Yif AY = VB. For a set © of operators, we write @ for its commutant,
that is, that set of all operators which commute with each operator in &. For
an operator 7', we write W1 for its range. The following consequence of Prop-
osition 1 indicates that, in general, the range of C(S, 7") is large.

CoroLLARY 1. Suppose that neither S nor T 1s « scalar. Then the linear space ©
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of all puairs (A, B) in the product spuce ¥ (X) X ¥(X) which intertwine cvery
operator in the range of C(S, 1°) is at most lwo dimensionul.

Proof. Note that & = {(d4, B) : C(4, B)C(S, 1)) = 0}. By Proposition 1,
C(A, —B) is a linear combination of C(S, 7°) and the identity mapping. By
Theorem 1, (4, B) is in the subspace spanned by (S, — 1), (1, 0) and (I, I).
But the pair (/, 0) intertwines only the zero operator, so £ is a proper subspace
of the three dimensional subspace indicated.

For the commutant of the range of C(S, 1), we have the following more pre-
cise result.

COROLLARY 2. Suppose that S and 1" are not both scalurs. Then (NC(S, 17))
is either GI or GI 4+ C1'. Furthermore, (RC(S, 1)) = GI + C1" if and only
if the following condition is sutisfied:

(C) There exist scalars N and a such that S + 1 = N and 1% — N1" + oI = 0.

(Note that condition (C) implies 2 — \S 4+ «f = 0.)

Proof. Suppose 4 € (NC(S, 1)) and 4 is not a scalar. Then C(d, 4)
cannot be a left multiplication nor a right multiplication. Since (4, 4)C(S,
1) = 0, by Proposition 1, C(4, —A4), C(S, 1) and [ are linearly dependent.
Since C(A, —A4) is not a scalar, C(S, 7°) must be a linear combination of I
and C (A4, —A4). IHence there exist constant 3, v, 6 such that S = gI + 64 and
1" = v — 4. Since at least one of S and 7" is not a scalar, § # 0. Multiplying
A by a suitable constant, we may assume that 6 = 1. By a straightforward
computation, we obtain

CA, )CS, THX = (v —B)Ad — AH)X — X((v — B)A — A?).

Hence 4% — (y — B)A + el = 0 for some e. Let N = 8 4+ v. Then it is easy
to check that S+ 7" = M and S* — \S + af = 0. Hence condition (C) is
satisfied.

Conversely, if condition (C) is satisfied, then it is straightforward to check
that C(7°, T)C(S, 7)) = O and hence CI + CG1° C (ORC(S, 1))".

CororLrary 3 [11; Corollary 1 in § 11. If an operator 1" is not « scalar multiple
of I, then (Mé,) = CI.

COROLLARY 4. Suppose that S and 1" are nonscalar operators. 1'hen the follow-
ing conditions «are equivalent:

(i) There exist S, 1" in ¥ (X) such that
C(S, THC(S, T) = 1.
(i1) There exist operators S”', 1" such that
C(S, cl$”, 1) = 1.
(ii1) There exist scalars \, a, B with a 5% B such that

S?—= NS+ al =0and 1? — NT" 4 I = 0.
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Proof. 1f condition (iii) is satisfied, then we let S" = (8 — «)~\S and
1" = (8 — a)""(M — 1) and it is straightforward to check that both (i) and
(i1) are satisfied.

Suppose that (i) is satisfied. By Proposition 1, C(S’, 77) is a linear com-
bination of C(S, —7") and I, say C(S’, 1") = vC(S, —T") + 81 for some scalars
v, 6. Therefore

I =~C(S, —1)C(S, 1) +6C(s, 1) = ~vC(S2, 1?%) + 6C(S, 1)
= C(yS? + 8S,v1?% + 67).

Since S and 7" are not scalars, we have v #% 0. Now it is easy to check that (iii)
holds. In the same way (iii) follows from (ii).

The next proposition generalizes [11; Theorem 1] from the separable Hilbert
space case to the Banach space case. First we need a technical lemma.

LeEmMma 2. Let A, B bein €(X). If Ax and Bx are linearly dependent for all x in
X, then A, B are linearly dependent.

The proof of this lemma is elementary and hence omitted.

PROPOSITION 2. Let 81, 8, be two dertvations on $(X). If 628, 1s ulso a derivation,
then either 6, = 0 or 62 = 0.

Proof. By the assumption, we have

On the other hand

(6260) (X Y) = 6,(6,(X)Y 4+ X6,(V)) = 6:61(X) Y + 6,(X)6:(Y)
+ 8:(X)8.(Y) + X6:16:(Y).

Hence we have
(*) 61(X)8(Y) + 82(X):(Y) = 0
for all X and V. Replacing X by ZX in (*), we obtain

01(Z2)X6:(Y) 4 Z6:1(X)62(Y) 4 62(2)X6:(Y) + Z62(X)6:(Y) = 0.
Hence, by (*), we arrive at
(**) 61(Z2)X58:(Y) + 8:(2)X6,(V) =0
forall X, V, Z in ¥(X). (The argument up to here is taken from Theorem 1 in
[lllgf.c))w, by using Theorem 1 and Lemma 2, we see that é; and §; are linearly
dependent. Thus either §; = 0 or §; = \o; for some scalar X\. Suppose 8, = \§;.

Then (**) becomes 2)\6,(Z)X6,(Y) = 0. Hence either A = 0 or §; = 0. There-
fore 6, = 0.
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In the following proposition and its corollary, we assume that the underlying
space is a separable infinite dimensional Hilbert space denoted by .

PROPOSITION 3. If 8, and &» are two derivations on the Calkin algebra ¥ (9)/
K(D) and 6:8, 1s also a derivation, then either 6 = 0 or 6, = 0.

The proof is exactly the same as that of Proposition 2 except using Theorem
2 instead of Theorem 1 and hence omitted.

COROLLARY |5; Theorem 1]. If A, B are nonscalar operators on  and épé 4 1s
« compact mapping, then there are constants a, B such that A — al, B — BI are
compact operators and (A — al)(B — BI) = (B — BI)(A — al) = 0.

(The proof given in [5] has a gap.)

Proof. By Theorem 2, 6564 (X) is a compact operator for each X in ¥(9).
Hence, as a mapping on the Calkin algebra, 6,6, is identically zero, where
@« =7(A4) and b = w(B). By Proposition 3, we have either 6, = 0 or 6, = 0.
On the other hand, since I, 4 are linearly independent and since

6p04(X) = BAX — BXA — AXB — XBA,

from Theorem 2 we see that B must be a linear combination of I and 4 plus
a compact operator. Now it is easy to see that both 4 and B are scalars modulo
the compacts, say 4 = af + K and B = 81 + J where K and J are compact
operators. Since

6p64(X) = JKX — JXK — KXJ + XKJ

and since the mapping X — JXK + KX/ is compact, so is the map X — JKX
+ XKJ. By Example 1 in § 3, we have JK = KJ = 0.

It is known that the spectrum o (C(S, 17°)) of C(S, 1) is o(S) — o (7). (See
[6].) Hence if C(S, 7T") is quasi-nilpotent, then there exists a scalar X such that
S — M and T° — N are quasinilpotent. The following proposition shows that
if, in addition, C(S, 7°) is nilpotent, then so are S — N and 7" — \I.

ProposiTiON 4. Let X be an infinite dimensional Banach space and S, T be in
Y(X). Then the following three conditions are equivalent:
(i) C(S, T') is nilpotent.
(i1) There exists a positive integer n such that C(S, 1T°)" is « compact operator.
(iii) There exists « scalar \ such that S — N and T — NI are nilpotent.

Proof. That (i) implies (ii) is obvious. Suppose (ii) holds. Note that
™ S 1T)X = X% (Z) SX(—=1)"*
k=0

where S* = (—T7)° = [. By Theorem 2, I, S, §% ...,S5" must be linearly
dependent. Hence S is an algebraic operator. Similarly 7" is an algebraic opera-
tor. To show (iii), it suffices to show that ¢(S) = ¢(7") = {\} for some scalar
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\. Let \ be an eigenvalue of 7" such that the spectral manifold It associated
with X\ is infinite dimensional. We have (1" — N)* = 0 on IN. It is easy to see
that there is a projection F of infinite rank with its range in 3¢ such that
FT'F = NeFfor k= 1,2,.... Now let u be an eigenvalue of S. It is enough
to show that 4 = \. Let £ be a projection onto the eigenspace

{x € X:5x = ux}.
Then SE = uE. Now

(C(S, Y'EXF)F = ) (—1)“(’;) SEXFT"'F
k=0

Z( (—1)”(’;)#’%){1«‘. N = (u = N)'EXF.
k=0

Since £ # 0 and F is not compact, the compactness of the map
X — (C(S, I')"EXF)F

forces u — \ to be zero.
That (iii) implies (i) follows from the identity (*) with S and 7 replaced by
S — M and 17" — M respectively on the right hand side. The proof is complete.

Anderson and Foias [1] showed that if P is a self-adjoint projection on a
Hilbert space such that 0 % P 5 I, then §p is a hermitian operator on ¥($)
while 6 2 is not hermitian. The following proposition shows that if 4 is a non-
scalar self-adjoint operator on a Hilbert space, then §, is hermitian while § 42
is not hermitian. Its proof depends on the fact that an operator on ¥(9) is a
hermitian operator if and only if it is of the form C(S, T°) where S and 1" are
self-adjoint operators on . This follows from a result of Sinclair [8] which
characterizes the hermitian elements in a C*-algebra.

PROPOSITION 5. If © is a Hilbert space, ® is an operator on (D) and ® and
D2 are hermitian, then ® is either a left multiplication or a right multiplication by
a self-adjoint operator on 9.

Proof. Suppose that both ® and ®? are hermitian. By the aforementioned
result of Sinclair, there exist self-adjoint operators .S, 7', 4, B such that
(X)) =SX — XTand #*(X) = AX — XBforall X in ¢(9). Now $2(X) =
S2X — 25X7T + X772 Hence we obtain

(S? — AVX + X (12 + B) — 2SX7T = 0.

By Example 3 in § 3, we see that either S or 7" is a scalar.

5. A conjecture. In this final section we raise a question related to Theorem
3. Suppose that § is a separable, infinite dimensional Hilbert space, a,
dg, ..., @y, b1, ..., b, are elements in the Calkin algebra £(9)/R($) and the
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mapping ¢ defined on the Calkin algebra by ¢(x) = «xb;, + ... + «,xb,, is
compact. We ask if ¢ has to be identically zero.

We mention three facts in support of an athrmative answer to this question.

First, if there exist A4y, ...,4,, By, ..., B, which are preimages of
A1y o ooy Ay b1y ooy by in X(D) respectively such that that the mapping @
defined on ¥(9) by ®(X) = 4:.XB, + ...+ 4,XB, is compact, then, by
Theorem 2, ¢ = 0.

Second, the conjecture is true for m = 1. (To prove this, let 4, B be two
non-compact operators. We have to show that the mapping ¢ defined on the
Calkin algebra by ¢(x) = 7 (4 )xm(B) is not compact. By using polar decom-
positions, we can assume that both 4 and B are positive. Since 4 is not com-
pact, there is a projection I£ of infinite rank and a positive number X\ such that
AE = EA = \E. Similarly there is a projection I of infinite rank such that
BF = FB =z ufF for some p > 0. Then it is easy to see that B'B = BB’ = I
and 4’4 = A4’ = E for some self-adjoint operators B’ and A’ such that
1A'l < X'and ||B/|| £ w'. Let IV be a partial isometry such that 1'l™* = E
and 1™*17 = [ Let { E,} be a sequence of projections of infinite rank such that
EE, =0forn #mand ), E, = E.Let X, be A’E, VB’. Then M| X, || £ 1
and, for n # m,

H‘F(W(Xn)) - ‘»9(7"(Xm))” = HTI'(AX,,B) - 7"(‘4X/NB)||
= ||r(E,V) — a(E, || = ||x(E,) — n(L,)|] = 1.

Hence ¢ is not compact.)

Third, if ¢ is of the form & — «x — xb, then the conjecture is true. (Proof.
Let e be a self-adjoint idempotent. Then the mapping x — —p(x(1 — ¢))e =
x(1 — e)be is compact. By the previous result, (1 — e)be = 0. Therefore b
commutes with each self-adjoint idempotent and hence so does b + b*. If
b + b* is not a scalar, then b 4+ 0* can be written as N\je; + Naex + e3(b + 0¥)es
where ¢, e, and ¢; are mutually orthogonal self-adjoint idempotents and
M # N\, Let v be a partial isometry in the Calkin algebra such that v*v = ¢,
and v* = ey Lete = 2(ey + e + v 4+ v*). Thene? = ¢ = ¢* bute(b + 0*) #
(b + b*)e. Hence b + b* is a scalar. Similarly b — b* is a scalar. Therefore b is a
scalar, say, b = M. Now ¢(x) becomes (¢« — A1 )x. By the previous result again
we have ¢ = 0.)

We would like to thank K. R. Davidson for pointing out an error and J. P.
Williams for his helpful remarks.
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