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The Dynamics of Localized Solutions of
Nonlocal Reaction-Diffusion Equations

Michael J. Ward

Abstract. Many classes of singularly perturbed reaction-diffusion equations possess localized solutions where
the gradient of the solution is large only in the vicinity of certain points or interfaces in the domain. The
problems of this type that are considered are an interface propagation model from materials science and an
activator-inhibitor model of morphogenesis. These two models are formulated as nonlocal partial differential
equations. Results concerning the existence of equilibria, their stability, and the dynamical behavior of local-
ized structures in the interior and on the boundary of the domain are surveyed for these two models. By ex-
amining the spectrum associated with the linearization of these problems around certain canonical solutions,
it is shown that the nonlocal term can lead to the existence of an exponentially small principal eigenvalue for
the linearized problem. This eigenvalue is then responsible for an exponentially slow, or metastable, motion
of the localized structure.

1 Introduction

Certain time-dependent singularly perturbed partial differential equations exhibit a phe-
nomenon known as dynamic metastability, whereby the solution evolves on an asymptot-
ically exponentially long time interval as the singular perturbation parameter € tends to
zero. Metastable dynamics has been observed and analyzed over the past decade for several
classes of problems in a one-spatial dimensional setting. Many of these results are surveyed
in [25]. Although metastable behavior occurs more commonly for problems in one spatial
dimension, it has now been recognized (cf. [1], [3], [4], [16], [26]) that it can also occur in
a multi-spatial dimensional context.

In this article we survey some results for the metastable behavior of localized solutions
for two different reaction-diffusion equations in a multi-dimensional domain. The two
specific problems that we consider are the constrained Allen-Cahn equation with applica-
tions to materials science and the shadow problem that arises from an activator-inhibitor
model of morphogenesis in the limit of large inhibitor diffusivity. A critical common fea-
ture of these two models is that they are nonlocal reaction-diffusion models that can be
formulated as special cases of

(1.1a) u = EAu+ Qu;o,), x€ D,
(1.1b) o,u=0, x€aD,
(1.1¢c) o= /g(u; €) dx.
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Here € < 1, D is a bounded domain in RY with smooth boundary D, and 8,u indicates
the outward normal derivative. Before discussing the outline of the paper in detail, we give
a qualitative overview of the analysis and the type of asymptotic results that are obtained.

Depending on the specific conditions imposed on Q and g, (1.1) can possess localized
solutions where the gradient of the solution is large only in the vicinity of certain points
or interfaces of dimension N — 1 in the domain. For the activator-inhibitor problem, the
special type of solution we consider is a spike. A spike is a radially symmetric function
localized at some specific point in the domain, with the solution decaying exponentially
away from the center of the spike. For the constrained Allen-Cahn equation, we consider
a localized solution that is asymptotically piecewise constant but that varies rapidly across
a spherical interface of a given radius that separates the two constant states. The internal
layer solution decays exponentially onto these two states. This type of solution is referred
to as a bubble. The specific conditions on Q and g that yield these solutions are given in
Sections 2 and 4 below.

Thus, a common feature of these two problems is that in all of RY, (1.1a), (1.1c) admits
a canonical radially symmetric solution of the form uq(eflr; €) as € — 0, where u, is expo-
nentially localized and r = |x — x¢|. Here xy € D is the center of the localized structure. In
terms of u,, the goal is to construct as € — 0 an equilibrium solution to (1.1) of the form
u(x) ~ uy, for some xg, € D to be determined. For the time-dependent problem we wish
to determine whether (1.1) has a solution of the form u(x,t) ~ u,, where xy = X,(t) satis-
fies a differential equation that evolves exponentially slowly in time as ¢ — 0. The essential
feature that is needed for the existence of such a metastable behavior is to show that the
principal eigenvalue of the nonlocal eigenvalue problem associated with linearizing (1.1)
around u, is exponentially small.

The nonlocal term in (1.1) is critical for ensuring this condition on the spectrum of the
linearization. To see this, suppose that Q in (1.1) is independent of o, and that the result-
ing problem is capable of supporting a radially symmetric solution in all of R¥ that has
exponential decay. For such a problem, there will always be one eigenvalue bounded above
from zero as well as N zero eigenvalues due to translation invariance. As a result of the
exponential localization of u,, these eigenvalues get perturbed by only exponentially small
terms by the presence of the finite domain. Thus, for the local problem in a finite domain,
there is still a positive principal eigenvalue, which eliminates the possibility of metastabil-
ity. However, when the nonlocal effect o, is present in (1.1), the corresponding eigenvalue
problem that determines the stability of the localized solution is nonlocal. Under certain
simple conditions on g(u), the nonlocal term in this eigenvalue problem has only an expo-
nentially small effect on the eigenspace associated with the exponentially small eigenvalues.
Thus, the nonlocal eigenvalue problem still retains the exponentially small eigenvalues as-
sociated with the local problem. The key step in the analysis then is reduced to ascertaining
whether the nonlocal term in the eigenvalue problem is sufficiently strong to push the posi-
tive eigenvalue associated with the local problem into the left half-plane. If this occurs, then
the exponentially small eigenvalues will be the principal eigenvalues associated with the
linearization, and metastable dynamics will occur. This hypothesized behavior of the spec-
trum of the linearized problem is precisely what has been found for the activator-inhibitor
problem and for the constrained Allen-Cahn equation.

To characterize the metastable dynamics, we first assume that the initial condition for
(1.1) is u(x,0) = uq[e’1|x — x¢(0)|], for some x¢(0) € D. We then look for a solution
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to (1.1) in the form u ~ ug[e~!|x — x(t)|], for some x,(t) to be determined. To derive a
differential equation for x¢(t), we let

(1.2) u(x,t) = uq[efl\x —xo(8)|] + v(x,1),

where v < u,. Substituting (1.2) into (1.1), we obtain the linearized problem for v

(1.3a) v+ Oy = Lov = EAv+ Qv+ Q, / gvdx, xe€D,
D

(1.3b) Ouv = —Ouuy, x€ OD.

The coefficients in the differential operator are evaluated at ;. Next, under certain con-
ditions on the nonlinearity (which must be checked on a case-by-case basis), the princi-
pal eigenfunctions of L. are exponentially close to the translation eigenfunctions 9, u, for
j=1,...,N. These eigenfunctions, which must be modified by boundary layer correction
terms near 0D in order to satisfy the no-flux condition on the boundary of the domain, are
associated with exponentially small eigenvalues. These eigenvalues allow us to make the
quasi-steady approximation v, < 01, in (1.3). Then, the solution v to this problem must
satisfy the limiting solvability conditions that the “residual” is orthogonal to the eigenspace
associated with the exponentially small eigenvalues as ¢ — 0. From this projection step,
which is similar to a Lyapunov-Schmidt reduction, and from certain key asymptotic ex-
ponential estimates for the translation eigenfunctions on the boundary of the domain, an
explicit asymptotic differential equation for x¢(t), characterizing the metastable dynamics,
is derived. For the two specific problems considered below, x; moves exponentially slowly
in the direction of the closest point on the boundary of the domain, whenever that point is
uniquely defined. It then eventually attaches to the boundary.

When the localized structure becomes attached to the boundary, the dynamics is often
of a very different nature. In particular, when the boundary is curved, a spike solution
will creep along the boundary driven by the variation in the curvature in two dimensions
and by the gradient of the mean curvature in three dimensions. The spike then reaches
a stable equilibrium point at a local maxima of these curvatures. However, if the spike
becomes attached to a flat portion of the boundary, it will again move only in response to
exponentially weak or, metastable, forces. Similar qualitative features occur for the motion
of a bubble for the constrained Allen-Cahn equation that is attached to the boundary. This
case is related to the analysis in [5] and [19] characterizing the motion of a straight-line
interface for the Allen-Cahn equation that is trapped in the neck region of a dumbell-
shaped domain. Other problems of this type are treated in [28].

The organization of this paper is as follows. In Section 2 we analyze the metastable
dynamics of bubble solutions for the constrained Allen-Cahn equation. The motion of
bubbles that are attached to the boundary of the domain is considered in Section 3. In
Section 4, we analyze metastable spike dynamics for the activator-inhibitor model. Finally,
in Section 5 we study spike dynamics for this model when the spike is attached to the
boundary of the domain.
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2 Metastable Bubble Motion

As shown in [22], a simple model for the phase separation of a binary mixture is the con-
strained Allen-Cahn equation

(2.1a) u =eAu+Fu)—o, xeDCRVY,
(2.1b) o,u=0, x€9D,
1
(2.1¢) o, = —/F(u) dx.
ID| Jb
Here ¢ < 1, |D| is the volume of D, and F(u) = —V'(u), where V(1) is a double-well

potential with wells of equal depth located atu = s, > 0and u = s_ < 0. More specifically,
we assume that F(u) is smooth and has exactly three zeroes on the interval [s_, s;] located
atu = 0 and u = s, with

(2.2) F(s4) <0, F(0)>0, V(ss)=0.

Prototypical is F(u) = 2(u — u®). For (2.1), the key feature is that the mass m = fD udx
is conserved. We now describe the different stages of the dynamics for (2.1) that have been
studied in detail in [1], [2], [3], [4], [22], [23] and [26]. The various stages of the dynamics
of a single closed interface for (2.1) are shown qualitatively in Fig. 1.

The first stage is a transient phase. Starting from arbitrary initial data, in an O(1) time
interval the solution to (2.1) develops internal layers of width O(¢) separating the two min-
ima of the potential well V(u). Thus, as ¢ — 0, we can approximate the details of the
internal layer solution by a sharp interface I', whose motion is to be determined. For the
sharp interface model, the asymptotic analysis of [22] showed that the normal velocity v of
a single closed interface I satisfies the constrained mean curvature flow

2 1
(2.3) Vv~ € <K—|TAde).

Here K is the mean curvature of I', with K < 0 for a sphere. This law holds for closed
interfaces in the interior of D and for interfaces that are connected to 0D orthogonally.
As shown in [10], a single closed convex interface evolving according to (2.3) will tend
to a sphere that encloses the same volume. The relation (2.3), which arises from the thin
interface limit of (2.1), has been proved for the radially symmetric case in [6] and for the
general case in [8].

For a bubble solution to (2.1), I is a sphere of radius r, and from (2.3) we get v = 0.
Thus, the asymptotic analysis leading to (2.3) gives no indication of the nature of the mo-
tion of a bubble contained in D. The evolution of such a bubble is more subtle and arises
from exponentially small metastable forces. The existence of such a metastable bubble mo-
tion has been proved in [1], [3], and [4]. An explicit differential equation for the evolution
of a bubble has been derived in [26] using formal asymptotic analysis.

There are three key ingredients steps in the asymptotic analysis of [26]. The first step
is to construct a bubble solution u, to (2.1a), (2.1c) in all of RY. Then, we show that the
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Figure 1: Evolution of a small convex interface inside a two-dimensional domain D. (a) The convex
interface evolves by (2.3) into a circle. (b) The circular interface drifts, satisfying (2.11a), towards the
closest point on dD. (c) The interface attaches to 0D, intersecting orthogonally. (d) The interface
moves along 0D satisfying (2.3), or (3.1) when the interface encloses a small area. (e) If the interface
encounters a flat portion of 0D, it moves along this flat portion exponentially slowly according to
(3.5). (f) When a curved part of OD is reached, the interface again evolves by (2.3) until a steady state
is attained, which is centered near a local maximum of the curvature of OD.
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principal eigenvalue associated with the linearization of (2.1) around u, is exponentially
small. The nonlocal conservation of mass condition in (2.1¢) is essential for this conclu-
sion. Finally, for the time-dependent problem we impose a limiting solvability condition
on the solution to the quasi-steady linearization of (2.1) around u,. This condition ensures
that the linearized solution has no component in the eigenspace associated with the expo-
nentially small eigenvalues. In this way, an explicit differential equation for the motion of
the bubble is obtained.

The first result summarizes the asymptotic construction of the bubble in RV:

Proposition 2.1 (Bubble Solution [26]) A bubble solution to (2.1a) and (2.1c) of radius 1y,
in RN, with u ~ s_ inside the bubble and u ~ s, outside the bubble, is given asymptotically
fore = 0 by u ~ uy(e”'r;€) where

S+(€) — ay(r/ry) 1N 2T 0mm) s
(2.4a) ug ~ < uple (r—1,)] + O(e), e (r—r,) =0(1),

S_(e) + a,(r/rb)(l_N)/ze_”F—(l(”’_’), 0<r<r.

Here uy(z) is the unique solution to
(2.4b) g +F(ug) =0, —o0<z<o0; u0)=0,
(2.4¢) uy(z) ~ sy —ayret™**  asz — +oo,

where v4 = [—F’(Si)]l/z and aL are determined uniquely by the solution to (2.4). The
constant o is given asymptotically by

N-—1 S
(2.4d) Q:wﬁa&,mzﬁL_l,gzi/[wmmw,
(s4 —s)mp s
and the constants Sy (e), V5. are given by
F//
(2.4e) Si(€) =54 — 60'11/;2 + 0O(e?); Ve =vy [1 + @‘1274(&) +0(e) | .
Vi

We will assume that the initial mass m = f I u(x,0) dx, which is preserved in time, is
consistent with having a bubble of radius r, contained entirely inside the domain at time
t = 0 (see the appendix in [26] for the precise range of m).

Next, the quasi-steady linearization of (2.1) is obtained by setting

(2.5) u(x,t) = u, (671|X — xo(t)|;e) + v(x,t),

where v < uy, v, < Oyuy. Substituting (2.5) into (2.1), and neglecting quadratic terms in
v, we get the linearized problem

’ 1 ,
(2.6a) Lv=eAv+F (ug)v — H / F (uy)vdx = Ouy, x€D,
D

(2.6b) Oyv = =0y, x¢€ OD.
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Let xo be fixed and let A}, ¢; for j > 1 be the eigenpairs of the associated nonlocal eigen-
value problem

(2.7) Lop=Xp, x€D; 0,0=0, x¢€OD; (¢,¢)E/¢2dx:1.
D

If the nonlocal term in (2.6) were deleted it is easy to show that the resulting principal
eigenvalue of (2.7) would satisfy A\; = €?/r7 as € — 0, and the corresponding eigenfunction
¢1 would have the form ¢; ~ u{; away from the boundary of D. This is consistent with
the observation that if mass was not conserved, the bubble would shrink to a point under
a mean curvature flow on a time scale |>\1_1| = O(e?) (see [11]). However, this positive
eigenvalue is only present for the local problem, as the nonlocal term in (2.6) eliminates this
unstable mode. The following result for the principal eigenvalue of the nonlocal problem

(2.7) was obtained in [26]:

Proposition 2.2 (Exponentially Small Eigenvalues [26]) Let xo € D be fixed and assume
that |x — Xg| — 1, > 0 for x € OD. Then, for ¢ — 0, the principal eigenvalue of (2.7) is
exponentially small and there are N such exponentially small eigenvalues given asymptotically
forj=1,...,Nby

2.3 2

a,viN N e Xj —X0j \ , & P

(2.8a) Aj o~ ——— pINeg= e (r=m) <H) #-A[l +#-A]dS.
BN Jop r

Here Qy is the surface area of the unit N-ball, t = (x — xg)/r, f is the unit outward normal

to OD, and x; and xy; are the j-th coordinates of x and X, respectively. The corresponding

unnormalized eigenfunctions have the form

(2.8b) ¢j~8xjuq+¢Lj, j:1,...,N,

where ¢ ; is a boundary layer function localized near OD that allows the boundary condition
in (2.1b) to be satisfied.

This result then implies that the bubble will translate without change of shape. The final
step is multiply both sides of (2.6a) by the eigenfunctions in (2.8b), integrate by parts, and
use the estimates for A; in (2.8a), to derive that

(2.9) (Oyug, @) ~ —62/ ¢jOntig dS,
oD

where (f,¢) = [,, fg dx. This equation can be viewed as resulting from a projection of the
solution v to (2.6) against the eigenspace associated with the exponentially small eigenval-
ues. By obtaining explicit formulae for the translation eigenfunctions (2.8b) on the bound-
ary of the domain, the following result was obtained in [26]:

Proposition 2.3 (Metastability [26]) Assume that |x — x¢(t)| — 1, > 0 for x € OD. Then,
for € — 0, the metastable bubble dynamics for (2.1) is characterized by u(x,t) ~ u (e '|x —
xo(t)|; €), where xo(t) satisfies the differential equation

eNa2v?
BN

Here X = dx,/dt, u, is given in Prop. 2.1, and we have the same notation as in Prop. 2.2.

(2.10) Xy ~ I(xp), I(xo)z/ PN 24T =[] 4+ # - A]# - A dS.
oD
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Then, we can characterize an unstable equilibrium solution by

Corollary 2.1 (Equilibrium [26]) Under the conditions of Prop. 2.3, (2.1) has an unstable
equilibrium solution of the form u ~ uq(e_1|x — Xoe; €), where the center X, of the bubble
satisfies I(xo.) = 0. For a strictly convex domain D, X, is located at an O(¢€) distance from the
center of the unique largest inscribed sphere that can be inserted in D.

For ¢ < 1, the surface integral in (2.10) is dominated asymptotically by the contribu-
tions from the points on the boundary of the domain that are closest to the center of the
bubble. When there is only one such closest point, we can readily evaluate the integral using
a multi-dimensional Laplace’s method to obtain the following explicit dynamics:

Corollary 2.2 (Explicit Dynamics [26]) Assume that att = 0, X, is the unique point on 0D
which is closest to Xo(0). Then, the motion of the center of the bubble is in the direction of the
closest point and the distance r,,,(t) = |X,, — Xo(¢)| satisfies the asymptotic ODE

(N+1)/2 2 (N-1/2
- 2Najv

(2.11a) iy~ —Cr | — H(ry)e 24 mmm) o= 200 (T :
- N

v
where H(r,,) is defined by
(2.11b) H(ry) = (1= /R0 = 1 /Rp) V2 (1= 1 /Ry 1) 12,

Here Rj > r,, for j = 1,...,N — 1, are the principal radii of curvature of OD at x,,. The
constants in (2.11a) are defined in (2.4). This result is valid provided that r,, — r, > 0, and it
breaks down when r,, — r, = O(e).

The final result gives the time that it takes for the bubble to touch the boundary.

Corollary 2.3 (Collapse Time [26]) For the ODE (2.11), suppose that r,,(0) = ro > 1p.
Then, under the conditions of Corollary 2.2, the bubble will first touch the boundary OD when
Tm(t;) = 1y, where

(2.12)
_ _ N—-1
P (2 R ) PR B B B | S
T \n 2 e\ Rimn) |

If initially there are more than one point where r is minimized, the result (2.11) must be
modified. In this case, we must use Laplace’s method on (2.10) retaining the local contri-
bution to the integral from the neighbourhood of each point on D where r is minimized.
This degenerate case has not been explored in any detail.

3 Boundary Bubble Motion

In this section we restrict ourselves to two-dimensional domains D. Once the bubble hits
0D, it quickly becomes attached to D orthogonally and its boundary becomes a circular
arc in order to minimize its perimeter. Its subsequent evolution is then given by (2.3).
However, if the length scale of the interface is sufficiently small compared to the radius
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of curvature of 9D, the interface will become approximately semi-circular in shape. The
motion of such a semi-circular drop of radius § < 1 has been studied in [2]. It was proved
in [2] that the center of a such a small drop of radius §, with § < 1but0 < € < &3, satisfies
the asymptotic ODE

/ 40
(3.1) so(T) ~ —6/<c [s0], T =¢€t.
3T

Here so(7) is an arclength parameter for 0D corresponding to the center of the drop, ¢ is
the radius of the drop, and « is the curvature of the smooth boundary 0D (positive for a
convex domain D). The drop will reach a stable equilibrium, where the interface can have
minimum perimeter. This occurs near local maxima of « (cf. [1], [2], [9]).

In [23], the small drop result (3.1) was verified numerically and the motion of bubbles
attached to the boundary evolving under the constrained mean curvature flow (2.3) was
computed by extending the front-tracking code developed in [7]. The numerical trajecto-
ries of the center of drops of different radii § obtained using this code, were compared to
the asymptotic result (3.1) for several different boundary curves. To compare with the full
numerical result, the differential equation (3.1) was solved numerically using fourth-order
Runge-Kutta method for the given boundary.

For example, consider the evolution of an interface that intersects the boundary of an
ellipse with major axis 2 and minor axis 1. This boundary curve can be parameterized by
x(0) = 2cosb, y(0) = sinf for 0 < § < 27. In terms of 8, we can determine the curvature
k(0). Then, (3.1) becomes

244 sin§ cos @

3.2 0 (1) = —— i
(32) (7) 7 (4sin® 0 + cos? 0)7/2

In the numerical front-tracking procedure, we started with the initial data of a small semi-
circle centered around the point on 9D where 6(0) = 7 /4. In [23] it was observed that
these drops move along the boundary in the direction of increasing curvature until a steady
state was reached at the local maximum of x when 6 = 0. The trajectories of 8(7) obtained
from the numerical method and from the asymptotic differential equation (3.2) are com-
pared for several different drop radii in Fig. 2. Notice that, as expected, the numerical
trajectory gets closer to the asymptotic trajectory as ¢ is decreased. For very small radii,
both trajectories are very similar.

For a semi-circular interface that becomes attached to a flat portion of a boundary, the
relation (2.3) and the drop result (3.1) predicts that there is no motion. This case, in which
metastable behavior occurs, has also been studied in [23]. The analysis for this case is
related to that given in [19] for the motion of a straight-line interface for the Allen-Cahn
equation in the neck region of a dumbell-shaped domain.

We now outline the metastability analysis for a semi-circular interface located on the
straight-line boundary segment joining the points (x;,0) and (xg, 0) as shown in Fig. 3.
The flat portion of OD is taken to be the straight-line segment between (x;, 0) and (xg, 0).
The interface is centered around xy = (xy,0) where x; < xy < xg. We decompose 9D =
0D, U 0D; where OD; refers to the straight-line segment of the boundary and 0D, denotes
the remaining curved part of OD. The distance between the interface and 0D, is assumed
to be a minima at either of the two corners (x;, 0) or (xg, 0).
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Figure 2: Plots of 0 vs time for different §. The boundary curve is the ellipse defined above (3.2). The
solid lines are the asymptotic result given by (3.2) and the dashed lines are the result from numerical
motion by constrained mean curvature.

https://doi.org/10.4153/CMB-2000-056-5 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-2000-056-5

The Dynamics of Localized Solutions of Nonlocal Reaction-Diffusion Equations 487

(x1,0) (x0,0) | (xz,0)

Figure 3: Plot of a two-dimensional domain D with a flat boundary segment and a semi-circular
interface of radius r = r;, centered at x.

Near the corner points, dD is assumed to have the local behavior
(3.3a) near (x,0); y = ¥r(x), [(x) ~ —Kp(x, —x)*, asx — x,,
(3.3b) near (xg,0); y = ¥r(x), Yp(x) ~ Kp(x — xg)™%, asx — xg,

where o, > 0 and ag > 0. When oy = ag = 1, K; and Ky are proportional to the
curvatures of 0D, at the corners.

The analysis in [23] proceeds as follows. First, we construct a radially symmetric bub-
ble solution as described in (2.4). The bubble solution is then centered at a point (xo, 0)
on the straight line interface. We then linearize (2.1) around u, as in (2.5), where now
Xo(t) = (xo(t), O). This yields the linearized problem (2.6). In two dimensions, due to the
exponential decay and the near translation invariance in the horizontal direction x, there
is exactly one exponentially small eigenvalue corresponding to the approximate eigenfunc-
tion ¢, ~ Oxu,. By imposing a limiting solvability condition on the solution to (2.6), which
requires that v is orthogonal to the eigenfunction associated with the exponentially small
eigenvalue, the following result was obtained in [23]:

2ea’v? (x — xo) !

5 g A ds.
™ Jop T

(3.4) xé(t) ~

Here t = (x — x¢)/1, Xg = (x0,0), r = |x — Xp| and i is the unit outward normal to &D.

Next, since t and i are orthogonal on the straight-line segment 0D; of 0D, the integral
in (3.4) reduces to an integral over the curved segment 0D.. For ¢ — 0, the dominant
contribution to this integral arises from the corner regions (x;,0) and (xg,0). Laplace’s
method and the local boundary information (3.3) can then be used to obtain an explicit
result for the metastable dynamics.

Proposition 3.1 (Explicit Dynamics [23]) Assume that the distance between xy and 0D, is
a minimum at either of the two corners (xr,0) or (xg,0). Then, for e — 0, the center xy(t) of
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a semi-circular interface of radius ry, that lies on the straight-line segment y = 0, x, < x < xg
satisfies the metastable dynamics

2 2 ag+l
xl(t) ~ 2€£l+(l/_€)_) KR efzyie_l(xquxoffb) € ‘ F(OéR + 1)
0 3 XR — Xo 2v5

K o ap+l
. —Le—2u+e l(X()*JCL*fb) i F(aL + 1) .
Xo — XL 2v4

Here K, ap and Ky, ag are defined in (3.3), the other constants are defined in (2.4), and I'(z)
denotes the usual Gamma function.

(3.5)

In the analysis leading to (3.5), we do not require that r, is asymptotically small. The
only restriction on the analysis is that the distance between the semi-circular interface I
and the curved portion 0D, is minimized at one of the corner points, with this mini-
mum distance being O(1) as € — 0. The following equilibrium result follows immediately
from (3.5):

Corollary 3.1 (Equilibrium [23]) When K Kr > 0, there is a unique steady-state solution
Xoe> Satisfying xj, < xo, < xg, that is given asymptotically by

Xp + XR €
— +

+0(e%).
2 4 ()

(36) Xpe ™~

K[{F(Q[( + 1) € ALTOR
KRF(OLR + 1) 21/_?_

This steady state is stable when K; < 0, Kg < 0, and is unstable when K > 0, Kg > 0.
Specifically, if D is convex near (x,0) and (xg, 0), then there is no stable equilibrium location
on OD,.

For the initial value, x(0) = xJ, the qualitative properties of the dynamics associated
with (3.5) are as follows. When K; > 0 and Kz > 0, x¢(#) moves exponentially slowly
towards x;, if x) < xq,, or towards xg if xJ > xp.. When K; < 0 and Kg < 0, xo(t) will
approach the stable steady state at xq, for any initial condition. If K; < 0 and Kz > 0, then
xo(t) will move towards xg. Finally, xo(f) will move towards x; when K; > 0 and Kz < 0.
In each case, the interface moves in the direction that will allow its perimeter to decrease.
When the interface reaches the corner points (xg, 0) or (xg, 0), the subsequent evolution of
the interface is determined by (2.3).

4 Metastable Spike Motion

Turing [24] proposed a reaction-diffusion system of activator-inhibitor type to mathemati-
cally model morphogenesis. From a linear stability analysis he suggested that such a system
could have stable spatially inhomogeneous solutions with isolated peaks in the activator
concentration. Subsequent studies on the Gierer-Meinhardt activator-inhibitor model (e.g.
[12], [15]), which have involved large-scale numerical computations, have shown that ro-
bust spike-type patterns in the activator concentration are possible when the activator dif-
fuses much more slowly than the inhibitor. A survey of some mathematical results for the
Gierer-Meinhardt model is given in [21].
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In [16], the shadow problem for the Gierer-Meinhardt activator-inhibitor system, that
results from assuming an infinite inhibitor diffusivity, was analyzed. This problem is for-
mulated as the nonlocal problem

p
(4.1a) ut:ezAu—u+%, x €D CRN,
€
(4.1b) O,u=0, x€aD,
N
(4.1¢) o= —— | u"dx.
M|D| D

Here € < 1, u(x, ) is the activator concentration, & > 0, and |D]| is the volume of D. The
exponents are assumed to satisfy

p—1

(4.1d) p>1, qg>0, m>0,
q

<m7 p<pL(N)7

where p.(N) = 0if N < 2 and p.(N) is the critical Sobolev exponentif N > 3.
The first simple result summarizes the asymptotic construction of a one-spike equilib-
rium solution to (4.1a), (4.1c) in all of RV,

Proposition 4.1 (Canonical Spike [16]) A one-spike solution to (4.1a) and (4.1c) in RN is
given asymptotically for € — 0 by u ~ uy(e~'r) where

(4.2a) ug(p) ~ a¥ P~ V(p).

Here w(p) is the unique positive solution to

(N—1)
P
(4.2¢) w'(0) =0; w(p) ~ ap(lfN)/zef”, asp — oo,

(4.2b) w' + w—w+wl =0, 0<p<oo,

for some a > 0. The constant o is given by

o0 (p—1)—qm
(4.2d) o = (QN [w(p)]”’ledp>’ "
M|D‘ 0

Here Q) is the surface area of the unit N-ball.
The asymptotic construction of an M-spike solution is given by

M—1

(4.3) u(x) ~ 5%, xua] = 0P Y Twle - xg)),
j=0

where o, is given in (4.2d) with u replaced by /M. The goal is to construct an equilibrium
solution to the finite domain problem (4.1) of the form (4.3), where the spike locations
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xj € D with |x; — x| = O(1) as e — 0 for j # k are to be determined. Under these
conditions, it is clear that u* satisfies the equilibrium equation (4.1a) and the boundary
condition (4.1c) up to exponentially small terms as € — 0. Thus, determining the correct
locations for the spikes requires exponential precision. This delicate problem has now been
solved for the Neumann problem and for other boundary conditions in a series of papers
(see [14], [18], [27], [29], [30] and the references therein). For a one-spike solution these
results have shown that the center of the spike is at an O(e) distance from the maxima
of dist(xg, D)(x, OD). For the M-spike case, the important papers of [14] and [19] have
proved that the problem for the determination of the locations of the spikes is directly
related to the geometric problem of the lattice packing of M balls of equal radii inside D.

The results in [16] pertain to the dynamics of a one-spike solution to (4.1). For this
problem, it is shown that the dynamics is metastable and very similar results are obtained as
compared with the motion of the bubble solution for the constrained Allen-Cahn equation
considered in Section 2. The nonlocal term (4.1c¢) is again crucial for this conclusion. We
now outline the analysis and summarize the results in [16].

We first introduce the quasi-steady linearization of (4.1) by setting

(4.4) u(x,t) = u, (671|X — xo(t)\) +v(x,t),

where v < uy, v, < 0,14, and u, is defined in (4.2). This leads to the linearized problem

(4.5a) Lv=eAv+(—1+pwl™ )y — mqﬂeTw / W' lydx = Oy, x€D,
NN D
(4.5b) Owv = Oy, x € OD.
Here, By is defined by
(4.5¢) On E/ w Nl dp.,
0

Let xo be fixed and let A;j, ¢; for j > 1 be the eigenpairs of the associated nonlocal eigen-
value problem

(4.6) Lp=XAp, x€D; 0,0=0, x€0D; (¢,¢)= / ¢ dx = 1.
D

Although this eigenvalue problem is not self-adjoint and is more difficult to analyze
than its counterpart (2.7) for the bubble problem, it is easy to see that the spectrum of (4.6)
contains N exponentially small eigenvalues with corresponding eigenfunctions satisfying
¢ ~ Oy;uq away from OD for j = 1,..., N. This follows from the exponential decay of u,,
the near translation invariance, and the fact that by symmetry and exponential localization
the nonlocal term is exponentially small for these functions.

The analysis then is reduced to determining the principal eigenpair of (4.6). When the
nonlocal term in (4.6) is absent, it is well-known that the local problem has an O(1) positive
eigenvalue with a corresponding localized radially symmetric eigenfunction (cf. [27]). For
specific parameter sets (p, q, m) and for dimensions N = 1,2, 3, a path-following method
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was used in [16] to numerically compute where this positive eigenvalue goes in the complex
plane as the nonlocal effect is gradually introduced through the use of a homotopy param-
eter . This parameter, satisfying 0 < § < 1, was chosen to multiply the nonlocal integral
term in (4.5a). It was shown in [16] that this eigenvalue branch, which emanates from the
positive eigenvalue for the local problem when § = 0, has crossed into the left-half plane
Re(\) < 0 well before & = 1. Hence, for the parameter sets considered in [16], the effect of
the nonlocal term is to eliminate the positive eigenvalue associated with the local problem.

The recent result of [30] provides the first key rigorous analytical result on the eigenvalue
problem (4.6). There it is proved that the principal eigenvalue of (4.6) is exponentially small
when eitherm =2and1 < p < 1+4/Norwhenm = p+1land1 < p < p.(N), where p,
is the critical Sobolev exponent for dimension N > 3. The exponentially small eigenvalues
were not estimated in [30]. Although, there are still some gaps in our understanding of the
spectrum of (4.6), it does appear for typical ranges of the exponents that the nonlocal term
has pushed the positive eigenvalue associated with the local problem into the left half-plane
Re(A) < 0. The results given in Propositions 4.2, 4.3 and Corollaries 4.2, 4.3 follow when
this condition on the spectrum holds.

Proposition 4.2 (Exponentially Small Eigenvalues [16]) Let xg € D be fixed and assume
that dist(xg,0D) = O(1) as € — 0. Then, for e — 0, the principal eigenvalue of (4.6) is
exponentially small and there are N such exponentially small eigenvalues given asymptotically
forj=1,...,Nby

azN 1—-N _—2¢ ! xjfxoj 2
(4.7a) /\jNﬁA—Q r—Ye " ———=) t-A[1+t-A]dS.
NN JOD r

Here Qy is the surface area of the unit N-ball, £ = (x — xq)/r, f is the unit outward normal
to OD, and x;j and xy; are the j-th coordinates of x and X, respectively. The constant By is
defined by

(4.7b) by = / W (D)0 dp.
0

The corresponding unnormalized eigenfunctions have the form
(4.7¢) @i~ Oug+ ¢, j=1,...,N,

where ¢1; is a boundary layer function localized near OD that allows the boundary condition
in (4.1b) to be satisfied.

The final step to characterize the metastable dynamics is to impose a limiting solvability
condition on the solution v to the linearized problem (4.5). Since this problem is not self-
adjoint we would normally be required to obtain key results for the small eigenvalues and
their associated eigenfunctions of the adjoint problem. However, for this problem it is
easy to show that the estimates given in (4.7) also pertain to the adjoint problem since the
nonlocal term is asymptotically negligible in the asymptotic calculation of this subspace.
With this observation, limiting solvability conditions can be imposed using the estimates
given in (4.7) to obtain the following result:
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Proposition 4.3 (Metastability [16]) Assume that dist(xg, 0D) = O(1) as e — 0. Then,
for € — 0, the metastable spike dynamics for (4.1) is characterized by u(x,t) ~ uq(e*1 |x —
xo(t)|), where x,(t) satisfies the differential equation

Na? _
(4.8) xONg s‘; I(x), I(xo) z/ PNe=2 71 1 £ AF - AdS.
NS &N oD

Here Xy = dxo/dt, u is given in Prop. 4.1, and we have the same notation as in Prop. 4.2.
As in Section 2, we get the following equilibrium result:

Corollary 4.1 (Equilibrium [27]) Under the conditions of Prop. 4.3, (4.1) has an unstable
equilibrium solution of the form u ~ 1,(e™"[x—Xo.|), where the center x,. of the spike satisfies
I(xg.) = 0. For a strictly convex domain D, X, is located at an O(e€) distance from the center
of the unique largest inscribed sphere that can be inserted in D.

This result was proved rigorously in [29]. Next, by evaluating the surface integral in (4.8)
asymptotically using Laplace’s method we get the following explicit dynamics:

Corollary 4.2 (Explicit Dynamics [16]) Assume that att = 0, X,,, is the unique point on 0D
which is closest to xo(0). Then, for t > 0, the motion of the center of the spike is in the direction
of the closest point and the distance r,,(t) = |x,, — Xo(t)| satisfies the asymptotic ODE

(N+1)/2 )
- 2N
(4.9) fm ~ —CTm <i> H(T’m)e_z6 lr,,,y (= —? W(N_l)/2.
T'm Qn Oy

Here H(ry,) is defined in (2.11b). The constants in (4.9) are defined in (4.2) and (4.7).

This result is valid up until the time when the spike approaches to within an O(e) dis-
tance of x,,. The collapse time is given in the final result:

Corollary 4.3 (Collapse Time [16]) For the ODE (4.9), label 1,,(0) = ry. Then, under the
conditions of Corollary 4.2, the spike will first touch the boundary 0D when r,,,(t;) = 0, where

c (1-N)/2 [H(ry)] ! e ([N—1 N-1 1 26 r
(4.10) te~ <7’0) T 1- 1 o o Z m € .

i=1

5 Boundary Spike Motion

In [17] it has been shown, using formal asymptotic analysis, that a spike for (4.1) on the
boundary of a smooth domain moves in the direction of the gradient of the mean curvature
until it reaches an equilibrium point where the mean curvature of the boundary has a local
maximum. The existence of such equilibrium solutions, where the spike is located at these
special points on the boundary, has been proved in [13] and [20].

The asymptotic results obtained in [17] for the spike motion on the boundary of the
domain are very similar to the small drop result given in (3.1) for the constrained Allen-
Cahn equation. For the two-dimensional case, the following result was obtained in [17]:
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Proposition 5.1 (Two Dimensions [17]) For € — 0, a time-dependent spike solution for
(4.1) where the spike is located on the smooth boundary of a two-dimensional domain is char-

acterized by u ~ u, [6‘1 (7]2 + (¢ - 50(t))2) 1/2}, where

Jo ' (p)1*p* dp

5.1 (1) ~
&1 ot S w(p)Ppdp

3
y f I(So) fE

Here u, is defined in (4.2), 1 is the distance from x € D to OD, & is arclength along 0D, and
k(&) is the curvature of OD, with k > 0 for a circle.

This result shows that the spike centered at n = 0, £ = s4(¢) will have a stable equilib-
rium at local maxima of k. The corresponding result for the three-dimensional case was
obtained in [17]:

Proposition 5.2 (Three Dimensions [17]) For € — 0, a time-dependent spike solution for
(4.1) where the spike is located on the smooth boundary of a three-dimensional domain is

5 1/2
characterized by u ~ uy, [e’l (772 + (& —s0) + (& — sz(t))) ], where

3¢ 1 W ()20 dp
(5.2) §(t) ~ —=VH(s), = 0—
4 /= 1w (p)2p*dp”
Here s is the vector s = (s1, s,), 1 is the distance from x € D to 0D, and &; and &, correspond
locally to arclength for the two principal directions through &, = s; and £, = s,. Here the
function H(§) = H(&1, &) denotes the mean curvature of OD, with H > 0 for a sphere.

Finally, we provide a result for the metastable spike motion that occurs whenever the
spike becomes attached to a flat portion of a two-dimensional boundary. In this case, a
very similar result to (3.5) was obtained in [17]. The last result is obtained in [17] under
the same qualitative geometrical setting as shown in Fig. 3 with the same assumptions as
in (3.3) for the domain near the corner points (xg, 0) or (xg,0):

Proposition 5.3 (Explicit Dynamics [17]) Under the same conditions as in Prop. 3.1, the
center xo(t) of a spike solution constrained to the straight-line segment y = 0, x, < x < xg
satisfies the metastable dynamics

2
salt) 28 f K s ()" pag )
B LXr — Xo 2

B KL 672671(x07XL) (E)QDLI F(QL + 1)} .

(5.3)

X0 — XL 2

Here K, af and Kg, ag are defined in (3.3), while a and @ are defined in (4.2) and (4.7b),
respectively. This differential equation has the same qualitative properties as discussed follow-
ing (3.6).
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