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ASIAN OPTIONS UNDER ONE-SIDED LÉVY MODELS
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Abstract

We generalize, in terms of power series, the celebrated Geman–Yor formula for the pricing
of Asian options in the framework of spectrally negative Lévy-driven assets. We illustrate
our result by providing some new examples.
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1. Introduction

Asian options are path-dependent contingent claims whose settlement price is calculated
with reference to the average price of the underlying security over a prescribed time period.
In this paper we are concerned with the pricing of fixed-strike Asian call options in a market
driven by a spectrally negative Lévy process, that is, a process with stationary and independent
increments having no positive jumps. The motivation for studying such financial contracts in
Lévy-driven asset models with no positive jumps is twofold. On the one hand, a commonly
accepted remedy to the imperfections of the geometric Brownian motion as a model for asset
prices is the use of exponential Lévy-type dynamics; see, e.g. [33]. Moreover, over the last years,
it has been observed by several authors that the structure of the class of spectrally negative Lévy
processes is relevant for modeling the dynamics of the prices of financial assets. For instance,
Eberlein and Madan [14] provided a variety of economic reasons to support the consistency
of processes with no positive jumps in the context of long-maturity stock price distributions
embedded in option prices. Schoutens and Madan [25] also argued that spectrally negative Lévy
processes are sufficient for long-dated options. In this regard, we mention that the markets for
long-term options have witnessed an explosive growth over the last decade. Currently, liquid
prices for maturities up to thirty years and beyond are shown for these type of products; see,
e.g. [8]. On the other hand, as we will see in this paper, this class of models, including the
Black–Scholes dynamics, is flexible and simple enough to provide a tractable expression for
the Laplace transform with respect to time to maturity of the price of fixed-strike Asian options.

In this framework, it turns out that the issue of pricing Asian options is a great mathematical
challenge. Indeed, it is already a difficult problem to determine the law of an additive functional
of a diffusion process, such as the arithmetic average of the exponential of a Brownian motion,
to be convinced that the case of Lévy processes might not be straightforward. This is probably
one of the reasons why most of the literature studies focus only on the pricing of Asian options
in Black–Scholes-type models.

Using stochastic calculus, and specifically the Bessel processes, Geman andYor [17], see also
the excellent monograph ofYor [37], obtained an analytical formula for the Laplace transform in
time of the Asian option price. Their approach reveals that the issue of evaluating Asian options
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amounts to finding the law of the so-called exponential functional of the Brownian motion with
drift taken at some independent exponential time. Then, many authors have been interested in
characterizing the law of the exponential functional in the more general framework of Lévy
processes. Beside some isolated cases and until very recently, only information regarding some
transformations, such as the entire moments, or the tail behavior of the distribution has been
identified; see, e.g. [5], [6], [19], and [26]. We refer the reader to the survey paper of Bertoin
andYor [3] for a nice description of these kinds of results. However, Patie [30] and [31] offered
a power series and a contour integral representation of the law of this exponential functional
for the class of spectrally negative Lévy processes. In this paper, relying on this result, we
provide a generalization of the Geman–Yor formula in the context of spectrally negative Lévy
processes.

Returning to the Black–Scholes framework, we mention that there is a substantial literature
devoted to the issue of pricing Asian options. In particular, Rogers and Shi [32] formulated
a one-dimensional partial differential equation that can model both floating and fixed strike
Asian options. Donati-Martin et al. [10] expressed the prices of Asian options in terms of the
resolvent density of some diffusions. We also note that Carr and Schröder [7] and, more recently,
Schröder [35] used complex analysis techniques for inverting numerically or analytically the
Geman–Yor Laplace transform. Dufresne [12], see also Schröder [34] and Linetsky [24],
resorted to Laguerre polynomials for deriving an analytical expression for Asian call options.
We also refer the reader to Fu et al. [16] for a description of numerical methods developed
for approximating the price of these type of options in the Black–Scholes model. Beyond
the diffusion case, we would like to mention that Večeř and Xu [36] provided an interesting
formulation of Asian option prices in the general framework of special semimartingales as
the solution of a boundary-value problem associated to a partial integrodifferential equation.
Finally, the difficulty of getting analytical expressions for this problem have led many authors to
finding some interesting upper and lower bounds for the prices of essentially discrete monitored
Asian options. We refer the reader to [1] where such bounds are derived for implementing a
static super hedge for fixed-strike Asian call options.

The remaining part of the paper is organized as follows. In the next section, after describing
the financial market model, we discuss some basic ideas about the pricing of Asian call options.
We also recall a recent result regarding the representation in terms of power series of the law
of the exponential functional of spectrally negative Lévy processes. In Section 3 we state and
prove the generalization of the Geman–Yor formula. Finally, we end the paper by providing
three examples illustrating our main result. We also mention that parts of the results stated in
Theorem 3.1 below were announced in the note [30].

2. Preliminaries

2.1. The market model

Let ξ = (ξt )t≥0 be a spectrally negative Lévy process defined on a filtered probability
space (�,F , (Ft )t≥0,P), where (Ft )t≥0 is the filtration generated by ξ satisfying the usual
conditions. For any x ∈ R, Px stands for the law of ξ when started at x, i.e. Px is the law of ξ+x
under P = P0. Accordingly, we will write Ex and E for the associated expectation operators.
Next, we consider a financial market where two assets are traded. There is the riskless security
whose price grows at the continuously compounding positive interest rate r . The dynamics of
the risky asset S = (St )t≥0 are governed by the exponential of ξ , that is, for any t ≥ 0,

St = eξt .
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We exclude the case when ξ is degenerate, that is, when it is the negative of a subordinator,
i.e. a process with increasing paths, or a pure drift process. In this setting, it is well known that
the characteristic exponent �, defined by

�(z) = log(E[eizξ1 ]), z ∈ R,

admits an analytical continuation to the lower half-plane and we set ψ(u) = �(−iu), u ≥ 0.
This means that, for any u ≥ 0, ψ admits the following Lévy–Khintchine representation:

ψ(u) = δu+ σ

2
u2 +

∫ 0

−∞
(euy − 1 − uy 1{|y|<1})m(dy). (2.1)

Here σ ≥ 0 is the Gaussian coefficient, δ ∈ R is the drift, and the Lévy measurem satisfies the
integrability condition

∫ 0
−∞(1 ∧ y2)m(dy) < ∞. We refer the reader to the books of Bertoin [2]

and Kyprianou [22] for backgrounds on Lévy processes. It is easily seen that the discounted
asset price S̃ = (S̃t = e−rtSt )t≥0 is also a spectrally negative Lévy process with Laplace
exponent ψ̃(u) = ψ(u) − ru. Note that, by changing the value of the drift, we may also
consider the case when the risky asset pays a continuous compound dividend yield at some
fixed rate per annum. Next, we recall that the fundamental theorem of asset pricing, see [9],
requires that S̃ is a (local) martingale under a probability measure which is equivalent to the
historical one. For the sake of simplicity, by assuming that

ψ(1) = r

we set P to be a risk-neutral probability measure. We mention that Eberlein et al. [15] gave
a complete description of the set of equivalent local martingale measures in the setting of
Lévy-driven assets.

Let us now recall some basic properties of the Laplace exponent ψ which will be useful
in the sequel. First, ψ is continuous on R

+ with ψ(0) = 0 and limu→∞ ψ(u) = +∞. By
monotone convergence, we obtain E[ξ1] = ψ ′(0+) = δ + ∫ −1

−∞ ym(dy) ∈ [−∞,∞). Let us
write

R = lim
u→∞

ψ(u)

u
. (2.2)

Then, R may take different values depending upon the coefficients of ψ . Indeed, if σ = 0 and∫ 0
−∞ 1 ∧ |y|m(dy) < ∞, that is, the Lévy process ξ has paths of bounded variation, then we

obtain, see [2, Corollary VII.5], R = δ̄ with

δ̄ = δ −
∫ 0

−1
ym(dy). (2.3)

Since we have excluded the degenerate cases, it is plain that δ̄ > 0. For the other cases,
R = +∞. To summarize, we have

R =
{
δ̄ if σ = 0 and

∫ 0
−∞ 1 ∧ |y|m(dy) < ∞,

∞ otherwise.

Note that 0 is always a root of the equation ψ(u) = 0. However, in the case E[ξ1] < 0,
this equation admits another positive root, which we denote by θ . Moreover, for any
E[ξ1] ∈ [−∞,∞), the function u �→ ψ(u) is continuous and increasing on [max(θ, 0),∞).
Thus, it has a well-defined inverse function φ : [0,∞) → [max(θ, 0),∞) which is also
continuous and increasing.
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2.2. Asian options

Let us start by introducing the so-called exponential functional of the Lévy process ξ which
is defined, for any 0 ≤ t0 ≤ t , by

	t0,t =
∫ t

t0

eξs ds.

Next, we set, for any t0, t ≥ 0,

	t0,t = 	t0,t

t − t0
.

We simply write 	t = 	0,t and 	t = 	0,t . The payoff of the arithmetic Asian call option
written at time t0 > 0, with maturity T > 0 and fixed strike price K , is given by

(	t0,T −K)+.

By an arbitrage argument, the value at time t of the Asian call option is

Ct(t0, T ) = e−r(T−t)
Ex[(	t0,T −K)+ | Ft ].

In the Black–Scholes model, Geman and Yor [18] showed that this conditional expectation
could be factorized into simple terms. In what follows, we state the extension of their result to
the general framework of Lévy processes whose proof is straightforward.

Proposition 2.1. Let us assume that ψ(1) = r . Then, for any t0 ≤ t < T , we have

Ct(t0, T ) = e−r(T−t)

T − t0
StE[(	̂T−t −K ′)+],

where 	̂T−t is a copy of 	T−t independent of Ft and

K ′ = K(T − t0)−	t0,t

St
.

A direct consequence of Proposition 2.1 is that the price of an Asian option depends on the
first moment of the random variable (	t−K ′)+. Unfortunately, it is a challenging mathematical
problem to derive a tractable expression for this quantity. Instead, Geman andYor [18] suggested
computing such a moment, but for the exponential functional considered at some random time.
More precisely, by replacing the time-dependent strike K ′ by a constant a > 0, we consider
the function

E[(	eq − a)+] = q

∫ ∞

0
e−qt

E[(	t − a)+] dt,

where eq is an exponentially distributed random variable of parameter q > 0, taken independent
of ξ . The value of the option is then obtained by inverting the above Laplace transform in time
and by choosing a = K ′.

2.3. Law of the exponential functional

It is now clear that to generalize the Geman–Yor formula to spectrally negative Lévy
processes one has to compute the first truncated moment of the random variable 	eq . In
this part, we recall a recent result obtained by Patie [30], [31] regarding the distribution of
this positive random variable. To this end, we proceed by introducing some notation taken
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from [29]. First, let ψ be of the form (2.1) with ψ ′(0+) ≥ 0. Then, set a0 = 1 and, for any
n = 1, 2, . . . ,

an(ψ) =
( n∏
k=1

ψ(k)

)−1

.

In [29], the author introduced the power series

�ψ(z) =
∞∑
n=0

an(ψ)z
n

and showed by means of classical criteria that the mapping z �→ �ψ(z) is an entire function.
Note that the conditionψ ′(0+) ≥ 0 implies that all of the coefficients in the definition of �ψ(z)
are strictly positive. We refer the reader to [29] for interesting analytical properties enjoyed
by these power series and also for connections with well-known special functions, such as,
for instance, the modified Bessel functions and several generalizations of the Mittag-Leffler
function. Next, let Gρ be a random variable having the gamma distribution with parameter
ρ > 0, that is, its distribution is given by g(dt) = (e−t tρ−1/�(ρ)) dt, t > 0, with � the Euler
gamma function. Then, in [28], the author suggested the generalization

�ψ(ρ; z) = E[�ψ(Gρz)] = 1

�(ρ)

∫ ∞

0
e−t tρ−1�ψ(tz) dt.

By means of the integral representation of the gamma function �(ρ) = ∫ ∞
0 e−t tρ−1 dt ,

Re(ρ) > 0, see, e.g. [23, Chapter 1], and an argument of dominated convergence, we obtain
the power series representation

�ψ(ρ; z) = 1

�(ρ)

∞∑
n=0

an(ψ)�(ρ + n)zn, (2.4)

which is easily seen to be valid for any |z| < R, where we recall that R is defined in (2.2).
Moreover, for any |z| < R, the mapping ρ �→ �ψ(ρ; z) is a meromorphic function defined
for all complex numbers ρ except at the poles of the gamma function, that is, at the points
ρ = 0,−1, . . . . However, they are removable singularities. Indeed, for any |z| < R and any
integer N ∈ N, we have, by means of the recurrence relation �(z+ 1) = z�(z), �ψ(0; z) = 1
and

�ψ(−N; z) =
N∑
n=0

(−1)n
�(N + 1)

�(N + 1 − n)
an(ψ)z

n.

Thus, by uniqueness of the analytical extension for any |z| < R, �ψ(ρ; z) is an entire function
in ρ. Note also that, for ρ = 0,−1, . . . , as a polynomial, �ψ(−ρ; z) is an entire function
in z. In the following, we recall a result from [31] which summarizes the above claims and
provide an analytical continuation of �ψ(ρ; z) in the case R = δ̄, that is, when ξ is with paths
of bounded variation.

Proposition 2.2. ([31].) 1. If R = ∞ then �ψ(ρ; z) is an entire function in both arguments z
and ρ.
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2. If R = δ̄ then �ψ(ρ; z) is analytic in the disc |z| < δ̄ and, for any fixed ρ = 0,−1, . . . ,
�ψ(ρ; z), as a polynomial, is an entire function. Moreover, for any ρ ∈ C, �ψ(ρ; z) admits, in
the half-plane Re(z) < δ̄/2, the power series representation

�ψ(ρ; z) =
(

1 − z

δ̄

)−ρ ∞∑
n=0

�ψ(−n; δ̄)�(ρ + n)

�(ρ)n!
(

z

z− δ̄

)n
. (2.5)

Finally, for any fixed Re(z) < δ̄/2, �ψ(ρ; z) is an entire function in the argument ρ.

We mention that a representation as a contour integral of the function �ψ(ρ; z) is given in
Appendix A. Next, we write, for any q > 0,

γ = φ(q),

and we set
ψγ (u) = ψ(u+ γ )− q, u, q ≥ 0;

ψγ is well known to be the Laplace exponent of the so-called Esscher transform of ξ . Thus,
it is again the Laplace exponent of a spectrally negative Lévy process. Moreover, we have
ψ ′
γ (0

+) = ψ ′(γ ) = 1/φ′(q) > 0 since φ is the Laplace exponent of a subordinator and, hence,
it is an increasing function. We are now ready to state the following result which provides an
expression for the law of 	eq .

Theorem 2.1. ([30], [31, Theorem 2.1].) Let q > 0. Then there exists a constant Cγ > 0 such
that

�ψγ (γ ; −x) ∼ x−γ

Cγ
as x → ∞. (2.6)

(Here f (x) ∼ g(x) as x → a means that limx→a f (x)/g(x) = 1 for any a ∈ [0,∞].)
Moreover, the law of	eq under P is absolutely continuous with a density, denoted by sγ , given
by

sγ (t) = γCγ t
−γ−1�ψγ (1 + γ ; −t−1), t > 0. (2.7)

Remark 2.1. If we assume that ψ ′(0+) < 0, which is equivalent, from the strong law of large
numbers for Lévy processes, to limt→∞ ξt = −∞ almost surely, then we have limq→0 φ(q) =
θ > 0, where we recall that ψ(θ) = 0. Under this condition, the perpetual exponential
functional 	∞ = ∫ ∞

0 eξs ds is well defined and its density, denoted by sθ , is given by

sθ (t) = lim
q→0

sφ(q)(t), t > 0.

The expression of sθ (t) can be found in [31, Theorem 2.1] and generalizes a result of Dufresne
[11] obtained in the case of the Brownian motion with a negative drift.

The proof of the theorem is rather technical but the main steps can be described as follows.
First, we use the Lamperti mapping which allows us to connect the law of the exponential
functional 	eq to the law of the absorption time of a positive self-similar Markov process
generalizing the Bessel processes. Then, by means of the self-similarity property, we show
that the law of this latter stopping time is related to the probability that the absorption time of
an associated transient Ornstein–Uhlenbeck process is finite, which turns out to be a quantity
much easier to compute. Let us mention that such devices hold in the framework of two-sided
Lévy processes. Finally, we derive an expression for this probability by combining complex
analysis techniques with fluctuation identities for positive self-similar Markov processes
obtained recently in [28] and [29]. The extension of this part of the proof to more general

https://doi.org/10.1239/jap/1371648946 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1371648946


Asian options under one-sided Lévy models 365

Lévy processes seems difficult. Indeed, assuming that the process has two-sided jumps but
admits all positive exponential moments, which implies the existence of a Laplace exponentψ ,
then it is a difficult matter, if true, to show that the mapping �ψγ (1 + γ ; −t−1) is nonnegative
valued for any t > 0, which is a necessary condition for (2.7) to be a density.

3. A generalized Geman–Yor formula

According to Proposition 2.1, the pricing ofAsian options in the framework of Lévy processes
amounts to computing the first moment of the random variable (	t−K)+. As already discussed
in the previous section, this is a difficult task and instead we compute, for any K > 0, the
functional

E[(	eq −K)+],
where we recall that eq is an exponentially distributed random variable of parameter q > 0
which is taken independent of ξ . We now state the generalization of the Geman–Yor formula
to spectrally negative Lévy processes.

Theorem 3.1. For any K > 0 and q > ψ(1), we have

E[(	eq −K)+] = Cγ

γ − 1
K1−γ �ψγ (γ − 1; −K−1). (3.1)

Proof. Let us first consider the Mellin transform of the positive random variable (	eq −K)+,
which is defined, for κ ∈ iR, the imaginary line, by

M(κ) = E[(	eq −K)−κ+ ].
It is plain, if both quantities exist, that

E[(	eq −K)+] = M(−1).

Next, let us write γ = φ(q) and, for any integer N ,

MN(κ) =
∫ ∞

0
(t −K)−κ+ sNγ (t) dt,

where sNγ (t) = γCγ t
−γ−1INψγ (γ ; −t−1) and INψγ (γ ; z) is the power series Iψγ (γ ; z) truncated

at order N . Now, we split the proof of identity (3.1) into two parts.
First, we consider the case when R = ∞. From (2.4), we have, for any integer N,

MN(κ) =
∫ ∞

K

(t −K)−κsNγ (t) dt

= Cγ

�(γ )

N∑
n=0

(−1)nan(ψγ )�(γ + 1 + n)

∫ ∞

K

(
1 − K

t

)−κ
t−n−κ−γ−1 dt,

where we have used the recurrence formula of the gamma function �(z + 1) = z�(z),

Re(z) > 0. Next, performing the change of variable v = K/t , we obtain

MN(κ) = Cγ

�(γ )

N∑
n=0

(−1)nan(ψγ )�(γ + 1 + n)K−n−κ−γ
∫ 1

0
(1 − v)−κvγ+κ+n−1 dv

= Cγ�(1 − κ)

�(γ )
K−κ−γ

N∑
n=0

an(ψγ )(−K)−n�(γ + κ + n), (3.2)
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where the last line follows from the integral representation of the beta function, see, e.g. [20,
Formula 3.191(1)],

�(x)�(y)

�(x + y)
=

∫ 1

0
(1 − v)x−1vy−1 dv, Re(x),Re(y) > 0.

By the principle of analytical continuation, we deduce that identity (3.2) is valid in the strip
Sγ = {κ ∈ C; −γ < Re(κ) < 1}. Next, we have, for any κ ∈ Sγ ,

lim
N→∞ MN(κ) = Cγ�(γ + κ)�(1 − κ)

�(γ )
K−κ−γIψγ (γ + κ; −K−1).

With the function on the right-hand side of this equality being holomorphic on the positive
half-plane, we deduce by an argument of dominated convergence, see, e.g. [27, Theorem 8.1,
Chapter 2], that, for any Re(K) > 0 and κ ∈ Sγ ,

M(κ) = Cγ�(γ + κ)�(1 − κ)

�(γ )
K−κ−γIψγ (γ + κ; −K−1).

Moreover, since φ is increasing on R
+, our assumption leads to the condition γ > 1. Hence,

by resorting again to the principle of analytical continuation and using the recurrence relation
of the gamma function, we obtain

E[(	eq −K)+] = Cγ

γ − 1
K1−γIψγ (γ − 1; −K−1),

which proves our claim in the case R = ∞.
Next, assuming that R = δ̄ < ∞, where we recall that δ̄ is defined in (2.3), and keeping the

same notation as above, we have, from (2.5),

MN(κ) =
∫ ∞

K

(t −K)−κsNγ (t) dt

= Cγ

N∑
n=0

�ψγ (−n; δ̄)
�(γ + 1 + n)

n!�(γ )

×
∫ ∞

K

t−(γ+κ+n+1)
(

1 − K

t

)−κ(
1 + 1

δ̄t

)−(γ+1+n)
dt δ̄−n

= CγK
−γ−κ

N∑
n=0

�ψγ (−n; δ̄)
�(γ + 1 + n)

n!�(γ )

×
∫ 1

0
vγ+κ+n−1(1 − v)−κ

(
1 + v

δ̄K

)−(γ+1+n)
dv(δ̄K)−n,

where we have performed the change of variable v = u/K . Next, by means of the identity,
which is found in [20, Formula 3.197(4)],

�(x)�(y)

�(x + y)
(1+a)−x =

∫ 1

0
(1−v)x−1vy−1(1+av)−x−y dv, Re(x),Re(y) > 0, a > −1,
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we deduce that, for any K > 0 and κ ∈ Sγ ,

MN(κ) = CγK
−γ−κ�(1 − κ)

�(γ )

N∑
n=0

�ψγ (−n; δ̄)
�(γ + κ + n)

n! (δ̄K)−n
(

1 + 1

δ̄K

)−(κ+γ+n)

= CγK
−γ−κ�(1 − κ)

�(γ )

(
1 + v

δ̄K

)−γ−1 N∑
n=0

�ψγ (−n; δ̄)
�(γ + κ + n)

n! (1 + δ̄K)−n

= CγK
−γ−κ�(1 − κ)�(γ + κ)

�(γ )
INψγ (γ + κ; −K−1).

Hence, we get, by dominated convergence, for any K > 0 and κ ∈ Sγ ,

M(κ) = Cγ�(γ + κ)�(1 − κ)

�(γ )
K−κ−γIψγ (γ + κ; −K−1).

The proof of the theorem is then completed by following a line of reasoning similar to the
previous case.

Remark 3.1. 1. As observed by Geman and Yor [18] in the Black–Scholes model, one can
also easily compute the value of the Asian call option under the Lévy model in the case where
the strike K is nonpositive. Indeed, we have

C0(0, T ) = e−rT
(
S0

∫ T

0
E[eξs ] ds −K

)
= 1

r
(1 − e−rT )S0 − e−rT K,

where we recall that ψ(1) = r .

2. By means of the symmetry relationship, established by Henderson and Wojakowski [21] in
the Black–Scholes model, see also Eberlein and Papapantoleon [13] for its extension to Lévy
process markets, between floating-strike and fixed-strike Asian options for assets driven, one
could also derive from the previous result the price of the floating-strike Asian put option.

4. Examples

4.1. The Black–Scholes model revisited

We first consider the case when S follows the Black–Scholes dynamics. That is, under the
unique risk-neutral probability measure P, ξ is given, for any t ≥ 0, by

ξt = σBt + δt,

where B = (Bt )t≥0 is a standard Brownian motion, σ > 0, and δ = r − σ 2/2. It is plain that

ψ(u) = σ 2

2
u2 + δu, u ≥ 0,

and ψ(1) = r . Next, we observe that, for any q > 0,

φ(q) =
√

2

σ

(√
q + δ2

2σ 2 − δ√
2σ

)
.
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Thus,

ψγ (u) = σ 2

2
u2 + (σ 2γ + δ)u, u ≥ 0.

Moreover, setting b = 2γ + 2δ/σ 2, we have, for any n ≥ 1,

an(ψγ )
−1 =

n∏
k=1

ψγ (k) = σ 2n

2n
n!

n∏
k=1

k + b = σ 2n�(n+ b + 1)

2n�(b + 1)
n!.

Since R = ∞, we have, for any z, ρ ∈ C,

�ψγ (ρ; z) = �(b + 1)

�(ρ)

∞∑
n=0

�(ρ + n)

n!�(n+ b + 1)

(
− 2z

σ 2

)n
= �

(
ρ, b + 1; − 2z

σ 2

)
,

where� stands for the confluent hypergeometric function. We refer the reader to [23, Chapter 9]
for useful properties of this function. Next, using the asymptotic

�(ρ, b + 1; −x) ∼ �(b + 1)

�(b + 1 − ρ)
x−ρ as x → ∞,

we get, from (2.6),

Cγ = �(b + 1 − γ )

�(b + 1)

(
2

σ 2

)γ
.

An application of Theorem 3.1 yields, for any q > σ 2/2 + δ,

E[(	eq −K)+] = �(b + 1 − γ )

2γ �(b + 1)

1

γ − 1
K1−γ�

(
γ − 1, b + 1; − 2

Kσ 2

)
.

Next, using the integral representation of the confluent hypergeometric function

�(a, b; z) = �(b)

�(a)�(b − a)

∫ 1

0
ezt ta−1(1 − t)b−a−1 dt, Re(b) > Re(a) > 0,

we deduce that

E[(	eq −K)+] =
(

2

σ 2

)γ
K1−γ

�(γ )(b + 1 − γ )

∫ 1

0
e−2u/Kσ 2

uγ−2(1 − u)b−γ+1 du

= 2

σ 2

1

�(γ )(b + 1 − γ )

∫ 2/Kσ 2

0
e−xxγ−2

(
1 − Kσ 2

2
x

)b−γ+1

dx,

where we have performed the change of variable x = 2u/Kσ 2. By choosing σ = 2 and
δ = 2ν, we recover the formula obtained by Geman and Yor [18, Formula (3.10)].

4.2. The completely asymmetric tempered stable processes

We now consider an example where the dynamics of the asset price are governed by a pure
jump process. More specifically, we assume that ξ is a spectrally negative tempered α-stable
Lévy process with 1 < α < 2. Its Laplace exponent admits the simple form

ψ(u) = (σu+ β)α − βα, u ≥ 0,
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where the parameters σ and β are positive constants. We assume that σ and β are chosen
such that ψ(1) = r , that is, σ = (r + βα)1/α − β. These parametric Lévy processes are
specific instances of the family of truncated Lévy processes constructed by Boyarchenko and
Levendorskii [4]. Note that if β = 0 then ψ boils down to the Laplace exponent of a spectrally
negative α-stable Lévy process. Moreover, in the limit case α = 2, we recover the Black–
Scholes model with variance 2σ 2 and drift 2σβ. The Lévy measure of ξ is absolutely continuous
with a density, v, given by

v(y) = C
eβy

|y|α+1 , y < 0,

for some constant C > 0. The inverse function of ψ is φ(q) = σ−1(q + βα)1/α − β, q > 0,
and

ψγ (u) = σα((u+ d1/α)α − d),

where d = (βα + q)/σα . Note that R = ∞. Then

an(ψγ )
−1 = σαn

n∏
k=1

((k + d1/α)α − d), a0(ψγ ) = 1.

Such an expression motivates us to introduce a generalization of the Pochhammer symbol,
which is defined as (z)γ = �(z + γ )/�(z), Re(z),Re(γ ) > 0. We define, for n ∈ N, α > 0,
and z ∈ C, Re(z) ≥ 0,

(z)n,α =
n∏
k=1

((k + z)α − zα) and (z)0,α = 1.

Note the identities (β)n,1 = (β)n, (0)n,α = (1)αn , and (β)n,2 = (1)n(2β + 1)n. Using this
notation, for any z, ρ ∈ C, we obtain the power series

Iψγ (ρ; z) =
∞∑
n=0

�(n+ ρ)

(d1/α)n,α�(ρ)

(
− z

σα

)n
,

which can be expressed in terms of the confluent hypergeometric function in the case α = 2.
Finally, we obtain, with Cγ given in (A.1) below,

E[(	eq −K)+] = Cγ

γ − 1
K1−γ �ψγ (γ − 1; −K−1).

4.3. The compound Poisson process with drift

Finally, we consider as the last example a pure jump process but with finite activity. More
precisely, we assume that the dynamics of ξ are given, for any t ≥ 0, by

ξt = δt −
Nt∑
i=0

Xi,

where δ > 0, N = (Nt )t≥0 is a Poisson process of parameter p > 0, and the random
variables X0, X1, . . . are independent and identically distributed with common distribution
the exponential law of parameter e > 0. The Laplace exponent of ξ admits the form

ψ(u) = u
δu+ δe − p

u+ e
, u ≥ 0.
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It is easily seen that the condition δ = r+p/(1+e)givesψ(1) = r . Moreover, a straightforward
computation yields

φ(q) = 1

2δ

(√
4eδq + (δe − p − q)2 + q + p − δe

)
, q ≥ 0,

and

ψγ (u) = δ

a
u
u+ b

u+ a
,

where a = γ + e and b = a − pe/δ. Thus,

an(ψγ ) =
(
a

δ

)n
�(n+ a + 1)�(b + 1)

�(n+ b + 1)�(n+ 1)�(a + 1)
, a0(ψγ ) = 1,

and, for |z| < δ/a and ρ ∈ C, we have

�ψγ (ρ; z) = �(b + 1)

�(ρ)�(a + 1)

∞∑
n=0

�(ρ + n)�(n+ a + 1)

�(n+ b + 1)n!
(

−az
δ

)n
= 2F1

(
ρ, a + 1; b + 1; −az

δ

)
,

where 2F1 stands for the hypergeometric function; see [23, Chapter 9] for a detailed account
on this function. Next, recalling the remarkable identity

2F1(−n, 1 + a;p; 1) = �(b + 1)�(n+ 1 − p − a)

�(b + 1 + n)�(1 − p − a)
,

we recover from (2.5) the well-known Euler transformation

2F1(ρ, 1 + a; b + 1; z) = (1 − z)−ρ2F1

(
ρ, 1 − p − a;p; z

z− 1

)
, |arg(1 − z)| < π,

which provides an analytical continuation of the hypergeometric function into the half-plane
Re(z) < 1

2 . Then, using the asymptotic

2F1(ρ, 1 + a; b + 1; −x) ∼ �(b + 1)�(a + 1 − ρ)

�(b + 1 − ρ)�(a + 1)
x−ρ as x → ∞,

we obtain

Cγ = �(b + 1 − γ )�(a + 1)

�(b + 1)�(a + 1 − γ )
= �(e(δ − p)/δ + 1)�(γ + e + 1)

�(γ + e(δ − p)/δ + 1)�(e + 1)
.

Finally, we obtain

E[(	eq −K)+] = Cγ

(γ − 1)
K1−γ

2F1

(
γ − 1, γ + e + 1; γ + e(δ − p)

δ
+ 1; − a

δK

)
.
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Appendix A. Some additional formulae

We start the appendix by providing a contour integral representation of the function �ψγ ,
which is found in [31, Proposition 2.4, Proposition 3.1]. To this end, we recall that γ = φ(q)

and observe that, in the case R = ∞, as 0 < ψ ′
γ (0

+) < ∞, we have, for any u > 0,

ψγ (u) = δ̂γ u+ σ 2

2
u2 +

∫ 0

−∞
(euy − 1 − uy)eγym(dy) = u2ϕ̄γ (u),

where δ̂γ = δ + σγ + ∫ 0
−∞(e

γy − 1{|y|<1})ym(dy) and

ϕ̄γ (u) = δ̂γ

u
+ σ 2

2
+

∫ ∞

0
e−uy

∫ −y

−∞

∫ −s

−∞
eγ vm(dv) ds dy.

Thus, one may define the function

as(ψγ ) = 1

�2(s + 1)
as(ϕ̄γ ) = 1

�2(s + 1)

∞∏
k=1

ϕ̄γ (k + s + 1)

ϕ̄γ (k)

and observe the identity

as+1(ϕ̄γ ) = 1

ϕ̄γ (s + 1)
as(ϕ̄γ )

witha0(ϕ̄γ ) = 1. Hence, as(ϕ̄γ ) is a meromorphic function inF−γ = {z ∈ C; Re(z) > −γ−1}
with simple poles at the points zk = −k − 1 for k = 0, 1, . . . and zk > −γ − 1.

Proposition A.1. Let us assume that R = δ̄. Then, for any ρ �= 0,−1, . . . , �ψγ (ρ; .) admits
an analytical continuation in the entire complex plane cut along the positive real axis, given by

�ψγ (ρ; z) = 1

2iπ�(ρ)

∫ i∞

−i∞
as(ϕγ )�(s + ρ)�(−s)zs ds, | arg(z)| < π,

where the contour is indented to ensure that all poles (respectively nonnegative poles) of�(s+ρ)
(respectively �(−s)) lie to the left (respectively right) of the intended imaginary axis and, for
any Re(s) > −1,

as(ϕγ ) =
∞∏
k=1

ϕγ (k + s + 1)

ϕγ (k)

with ϕγ (s) = δ̄γ − v̂γ (s) and v̂γ (s) = ∫ ∞
0 e−sr ∫ −r

−∞ eγ vm(dv) dr .
Otherwise, if R = ∞, using the same contour as above, we have

�ψγ (ρ; z) = 1

2iπ�(ρ)

∫ i∞

−i∞
as(ϕ̄γ )

�(s + ρ)

�(s + 1)
�(−s)zs ds,

which is valid in the sector | arg(z)| < π/2.

We now provide some representations of the constant appearing in the asymptotic (2.6) in
terms of the Laplace exponent ψ .
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Proposition A.2. If R = δ̄ then
Cγ = a−γ (ϕγ ).

Otherwise, we have, writing ψ(u) = uϕ(u),

Cγ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ψ ′
γ (0

+) if γ = 1,

ψ ′
γ (0

+)
( n∏
k=1

ϕ(k)

)−1

if γ = n+ 1, n = 1, 2 . . . ,

1

�(1 − γ )
a−γ (ϕ̄γ ) otherwise.
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