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ON CERTAIN STABLE WEDGE SUMMANDS OF B(Z/p)n
+ 

JOHN C. HARRIS 

ABSTRACT. Campbell and Selick have given a natural decomposition of the co-
homology of an elementary abelian p-group over the Steenrod algebra. We study the 
corresponding stable wedge summands of the classifying space B(Z/p)+ using repre­
sentation theory and explicit idempotents in the group ring Fp[GL„(Z/p)]. 

Introduction. Let B(Z/p)n
+ be the classifying space of the elementary abelian p-

group (Z/p)n, together with a disjoint basepoint. Let H = H*(B(Z/ p);¥p) regarded 
as a module over the mod-/? Steenrod algebra, A. And write H®n = ¥p[to,..., tn-\] ® 
Ext[w0,...,w„_i], with/?(M*) = tk and Tx(tk) = fk (if/7 = 2, take <Pl = Sq{ and 
Ext = 0). Note that H®n is the reduced cohomology ofB{Z/p)n

+. 
Consider the following three problems: 

1) Find a decomposition B(Z/ p)+ ~ X\ V • • • V XN into indecomposable stable 
wedge summands. 

2) Find a decomposition H®n = I\ 0 • • • 0 IN into indecomposable modules over 
the Steenrod algebra. 

3) Find a decomposition 1 = e\+- • •+£# in Fp[Mn,n(Z/p)] into primitive orthogonal 
idempotents, where M«,«(Z//?) is the multiplicative semigroup of n x n matrices. 

The first and third problems are shown to be equivalent in [HK], where a solution to the 
third is given in terms of the modular representation theory of Mn,n{Z/p). The second 
and third are equivalent by a result of Adams, Gunawardena, and Miller ([AGM], [LZ2], 
[Wo]). The correspondence from 1) to 2) is given by taking reduced mod-/? cohomology. 

The importance of the modules h comes from results of Carlsson, Miller, Lannes, 
Zarati, and Schwartz ([Ca], [Mi], [LZ1], [LS]). In his proof of the Segal conjecture, 
Carlsson used a certain splitting which Miller later observed, in his proof of the Sullivan 
conjecture, was equivalent to the fact that the module H is injective in the category of 
unstable J^-modules, Zl. Using this, Lannes and Zarati showed that H®n (hence any direct 
summand of//®") is also injective in Zl. Then Lannes and Schwartz classified all of the 
injectives in Zl, showing in particular that the modules 4 are exactly the indecomposable 
reduced injectives. 

In [CS], Campbell and Selick give a very natural decomposition of//0" into a direct 
sum of (pn — 1) j^-modules, called the weight summands, Mn(j), for j G Z/ (pn — 1). 
These summands are particularly easy to work with because they have bases consisting 
of monomials in a certain finitely generated algebra. By the above correspondence of 1) 
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and 2), the Campbell and Selick weight summands give a decomposition of B{Z/ p)n
+ 

into (pn — 1) stable wedge summands, which we call Yn(j), for y G Z/ (/?n — 1). 
The purpose of this paper is to describe the Yn(j). To do this, we produce a set of or­

thogonal idempotents in Fp[Mn,n(Z/ p)] inducing Campbell and Selick's decomposition 
of H®n, hence inducing the F„(/)'s. Then we relate these idempotents to the irreducible 
Mn,n(Z/p) representations to give the complete decompositions of the Fn(/)'

s-
Our construction of the idempotents was inspired by the work of Witten ([W]). She 

produces (pn — 1) orthogonal idempotents in a certain group ring ¥P[G] (with G = 
(Fpn)* x Gdl(Fpn : Fp) Ç Mw,n(Z//?)) inducing a decomposition of B(Z/p)n into wedge 
summands, each of which has rank 1 mod p /^-theory. Her idempotents are not uniquely 
specified, and it turns out that her summands are only well defined up to ^-theoretically 
trivial pieces. 

THEOREM A. An appropriate choice of Witten's idempotents induces the Campbell 
and Selick decomposition ofB(Z/p)1. 

It follows that Yn(0) has rank 2 mod p K-theory, and, fory ^ 0, Yn(j) has rank 1 mod p 
^-theory. (Note that B(Z/p)n

+ ~ B{Zjpf V S°, S° has rank 1 mod/7 ^-theory, and if 
we write yn(0) ~ Yn(0) V S°, then Yn(0) is the Witten summand with rank 1 mod/? 
^-theory.) 

Results of Kuhn and Carlisle ([K], [CK]) can be used to determine which indecompos­
able summands have rank 1 mod p AT-theory. In Section 4, we show how these summands 
distribute themselves among the Campbell and Selick summands when/? = 2. 

From the Campbell and Selick description it is easy to see that Yn(j) ~ Yn(jp); we let 
Yn(j) ~ Yn(i) V • • • V Yn(ip

Zi~l), where zi is the smallest positive exponent k with ipk = i 
(mod/?" - 1). 

THEOREM B. There are (unique) orthogonal idempotents in FP[C], where C = 

(FP"T Q G is a cyclic subgroup of order (pn — 1), inducing the wedge summands Yn(i). 

In fact, the Yn(i) correspond to the distinct irreducible representations of F^C]. (Note 
that these representations are not necessarily one dimensional since Fp is not 
algebraically closed.) By comparing these to the irreducible Fp[GLn(Z/p)] represen­
tations, we describe complete decompositions of the Yn(i). Of course, complete decom­
positions of the Yn(j) follow. 

The paper is organized as follows. In Section 1, we recall the methods from [HK] giv­
ing the complete decomposition of B(Z/ p)+ using F/7[Mn,«(Z//?)] and giving a partial de­
composition using FP[GL„(Z//?)]. In Section 2, the Campbell and Selick decomposition 
of//®" is given. In Section 3, we first define the subgroups C and G of GLn(Z//?). Then 
we describe their irreducible representations over F^ and construct our idempotents. The 
relationship between the FP[C] irreducibles and the F/7[GL„(Z//?)] irreducibles is given 
in (3.8). Section 4 contains the main results. Theorem B is given as 4.4 and Theorem A 
as 4.5. Theorem 4.6 gives the complete decompositions of the Yn(i). In Section 5, we 
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give expressions for the Poincaré series of the Yn(j) using Molien's theorem. Finally, in 
Section 6, we give some examples of our results for small cases. 

For F a field, we let F( v\,..., vn) denote the F-vector space with basis { vi , . . . , vn } . 
We let F[v\,..., vn] (g> E[vi,. . . , vn] denote the tensor product of the polynomial ring and 
the exterior algebra over F. All cohomology groups will have coefficients in ¥p unless 
otherwise stated. All spectra are assumed to be completed at p. And K-theory will mean 
mod/? ^T-theory. 

The author would like to thank Paul Selick for a preliminary version of and many 
conversations about his paper with Campbell. 

1. Preliminaries on stable splittings. A reference for this section is [HK]. Let G be 
a finite group, BG+ its classifying space with a disjoint basepoint. By a standard telescope 
construction, idempotents in {BG+,BG+}, the ring of stable self-maps, correspond to 
stable wedge summands: BG+ ~ eBG+ V (1 - e)BG+ [Co]. 

When G is a/7-group, the summands can be found from idempotents in { BG+, BG+ } 0 
¥p. There is a generalized Burnside ring, denoted A(G,G), with a natural map to 
{ BG+, BG+}. The following theorem was proven by Lewis, May, and McClure. 

THEOREM 1.1 ([M], 15). If G is a p-group, then the map A(G,G) <g> ¥p 

—> {BG+,BG+} <g) ¥p is an isomorphism. 

Now let G = (Z/p)n. From the description of A(G, G) in [M], it is easy to see that 
the semigroup ring ¥p[Mn,n{Z/p)] is contained in A(G, G)0F / ? . The following theorem 
was proven independently by the author and Nishida. 

THEOREM 1.2 ([HK], 2.6). Ife e ¥p[Mn,n(Z/P)] is a primitive idempotent, then its 
image in A(G, G) 0 F^ is also primitive, so eB(Z/ p)1 is indecomposable. 

It follows that a formula 1 = £e* in ¥p[Mn,n('Zj/p)], writing the identity as a sum of 
primitive orthogonal idempotents, gives a complete decomposition B(Z/ p)+ ^ 
yekB(Z/p)l. 

From general representation theory (e.g. [CRI]), a primitive idempotent e in a finite 
dimensional algebra R over ¥p corresponds to a projective indecomposable left ideal 
Re, which in turn corresponds to the irreducible ¥p representation Re/ Je, where J is 
the radical of R. There is a one-to-one correspondence between isomorphism types of 
projective indécomposables and isomorphism types of irreducible representations, and 
the number of times a given projective occurs in a complete decomposition of R equals 
the dimension of its associated irreducible over its endomorphism ring. 

THEOREM 1.3 ([HK], A). In a complete stable decomposition ofB{Z/p)n
+, there are 

wedge summands ofpn distinct homotopy types. These correspond to the pn irreducible 
left ¥p[Mn,n(Z/p)]-modules, and a given homotopy type appears with multiplicity equal 
to the dimension of the corresponding module. 

By the following theorem, there is a similar result for the ^[-module summands of 
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THEOREM 1.4 ([AGM], P. 438). F^M^Z/ /? ) ] 9* Horn^tf®", H®n). 

Of course, orthogonal idempotents in any subring of Fp[M/i,n(Z//?)] will induce stable 
decompositions of B(Z/p)1 into (possibly decomposable) wedge summands. The most 
important subring for our purposes is Fp[GLn(Z/p)]. 

The irreducible representations of Fp[Mn,n(Z//?)] and ¥p[GLn(Z/ p)] can be described 
using Young diagrams. We adopt the following notations (see [HK], Section 6). 

(1.5) Irr(F/?[Mn,n(Z//7)]) - {SX]_Xn\ 0<Xk<p-l} 

Irr(Fp[GLn(Z//7)]) = {Sf
X]_AJ 0 < A, < p - 1, and Xn < p - 2} 

Denote the stable summand corresponding to 5(A) (resp. 5|A)) by X(X) (resp. X'^). These 
notations give the following decompositions where the first is complete. 

(1.6) B(Z/p)n
+~ V dim(SiX))X(X) 

(A) 

(The indexing sets are those given in 1.5.) 

B(Z/p)n
+~\/âim(S{X))X'{X) 

(A) 

PROPOSITION 1.7 ([HK], 6.2). With the above notations, we have 
(i) XXl_Xn_u0~XXl_Xn_x, 

(ii) X'XuX ~ XXu...,\n> ifxn 7̂  0 orp - 1, and 

("0 XM,..,xn-uO - x*u..,\n-u0 V XXl_Xn_uP-h 

2. The Campbell and Selick Summands. Let H be the mod-/? cohomology of the 
classifying space B(Z/ p). One of the results of the paper of Campbell and Selick is to 
give a decomposition of H®n into a direct sum of (pn — 1) modules over the Steenrod 
algebra. This section gives a sketch of their argument. 

In ¥pn, choose an element UJ so that UJ generates the cyclic group of units in ¥pn and 
{ UJ, <j> (a;), ...,</> n _ 1(^)} forms a basis for ¥pn over F^ ([D]), where </> (a) = ap is the 
Frobenius. Let p(x) — ao + a\x + • • • + an_ijc"-1 + x" be the minimal polynomial for UJ. 
Let 

(2.1) 

/ 0 0 
1 0 
0 1 

\o o 

0 -a0 \ 
0 -ax 

0 -a2 

1 —fl„_i / 

be the n x n matrix over ¥p representing multiplication by u in the basis 
{ l ,a ; , . . . , a ; " - 1 } . Regard 7 as a linear transformation on the vector space 
¥pn(t$,...,tn-\). The eigenvalues of T are CJ, UJP, . . . , a;77" defined over Fpn. A basis 
of nonzero eigenvectors of T, {*o, • • • ,*n-i}, can be chosen with r(jc^) = a;77 JC* and 
xk — (j) (xk-\ ) (here the Frobenius acts trivially on the fs). Let B be the matrix in GLn(¥pn) 
giving the JC'S in terms of the fs, B: ¥pn (to,..., tn-\) —• ¥pn(xo,... ,xn-\ ) , and note that 
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BTB l is the diagonal matrix diag(u;, UJP, ..., ujpn ) in GL„(Fp«). Extend B multiplica-
tively to polynomial algebras to give 

(2.2) B'.¥pn[to,...,tn-x\^¥pn[xo,...,xn^l 

Give F^ [to,..., /„-1 ] the usual J^-algebra structure (thought of as the polynomial part 
of the cohomology of B(Z/p)n ) (Pl(tï) = *f, and extend to ¥pn[t0,..., tn-\\ so that 
the action of A is ¥pn-linear. The induced J?-module action on the JC'S is specified by 
îP1 (JC/) — jcf_j, where the subscripts are taken modulo n. The Cartan formula applies, so 
Fp[xo,... ,xn-\] is an J^-submodule of F^ fo , . . . , tn-\\- (If p is odd, the Bockstein acts 
trivially, and if p = 2, take fP1 = Sqx.) 

,tn-\] as ft-modules. 

,tn-\] — • F p O o , . . . , f / i - i L 

where A : ¥pn[t0,... Jn-\] —• F^fo , . . . ,^_i] is given by A (y) = o;v + </>(̂ y) + • • • + 
(/> n~x(ujy) and ^ is the Frobenius (acting trivially on the fs). Note that A is J?-linear but 
not multiplicative. 

Let Mn = ¥p[xo,... ,JC„_I] and define weights w(m) inZ/ (pn — 1) for monomials m 
in Mn by w(l) = 0, H>(JC*) = /A and w(yz) = w(y) + w(z). Let Mn(/) he the subspace of 

Mn having the monomials of weighty as basis. Since *Pl preserves weights (and (5 acts 
trivially if p > 2), there is a decomposition 

(2.5) Mn = 0 Mn(j) 
jez/{pn-\) 

as j^-modules. Note that Mn(0) is a ring, and each Mn(j) is an Mn(0)-module. 
The self mapping xi —• JC/+I of M„ shows that Mn(j) is isomorphic to Mn(jp). Let 

Mn(0 = Afn(/) ® • • • © Mn(ip
Zi~l), where z, is the smallest positive exponent k with 

ipk = i (mod/7n — 1). 
If we let Z / n = ( (/> ) act on Z / (pn — 1 ) by <j> (/) = //?, then the M„(/) can be described 

as follows. Let 7/ be the orbit containing i, and let / be a set consisting of one element 
from each orbit. Then Mn(i) = ®/ey,-A î(/)» £/ is the cardinality of//, and M„ = ®;<E/Mn(/). 
We will see in the next section that this last decomposition of Mn has a particularly nice 
description in terms of idempotents. 

If/7 > 2, let { w0> • • •, "n-i} denote generators for an exterior algebra with /3 (uk) = t^. 
Then ¥p[to,..., tn-\ ] <g> E[wo,..., «n-i] gives the cohomology ofB(Z/p)n. Define a new 
basis {yo,... ,yw-i} from the { «o> • • •, un-\} as the {xo,... ,xn-i} were defined from 
the {to,..., J„-i}. With f3 (yk) = Xk Theorem 2.3 extends to give ¥p[xo,... ,xn-i] (8) 
E[JQ, • • • ,yn-\ ] — Fp[ro,..., tn-\] ® E[uo,..., un-\] as J^-modules. With w(y/) = p the 
weight decomposition also extends. 

We will use the notations MEn for ¥p[xo,... ,xn-\] ® E[yo,... ,y«-i], MEn(j) for the 
weighty summand, and MEn(i) for the summand ©7€y. MEn(j). 

THEOREM 2.3 ([CS], 1). ¥p[x0,...,jt„_i] = F^fo,... 

The proof uses the composition 
(2.4) 

*F: Fn[^o,...,xn-\] c—• Fn«[xo,..., j:n_i] —• F^[>0,... 
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The modules Mn(j) and MEn(j) are easy to work with because they have F^-bases 
consisting of monomials. For example, here we find the monomial of least degree in 
Mn(j) or MEn(j). Let y = (jn-\jn-2 • • Jo) be the base-/? representation of j , let a(j) = j0 + 
• • •+/„_!, and let a(j) be the cardinality of{k\jk^0}. (Here we use { 0, . . . ,pn — 2 } 
to represent Z / (pn — 1).) Note that a (J) = a(j) when/? = 2. 

PROPOSITION 2.6. The monomial of least degree in Mn(j) is JĈ VJ1 . . . ^l\; it has de­
gree a(j). 

For/? odd, let the JĈ 'S and y^'s m MEn have degrees 2 and 1, respectively. 

PROPOSITION 2.7. The monomial of least degree in MEn(j) is obtained by replacing 
jtjj? by ji^~ yk (whenjk ^ 0) in JĈ JĈ 1 .. .x?„l\; it has degree 2a (j) — a(j). 

It is often convenient to eliminate the degree zero elements (spanned by the identity) 
from the modules Mn(0) and MEn(0). We let M„(0) = Mn(0)/Fp • 1 and ME„(0) = 
MEn(0)/ Fp • 1. Note that Mn(0) ^ Fp 0Mn(O) and MEn(0) ^ Fp 0MË„(O) as A-modules. 

PROPOSITION 2.8. (i) The monomial of least degree in Mn(0) is JC^_1 • • • jc^l}; it has 
degree np — n. (ii) The monomial of least degree in MEn(0) is j ^ ~ y$ • • • jc^Ij yn-\; it has 
degree 2np — 3n. 

3. Some Representation Theory. In this section we construct the idempotents in 
¥p[GLn(Z//?)] that we will need. First we define subgroups C and G of GL„(Z//?). The 
idempotents for Theorem B are the (unique) primitive idempotents in ¥p [C] and are given 
in (3.4). The idempotents for Theorem A are less canonical and lie in ¥P[G] (see 3.18). 

Let G = (c,d\ cf"-1 = dn = 1, d~lcd = d>) and let C Ç G be the subgroup 
generated by c. To fix an inclusion of G in GLn(Z//?), consider the ¥p vector space 
¥pn with basis { l , ^ , . . . , ^ " - 1 } and identify c with multiplication by u and d with the 
Frobenius, <j>. (Thus G is isomorphic to the semidirect product (F^)* x Gal(F/7n : ¥p).) 

We now give some elementary facts about the action of (¥pz)* on ¥pz. Let £ be a 
primitive (pz — 1 )-st root of unity in ¥pz and take { 1, £ , . . . , £z~1} as a basis for the vector 
space F̂ z over ¥p. Consider the z-dimensional F^-representation of the group (¥pz)* on 
the vector space Fpz (given by left multiplication). We call this representation Bz. 

LEMMA 3.1. Let [i be any element in ¥pz with ¥pz — ¥p(\i). Then the representation 
Bz restricted to the cyclic group ( \i ) is irreducible. 

PROOF. If vi and V2 are non-zero vectors in ¥pZ, then £7 • vi = V2 for somej. Since 
the set { 1, / i , . . . , /iz_1} is a basis for ¥pz over Fp, there exist a^ in ¥p such that Q — 
E £ o ak^h- The element £ akVk in the group ring Fp[( [i ) ] takes vi to V2. Since the group 
ring acts transitively on the non-zero vectors in Fpz, there are no non-trivial invariant 
subspaces. • 
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LEMMA 3.2. The eigenvalues of the endomorphism BZ((,J) acting on the vector space 

PROOF. Let p(x) — a§ + a\x + • • • + a^-ix2 - 1 + x1 be the minimum polynomial for 

£ (so its roots are {Q,Çp,...,QpZ }) . In the basis { 1 ,£ , . . . ,Ç z ~ l } the endomorphism 

given by left multiplication by £ has the matrix 

/ 0 0 . . . 0 -a0 \ 
1 0 . . . 0 -ax 

0 1 . . . 0 -a2 (3.3) 

\ 0 0 1 -az-\ 

whose characteristic polynomial is p(x). m 

We now describe the mod-/? representation theory of C and give the (unique) primitive 

orthogonal idempotents in FP[C]. 

Since C is abelian and p does not divide the order of C, there are pn — 1 distinct one 

dimensional representations of C defined over ¥pn. Label them by Rj, for y G Z / ( p " ~ l ) , 

with Rj(c) — uj. Explicit idempotents in F^fC] associated to these are ej — 

yz\ E C O 2 Rj(c~k)J = ~l ^Ùo2 u'kJck dCRll 33.8). Again consider the sets Jt and / 

from Section 2. The action of Z / n — {<j>) on Fpn sends Rj to RjP and ej to ejP. 

DEFINITION 3.4. For i e /, letft = E/G/ ( ej. 

PROPOSITION 3.5. (i)ft £ FP[C], (ii) ¥p[C]fi is an irreducible Fp[C]-module, and 

(Hi) the idempotents ft are primitive in Fp[C\ 

PROOF, (i) T h e / are invariant under <j>. 

(ii) The representation /?/: C —> (Fpn)* takes ciouj1. Since zi — min{ k > 0 | ul — 

(ujiy = <t>k(ujl) } , we have FP(LU1) = F^, . Consider the Fp[C]-representation T/ given 

by 
Ri 

rr. c-^(F^) 
B7 

• H o m F p ( F ^ , F ^ ) . 

For each j , the eigenvalues of the endomorphism T((d) are {UJ1\LJ UP ...,u 
Ijp-i ' } b y 

Lemma 3.2. These are the same as the eigenvalues of d acting on Fp[C\fi. Hence these 

two representations have the same composition factors ([CR1], 30.16). 

Since the image of Ri is the group (ul), Lemma 3.1 implies that T; is irreducible, so 

F ^ Q / i i s a l s o . 

(iii) Follows from (ii). • 

REMARKS 3.7. (i) Since FP[C] is semisimple and commutative, it must be equal to 

a direct sum of fields. FP[C] = 0Fp[C]// realizes this decomposition, 

(ii) The above ideas can be used to describe the Fp representations of any cyclic group 

whose order is prime top. 

Now we relate the irreducible Fp [CI-representations to the irreducible F^ [GLn(Z/ p)]-

representations. This relationship will be used in the next section to give complete de­

compositions for the weight summands. Let 5|A) be the irreducibles for Fp[GLn(Z/p)] 
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as in Section 1, and let PjA) be their projective covers. To simplify notation, let R = 

Fp[GLn(Z/p)]md\aS=Fp[Cl 

THEOREM 3.8. Rf = (B(\)Ziaf,X\P/(\y where a'(A) is the number of times the irreducible 
Sfi occurs in a composition series for Res^S^), the restriction ofS'^from R to S. 

This follows from the following four lemmas. 

LEMMA 3.9. The number of times P ^ occurs as a direct summand in Rf equals the 

Fp-dimension ofHomR(Rfi, S'(A)). 

PROOF. Wri te / as an orthogonal sum of primitive idempotents { e/} in R. Then Rtj 

has a unique maximal submodule and maps to S'(A) if and only if Rej = PfA) ([CR1], 54.11, 

54.14). Also dimF/, Hom/e(S'(A), S'(A)) = 1, since F^ is a splitting field for GL„(Z/p). m 

LEMMA 3.10. HomR(Rfh S[X)) ^ Uoms(Sfi, Resf (S[X))) 

PROOF. Since Rf = R®S Sfi, this is standard ([CR2], 2.19, 2.6). • 

LEMMA 3.11. The Fp-dimension ofHoms(Sf, Resf (#A))) equals the multiplicity of 
Sf as a composition factor in Resf (S|A)) times the Fp-dimension ofWoms(Sf, Sf). 

PROOF. Since the radical of S is zero and Sfi is irreducible ( 3.5), this follows from 
([CR1], 54.15, 54.19). • 

LEMMA 3.12. Homs(Sfi, Sfi) = Sfi, so has Fp-dimension Zi. 

PROOF. Homs(Sfh Sfi) = Hom^(5/;, Sfi) = Sfi since fi is a primitive central idem-
potent in S. m 

We now describe the Fp-representation theory of G and construct the idempotents for 
Theorem A. The argument goes as follows. First the absolutely irreducible representa­
tions over a field of characteristic zero are described. These are then used to define the 
irreducible representations in characteristic p. (This step is non-trivial only if p divides 
n.) We then observe that these representations are in fact defined over Fp. Finally, we 
give a decomposition off into zt orthogonal idempotents in Fp[G]. 

Let K be an algebraic number field which is a splitting field for G (ie. every irreducible 
K[G]-representation remains irreducible over any field extension); Q( ltyl) is such a 
field. Let R be the algebraic integers in AT, and let P be a prime ideal in R with p the 
unique rational prime in P. The residue field K = R/ P is a finite field which is also a 
splitting field for G. Let a) be a primitive (pn — l)-st root of unity in K chosen so that the 
reduction R—+R/P takes LU to UJ. Also let 9 be a primitive n-th root of unity in K. Define 
fi by the formula in Definition 3.4 with u replaced by Q. Define K[G] representations 
fik, for / G /, and k = 1 , . . . , rt — - , by the matrices 

(3.13) 
i% 0 

udip 

\ 0 0 

0 
0 

LJ 

\ 

Zip--' I 

(° 0 .. 0 Qkz, , 

1 0 .. 0 0 
0 1 .. 0 0 

Vo 0 .. 1 0 / 
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LEMMA 3.14. The T^ are irreducible, distinct, and give a full set of irreducible rep­
resentations of G over K. 

PROOF. Since G is a semidirect product of cyclic groups, its irreducible charac­
ters are all induced from one dimensional characters of normal subgroups containing C 
([CR2], 11.8, [T]). The matrix representations can be found using the methods in ([CR1 ], 
Section 47). • 

LEMMA 3.15. The projective representation K[G\fi is isomorphic to 0jL j Z/f̂ . 

PROOF, f is the central idempotent to which all of the f ik belong. • 
Now let Ttk be the ^-representation of G given by applying the map R-* R/P = K 

to the matrices in (3.13) defining f #. Note that 6, the reduction of 6 will be a primitive 
s-th root of unity, where n — spl with (s,p) — 1. Let r/ = - = stpl, with (si,p) — 1. 

THEOREM 3.16. (i) The Tik are irreducible, and (ii) { Tik \ i G / and k = 1, . . . , Sj } 
is a complete set of distinct irreducible s for G over K. 

PROOF, (i) Let { Vj}jeJ. be a basis for r # having the given matrix representation. 
Suppose w = T,j£Ji fyVj is a non-zero vector in an invariant subspace W. If T^ is restricted 
to C, then Vj is an eigenvector with eigenvalue u;7, so e}• - w — ajVj (Here we assume 
¥pn C K, so ej G K[C]). If ajQ T̂  0, then (aj0)~

lej0 • w = y/0, so v/0 is in W. The action of 
d permutes the v/s (with multiplication by 0kZi in one case), so all of the v/s are in W. 

(ii) Two irreducible matrix representations over K are isomorphic if and only if they 
have the same characteristic roots ([CR1], 30.16). The result then follows from Lemma 
3.14 and the fact that st = min{ / > 0 | 6 lz> = 1 }. • 

COROLLARY 3.17. The projective representation K[G]fi has a composition series 
with n quotients: each T^, for k — 1 , . . . , sv, occurs - times. 

PROOF. This follows from Lemma 3.15. (Since these representations are modular, 
they may not be completely reducible, so we cannot conclude as in 3.15 that this is a 
direct sum decomposition.) • 

The representations Tik have characters in Fp, so they are defined over F^ ([HB], 1.17). 
Hence ¥p is a splitting field for G. It follows from (3.16) and the fact that dimp^r^) = 
|//|, that there are primitive orthogonal idempotent s { e^ | / G /, j G 7/, and/: = 
1,... ,Sj} in Fp[G], with ¥p[G]eijk a projective indecomposable associated to r # for 
each y G 7/, and with/ = Y,jjk Ujk for each / G /. (Note that when S[ < r^f has a finer 
decomposition than/. 

DEFINITION 3.18. Fory' G 7/, let dj = T,k eijk. 

PROPOSITION 3.19 ([W], THEOREM 4.1). The summand djB(Z/p)n
+ has rank 1 K-

theoryfori ^ 0 and rank! K-theoryfori = 0. (Note that d0B(Z/ p)n
+ ~ d0B(Z/ p)nV S°; 

each of these summands has rank 1 K-theory.) 

REMARK 3.20. Witten doesn't construct the idempotents dj as above. Instead she 
uses the K[G] -representation T/o above and standard facts about lifting idempotents to 
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show that the / can be written as a sum of it orthogonal idempotents projecting to the 
primitive idempotents in ¥p[G]fi/ Ann(r,o). She then shows that any such idempotent 
decomposition of / gives the ^-theory result. 

The specific idempotents { dj} allow us to prove the following. 

COROLLARY 3.21. The modules Fp[G]dj, forj £ 7/ are isomorphic. 

PROOF. For fixed / and k, the idempotents e//,* and e^ are conjugate in ¥P[G]. m 

REMARK 3.22. It is easy to see that the idempotents/ in Definition 3.4 are in the 
center of ¥P[G], thus ¥P[G] is isomorphic to 0/e/F^G]/ as rings (compare [W], p. 42). 
In general, some of the/ are not centrally primitive and can be further decomposed into 
the block idempotents. These can be determined from the complex character table (see 
[CR1], Section 85) and could be used to give a finer decomposition than the / give. We 
do not pursue this here. 

4. Main Results. To begin this section, we recall the GLn(Z/ p) actions on the poly­
nomial rings in the Campbell and Selick composition (2.4): 

*F: F^[*o, • • •,xn-\] c—• ¥pn[xo,...,xn-\] 
(4.1) fl_, A 

>¥pn[to, ... Jn-\]
 y¥p[to, . .. ,f/i-l]. 

GLn(Z/p) acts in the usual way on the vector space ¥p( to,..., tn-\). Extending mul-
tiplicatively to polynomial rings gives actions of ¥p[GLn(Z/ p)] on ¥p[to,..., tn-\\ and 
of ¥pn[GLn(Z//?)] on ¥pn[to,..., tn-\\. Let GLn(¥pn) act in the usual way on the vector 
space F/7n(jc0,... ,xn-\). Include GL„(Z/p) in GL„(F^) by (ay) i—• B(ay)B~\ where B 
is the matrix in (2.2). Then ¥pn [GL„(Z//?)] acts on F^ [JC0, . . . , xn-\ ]. Note that this action 
does not restrict to an action of GL„(Z/p) on ¥p[xo,...,xn-\ ] (e.g. T(XQ) = CJJCO). 

LEMMA 4.2. The map B~~l is ¥pn [GLn(Z/p)]-linear, and the map X is ¥p[GLn(Z/ p)] 
linear. 

PROOF. The linearity of B~l follows from the definitions, and the linearity of A is 
easy to check. ^ • 

Recall the definition of Mn(i) given after (2.5). 

THEOREM 4.3. Mn(i) =fiFp[to,..., tn-\] as ^-modules. 

PROOF. The first two rings in the composition for *F decompose into (pn — 1 ) weight 
summands. As an Fpn[C]-module, the weighty summand in F^[JCO, . . . ,JC„_I] is a direct 
sum of infinitely many copies of the representation Rj. Hence the idempotents ej decom­
pose the ring ¥pn[xo,..., JC„_I] into its weight summands. Unfortunately, the e/s do not 
act on the ring ¥p[to,..., t„-\], so we cannot use them to decompose it. However, the 
idempotents/ do act, t h e / are in ¥p[GLn(Z/p)], and B~l and À are ¥p[GLn(Z/p)]-
module maps. The result follows. • 

Recall that MEn = ¥p[x0,...,xn-\] 0 E[yo,... ,yn-\] when p is odd. The above the­
orem extends in the obvious way to MEn(i). In terms of summands of B(Z/p)+ we have 
the following. 
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THEOREM 4.4. 

H*(fiB(Z/p)n
+) = 

COROLLARY 4.5. 

H\djB(Z/p)n
+) *Ê 

MEn(i), ifp is odd; 

MM, ifP = 2. 

MEn(j), ifp is odd; 
Mn(jl ifp = 2. 

We let Yn(j) = djB(Z/p)n
+ and Yn(i) =fiB(Z/p)n

+ ~ VjeJi Yn(j). 
Now we give some applications of these results. Since the / are in the group ring (as 

opposed to the semigroup ring), the complete decompositions of the Yn(i) ~fB(Z/p)l 
can be given in terms of the XjA) described in Section 1. The next result follows from 
Theorems 3.8 and 4.4. 

THEOREM 4.6. Yn(i) ~ V(A) Zia{\)X{\)> where af
{X) is the number of times the repre­

sentation ¥p[C]fi occurs in a composition series for Resc " O^m). 

To apply this theorem, one calculates the eigenvalues of the action of the element c 
on the representation space 5"(A), then compares to the eigenvalues of c on Fp[C]fi, which 
are { u / , . . . , uip"1 }. The case / = 0 is particularly simple: 

COROLLARY 4.7. Yn(0) ~ \j(X)a'(X)X'{X), where a[X) = dim(5'[A))
c. 

This corollary is a special case of ([HK], 5.1). We mention that Campbell and Selick 
show that H*(Yn(0)) = (//*(B(Z/p)n

+)f\ so Yn(0) is equivalent to B((Z/pf x C)+ 
and to B(GL2(Fpn))+ ([A]). For p odd (resp. p = 2) this cohomology is isomorphic to 
MEn(0) (resp. Mn(0)) as A-modules, but not as rings. However, if we tensor with FP« we 
do get that the rings MEn(0) 0 F^ (resp. Mn(0) (g) F2«) and H*(Yn(0); ¥pn) are isomorphic. 
(Compare with Aguadé [A]). 

From Propositions 2.6, 2.7, 2.8, and Theorem 4.4, we have 

THEOREM 4.8. For 0 <j <(pn- 2), the bottom cell ofYn(j) is in dimension 2a(j) -
oc(j). The second cell in Yn(0) is in dimension 2pn — 3n. 

From Proposition 3.19, we have 

THEOREM 4.9. Yn(j) has rank 1 K-theory ifj ^ 0, and rank 2 K-theory if j = 0. 

The AT-theory of the indecomposable summands of B(Z/ p)n
+ are given by Kuhn and 

Carlisle. 

PROPOSITION 4.10 ([Kl, 1.5; [CK], 6.1). The indecomposable summands X/>0,...,o, for 
0 < / < (p — 1), and Xo,...,o,/,*,o,...,o> far j + k = (p — 1), each have rank 1 K-theory. All 
other indécomposables have zero K-theory. 

We now restrict to/? = 2. For 1 <k <n, let S(k) denote the irreducible F2[M«,n(Z2)]-
representation So,...,o,i,o,...,o> w n e r e m e 1 is m the fc-th position. Let S(0) = 5o,...,o. For 0 < 
k < n, let X(/:) denote the indecomposable wedge summand of BiZj 2)" corresponding 
to S(k). 
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THEOREM 4.11. Letp = 2. For 0 <j < (2n - 2), Yn(j) contains exactly one copy of 
the summandX(k) if and only ifk = a(j). Also, Yn(0) contains the copy ofX{n). 

PROOF. The irreducible S(k) has dimension (j) ([JK], 8.3.9), so X(k) has multiplicity 

(£) in B(Z/ 2)1. The number of Yn(jYs with a(j) = k is also (£). 
The bottom cell of X(k) is in dimension k ([CK], 1.1). and the bottom cell of Yn(j) is 

in dimension a(j). Therefore, the X(k) must be distributed among the Yn(j) as stated to 
avoid contradicting Theorem 4.9. • 

5. Poincaré Series. It is easy to determine the beginning coefficients in the Poincaré 
series for the Mn(j) or the MEn(j) since these modules are generated by monomials. One 
just writes down all of the monomials and calculates their weights. Here we obtain a 
closed form for these series using invariant theory. 

Let K be any field, and let W be an irreducible K[Q]-module, where Q is a finite 
group. For N a graded K[Q]-module of finite type, define F(N, Q, W\ t) — ££i0ajk**, 
where a^ is the multiplicity of Was a composition factor in A .̂ In this notation, if 
N is F^[*0, •. • ,x„-\] (or F^[JC0, . . . ,*„_i] ® E\y0,... ,yn-\]), then F(N, C,Rj\ i) is the 
Poincaré series of the weight j summand in N. A classical theorem of Molien gives a 
formula for F(N, Q, W\ t) when K = C, N = C[JCO, . . . , x„-i], and Q C GL„(C) ([S], 
2.1). In our case, we have the following. 

THEOREM 5.1. Let [X] and [Y] denote [xo,...,xn-\] and \y$,...,yn-\], respectively, 
then 

1 ^ I û~lj \ 
F(FAX\,C,Rj\t) = T, i nr~ > and 

- - i C;2 /Q~lj nr_n(i + £lpkt)\ 
F(¥AX] ®E[Y],C,fi,;0 = £ i ° !, o > 

where û is a primitive (pn — \)-st root of unity in C. 

PROOF. These follow exactly as in the classical case since (p, | C| ) = 1 and ¥pn is a 
splitting field for C. (Recall that in F^ [X] ® E[F] we take deg(xk) = 2 and deg(yk) = 1.) 

• 
The above formulas also give the Poincaré series for the Yn(jYs since the series for 

the weight summands in ¥P[X] <g> E[7] (resp. F2[X], if p = 2) and F^[X] <g> F ^ T ] (resp. 
F2«[^]) are the same. 

REMARK 5.2. The Poincaré series for the indecomposable summands XjA) are given 

by F(N, GLn(Z/pi Sf
(X)Ul for N either F2[r0 rn_i] or F^fo,,- •• ,f„-i] ® 

E[wo,--- ,w«-i] ([Mil], 1.6). These are known for only a few cases: rc = 2,/? = 2 ([MP]); 
n = 2,podd([H]or[C]);n = 3,/? = 2 ([Mil] or [C]); n = 3,podd([C]);n = 4,p = 2 
([C]); for S'(A) a twisted Steinberg representation ([Mi2], [MP]); and for S'(A) c/ose to the 
Steinberg representation ([CW]). 
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6. Examples. Recall from Section 1, that a complete decomposition of the space 
B(Z/p)l is given by V(A)tf(A)X(A), where (A) = ( A | , . . . , A n ) , 0 < A,- < (p - 1), and 
a partial decomposition is given by V ( A > a ( A ) ^ A ) , where (A) = ( A i , . . . , A„), 0 < A, < 
(p— 1), A„ < p—2. (The A^A) decompose as in Proposition 1.7.) The Selick and Campbell 
decompositions are given here in terms of the X'(X) for some small cases. These can be 
determined either from Theorem 4.6 or by comparing Poincaré series. 

E X A M P L E 6.1. Forp = 2: 
r , ( 0 ) ~ X ^ 

y 2 ( 0 ) ^ ^ , o , 
r2(l)~K2(2)~A" l i0, 

y 3 (0 )~x^ 0 v2x ' M j 0 , 
y3(i) =* Y3(2) ~ r3(4) ~ x\ 00 v x ; , 0, 
K3(3) =* Y3(5) ~ r3(6) ~ ^ , 0 V X', , 0, 

F4(0)~X^0 i 0V2X'1 0 1 0V4X; i l 0 , 
Y4(l)~Y4(2)~ Y4(4) ~K4(8) 

— -̂ 1,0,0,0 V -̂ 1,1,0,0 v -̂ 1,0,1,0 V 2X 0 1 1 0 V 4X, j j 0, 
K 4 (3)~y 4 (6)^y4(9)~y4(i2) 

— -̂ 0,1,0,0 v ^i,i,o,o v ^1,0,1,0 V X 0 u 0 V 5X, j j 0, 
y4(5) =i y4(io>*x'OAOfiv 2x'MA0 v 2 x ^ u 0 v 4X'U>10, 

r 4 (7)~F 4 ( i i )~y 4 ( i3)~y 4 ( i4) 
— ^0,0,1,0 v 2Xi,i,o,o v -̂ 1,0,1,0 V X0 j , 0 V 4 X , , ] 0. 

The indecomposable summands with rank 1 AMheory are: Xo, Xi, Xo,i, Xo,o,i, and 
Xo,o,o,i-

EXAMPLE 6.2. Forp = 3: 
y , (0)~Aj , 
Yl(l)~X'], 

K2(0)~X[, i0VX2J, 
K2(l)~y2(3)~X'1 - 0 , 
y 2 (2 )~y 2 (6 )~x 2 0 vx 2 1 > 

y2(4) ~ x'0J v x'20, 
y2(5)~r2(7)-x'1 ,1 , 

y 3 ( 0 ) ~ x ; A 0 v x ' M i l v 3 4 2 , 0 , 
y3(D * Y3(3) ~ y3(9) ~ x;i0>0 v x; 20 v 2X21J v x'ov v 2X2,2>1, 

y3(2) ~ r3(6) ~ r3(i8) ~ x2 0 0 v x2J 0 v x ; , , v 2X220 v x\ 2,, 
y3(4) ~ K3(10) ~ y3(12) ~ X.00 V X 1̂>0 V X2I>0 V 2X2J2J0 V 2X'12J, 
y3(5)~ K 3 ( 1 5 ) ~ y 3 ( i9 )~x ; , 0 vx' l2f l v x 2 , , v x 2 0 , v 2X22,, 
r3(7) ~ K3(ii) ~ y3(2i) ~ x; , 0 v x; 20 v x 2 , , v x^2>1 v 2x22 , , 
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y3(8) =* r3(20) ~ y 3(24)~x£ 2 0 v x 2 , 0 v x ' M , v 2x'220 v x ; 2 „ 
y 3 ( 1 3 ) ~ X ' l l i 0 V ^ 0 1 V 3 ^ 2 1 , 

y3(14) ~ K3(16) ~ y3(22) ~ X(,20 V 2X210 V 2X220 V X\ 0 , V X'n2 „ 
F3(17) ~ y3(23) ~ y3(25) ~ X'01l V 2X'l2fi V X2>1 , V X2 0 , V 2X2>21, 

The indecomposable summands with rank 1 ^-theory are: X0, X\, X2, X0,2, Xi,i, X0,o,2, 
andX0,i,i. 

6.3. Forp = 5: 
Yx(0, \ ~ y' 

' — Ao> 
K,(I; \ ~ Y' ) — A , , 

fi(2; 1 ~ Y' 
) — A 2 , 

Yio: 1 ~ Y' 
> — A 3 ' 

YM ' — ^0,0 ^ ^2,3 ^ ^4,2 

r2(i) ~ r2(5; \ ~ Y' V Y' 
' — A l , 0 v A 3 , 3 ' 

r2(2)~y2(io. )-^vy^3 
y2(3) ~ y2(i5; > — ^ 3 , 0 V ^ 3 , 2 ' 
y2(4) ~ y2(2o; > — ^ 2 , 3 V ^4,0 V ^4,2 

Y2(6] ) ~ X0 j V X20 V ^ 3 

y 2 (7)~y 2 ( i i ; ) — A 1 ? 1 V A 3 0 , 

y2(8)~y2( i6; i-4,,vx;vx;2 y2(9) ~ y2(2i; » ^ 3 , | V ^ , 

y2(i2; i ~ y' v y' v y' 
' — A0,2 v A 2 , l v A 4,0 

y 2 ( i3 ) -y 2 ( i7 ; \ ~ y' \/ yf 
) _ A 1 2 v A 3 j , 

y2(i4) ~ y2(22; l ^ y V ^ V X ; , 
y2(i8; (-x^vx^vx;, 

y2(i9) ~ y2(23 Ï ~ y' \ / y' 
' — Al,3 v A 3 ,2-

The indecomposable summands with rank 1 A'-theory are: Xo, X\, X2, X3, X4, Xo,4, 
^1,3,^2,2, andX 3 > i . 
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