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CENTRALISERS ON RINGS AND ALGEBRAS

JOSO VUKMAN AND IRENA KOSI-ULBL

In this paper we investigate identities related to centralisers in rings and algebras.
We prove, for example, the following result. Let A be a semisimple H' -algebra
and let T : A -+ A be an additive mapping satisfying the relation T(x m + n + 1 )
— xmT(x)xn for all x G A and some integers m ^ 1, n ^ 1. In this case T is a
left and a right centraliser.

Throughout, R will represent an associative ring with centre Z(R). Given an
integer n ^ 2, a ring R is said to be n-torsion free, if for x 6 R, nx = 0 implies
x — 0. As usual the commutator xy — yx will be denoted by [x, y]. Recall that a
ring R is prime if for a,b € R, aRb — (0) imples that either a = 0 or 6 = 0, and is
semiprime in case aRa = (0) imples a = 0. An additive mapping T : R —> R is called
a left centraliser in case T(xy) = T{x)y holds for all x, y € R. The concept appears
naturally in C* -algebras. In ring theory it is more common to work with module
homomorphisms. Ring theorists would write that T : RR -¥ RR is a homomorphism of
a ring module R into itself. For a semiprime ring R all such homomorphisms are of the
form T(x) = qx where q is an element of the Martindale right ring to quotients Qr (see
Chapter 2 by Beidar and Martindale). In case R has the identity element T : R—> R
is a left centraliser if and only if T is of the form T(x) = ax for some a € R. An
additive mapping T : R -¥ R is called a left Jordan centraliser in case T(x2) = T(x)x
holds for all x e R. The definition of right centralizer and right Jordan centralizer
should be self-explanatory. In case T : R -> R is a left and right centraliser, where R
is a semiprime ring with extended centroid C, then there exists an element A e C such
that T(x) = Ax for all x e R (see [2, Theorem 2.3.2]).

Zalar [12] has proved that any left (right) Jordan centraliser on a 2-torsion free
semiprime ring is a left (right) centraliser. Molnar [7] has proved that in case we have
an additive mapping T : A —> A, where A is a semisimple H* -algebra, satisfying the
relation T(x3) = T(x)x2 (respecitvely T(x3) = x2T(x)) for all x £ A, then T is a left
(right) centraliser. Let us recall that a semisimple H* -algebra is a semisimple Banach
'-algebra whose norm is a Hilbert space norm such that (x,yz") ~ (xz,y) = {z,x*y)
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is fulfilled for all x, y, z € A (see [1]). The result of Benkovic and Eremita [3] states
that in case we have a prime ring R and an additive mapping T : R -> R satisfying
the relation T{xn) = T{x)xn~1 for all x 6 R, where n ^ 2 is a fixed integer, then
T is a left centraliser in case char (R) = 0 or char (R) ^ n. Some results concerning
centalisers on semiprime rings can be found in [3, 6] and [8, 9,10, 11]. Let X be a real
or complex Banach space and let L{X) and F{X) denote the algebra of all bounded
linear operators on X and the ideal of all finite rank operators in L(X), respectively.
An algebra A(X) C L(X) is said to be standard in case F(X) C A(X). Let us
point out that any standard algebra is prime, which is a consequence of Hahn-Banach
theorem. We denote by X* the dual space of a Banach space X and by / the identity
operator on X.

It is our aim in this paper to prove the following result.

THEOREM 1. Let A be a semisimple H* -algebra and let T : A —> A be an
additive mapping satisfying the relation

T(x m + n + 1 ) = xmT(x)xn

for all x € A and some integers m > 1, n ^ 1. In this case T is a left and a right
centraliser.

For the proof of the theorem above we need the result below which is of independent
interest.

THEOREM 2 . Let X be a Banach space over a real or complex field F and
let A(X) C L(X) be a standard operator algebra. Suppose there exists an additive
mapping T : A(X) -¥ L{X) satisfying the relation

T(Am+n+1) = AmT(A)An

for all A € A(X) and some integers m ^ 1, n ^ 1. In this case T is of the form
T(A) = \A for some A 6 F.

In the proof of Theorem 2 we shall use some ideas similar to those used in [7] and
the following purely algebraic results proved by Bresar [4] and Zalar [12].

THEOREM A. ([4, Theorem 2].) Let R be a 2-torsion free prime ring. Suppose

there exists an additive mapping F : R -t R satisfying the relation [F(x),x],x\ - 0

for all x e R. In this case [F(x),x] = 0 holds for all x 6 R.

THEOREM B. ([12, Proposition 1.4].) Let T be a 2-torsion free semiprime ring
and let T : R —t R be a left (right) Jordan centraliser. In this case T is a left (right)
centraliser.

PROOF OF THEOREM 2: We have the relation

(1) T(Am+n+1) = AmT(A)An.
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Let us first consider the restriction of T on F(X). Let A be from F(X) and let
P € F(X) be a projection with AP = PA — A. Prom the above relation one obtains
T(P) = PT(P)P, which gives

(2) T(P)P = PT(P) = PT(P)P.

Putting A + P for A in the relation (1), we obtain

m+n+l

(3)
t = 0

= ( g (7) ̂ "^) PW + B) (± (*
where 5 stands for T(P). Using (1) and rearranging the equation (3) in the sense of
collecting together terms involving an equal number of factors of P we obtain:

m+n

(4)

where fc (A, P) stands for the expression of terms involving i factors of P. Replacing
A by A + 2P, A + 3P, . . . , A + (m + n)P in turn in the equation (1), and express-
ing the resulting system of m + n homogeneous equations in the variables fi(A,P),
i — 1,2, . . . , m + n, we see that the coefficient matrix of the system is a van der Monde

matrix
1 1 ••• 1
2 22 ••• 2 m + "

m + n (m + n) • • • (m + n)

Since the detminant of the matrix is different from zero, it follows that the system has

only a trivial solution.

In particular

/ro+n-i(i4,P)

-o,
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and

fm+n(A,P)

\ m + n J \m-lj \nj \m) \n -

= 0.

The above equations reduce to

(5) (m + n + l)(m + n)T(A2) = m(m - l)A2B + n(n - 1)BA2 + 2mnABA
+ 2mAT(A)P + 2nPT(A)A,

and

(6) (m + n + 1)T{A) = mAB + nBA + PT{A)P.

Right multiplications of the relation (6) by P gives

(7) (m + n + 1)T(A)P = mAB + nBA + PT(A)P.

Similarly one obtains

(8) (m + n + l)PT(A) = mAB + nBA + PT(A)P.

Combining (7) with (8) gives

T(A)P = PT(A),

which reduces the relations (5) to

(9) (m + n + l)(m + n)T(A2) = m{m - \)A2B + n(n - l)BA2 + imnABA

+ 2mAT{A) + 2nT(A)A,

and the relation (7) to

(10) (m + n)T(A)P = mAB + nBA.

Combining (10) with (6) gives

(11) T(A)=T{A)P.

From the above relation one can conclude that T maps F(X) into itself. Further from

(11), (10) reduces to

(12) (m + n)T(A) = mAB + nBA.
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From this we can conclude that T is linear on F(X). Further apply (12) we obtain

2mnABA - n(mAB)A + mA(nBA)

= n((m + n)T(A) - nBA) A + mA({m + n)T(A) - mAB)

= (m + n)(nT(A)A + mAT(A)) - n2BA2 - m2A2B.

We have therefore

2mnABA = (m + n)(nT(A)A + mAT{A)) - n2BA2 - m2A2B.

Applying (12) and the relation above to (9) we obtain

(13) (m + n)T(A2) = nT{A)A + mAT(A),

and multiplying by (m + n) we obtain

(m + n)2T(A2) = n{m + n)T(A)A + mA(m + n)T(A).

Applying the above relation on both sides of (12) we obtain

(m + n) (mA2B + nBA2) = n{mAB + nBA)A + mA(mAB + nBA),

which reduces to

(14) [[A,B],A]=0.

Relation (12) gives (m + n)[T{A),A] = mA[B, A] + n[B, A)A. By the above relation
one can replace .A[.B,.A] by [B, A\A which gives

[T(A),A] = [B,A)A.

Then applying (14) we obtain [[T(A), A],A] = [[B,A]A,A] = \\B,A\,A\A = 0. Thus

we have

[[T(A),A],A]=0,

for any A g F(X). We have therefore an additive mapping T which maps F(X) into
itself satisfying the relation above for any A G F(X). Since F(X) is prime all the
assumptions of Theorem A are fulfilled which means that

[T(A),A]=0,

holds for any A £ F{X). Applying this in (13), one obtains that T(A2) = T(A)A

and T(A2) = AT(A) holds for all A G F(X). In other words, T is a left and a right
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Jordan centraliser on F(X). By Theorem B it follows that T is a left and also a right
centraliser of F(X).

We intend to prove that there exists C 6 L(X), such that

(15) T(A) = CA, for all AeF(X).

For any fixed x € X and / € X* we denote by x ® / an operator from F(X) defined by
(x <g» f)y = f(y)x, for all y € X. For any A e L(X) we have A{x <g> / ) = ((Ax) <g> / ) .
Let us choose / and y such that f(y) = 1 and define Cx — T(x ® f)y. Obviously, C
is linear. Using the fact that T is a left centraliser on F(X) we obtain

(CA)x = C{Ax) = T((Ax) ® f)y = T(A(x® f))y = T{A)(x <g> f)y = T(A)x, x € X.

We have therefore T{A) = CA, for any A € F (X) . Since T a right centraliser on
F(X) we obtain C(AP) = T(AP) = AT{P) = ACP, where A e F(JC) and P is
an arbitrary one-dimensional projection. We have therfore [A,C]P — 0. Since P is
arbitrary one-dimensional projection it follows that [A,C] = 0, for any A € F(X).
Using the closed graph theorem one can easily prove that C is continuous. Since C
commutes with all operators from F(X) one can conclude that Cx = Ax holds for any
x € X and some A e F, which together with the relation (15) gives that T is of the
form

(16) T(A) = XA

any A € F(X) and some A € F.

It remains to prove that the above relation holds for any A € A(X) as well. Let us
introduce Tx : A(X) - • L(X) by Tr(A) = XA and consider TQ = T - 7 \ . The mapping
To is, obviously additive and satisfies the relation (1). Besides, To vanishes on F(X).
It is our aim to prove that To vanishes on A(X) as well. Let A e A(X), let P be a
one-dimensional projection and let S = A + PAP - (AP + PA). Note that 5 can be
written in the form S = (I — P)A(I — P), where / denotes the identity operator on
X. Since, obviously, S - A e F(X), we have T0(S) = T0(A). Besides, SP = PS = 0.
We have therefore the relation

(17) T0(A
m+n+1)=AmT0(A)An,

for all A € A(X). Applying the above relation we obtain

SmT0(S)Sn = T0(S
m+n+1) = T0(S

m+n+1 + P) = T0((S +

= (S + P)mT0(S + (Sm + P))T0(S)(Sn + P)

= SmT0(S)Sn + PT0(S)Sn + SmT0(S)P + PT0(S)P.
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We have therefore

(18) PT0(S)Sn + SmT0{A)P + PTQ(A)P = 0.

Multiplying the above relation from both sides by P we obtain

(19) PT0(A)P = 0,

which reduces (18) to

(20) PToCAJS™ + SmT0(A)P = 0.

Right multiplication by P then gives

(21) SmTo(A)P = 0.

We intend to prove that

(22) 5 m - 1

Putting A + B for A, where B € F(X), in (21) and using the fact that To vanishes
on F(X), we obtain

( S i S ™ - 1 + SSiSm~2 + ••• + Sm-1Si)T0(A)P = 0,

where Si stands for (I - P)B(I - P) (see [5]). The substitution T{A)PB for B in
the above relation gives because of (19)

(T0{A)PBSm-1 + ST0(A)PBSm-2 + ••• + Sm-1T(A)PB)T0(A)P = 0.

Multiplying from the left side by S"1"1 and applying (21) we obtain

(Sm-1T0(A)P)B(Sm-1T0(A)P) = 0,

for all B 6 F(X). Then it follows Sm~1To{A)P = 0 by the primeness of F{X), which

proves (22).

Now, (21) implies (22), one can conclude by induction that ST0(A)P = 0, which

gives

AT0(A)P - PAT0(A)P = 0,

because of (19). Then putting A + B for A, where B 6 F(X), we obtain
0 = (A + B)T0(A)P - P(A + B)T0(A)P = BT0(A)P - PBT0(A)P. We have therefore
proved that

BT0(A)P - PBT0(A)P = 0
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holds for all A e A(X) and all B € F(X). The substitution T0(A)PB for B in the
above relation gives, because of (19), (T0(A)P)B(T0(A)P) = 0, for all B 6 F{X).

Thus it follows To{A)P = 0 by the primeness of F(X). Since P is an arbitrary one-
dimensional projection, one can conclude that T0(A) = 0, for any A € A(X), which
completes the proof of the theorem. D

PROOF OF THEOREM 1: The proof goes through using the same arguments as in
the proof of the Theorem of [7], with the exception that one has to use Theorem 2
instead of the Lemma in [7].

In the proof of Theorem 2 (the relation (13)) we met an additive mapping T :

F(X) -> F(X) satisfying the relation

(m + n)T(A2) = mAT(A) + nT(A)A

for all A € F{X). In the case m = n this reduces to 2T{A2) = T(A)A + AT{A).
Vukman [7] has proved that when we have an additive mapping T : R —> R, where R
is an arbitrary 2-torsion free semiprime ring, satisfying the relation 2T(x2) = T(x)x
+ xT{x) for all x € R, then T is a left and right centraliser. These observations lead
to the following conjecture.

CONJECTURE 1. Let m and n,m ^ - n be some nonzero integers and let R be a
semiprime ring with suitable torsion restrictions. Suppose there exists an additive
mapping T : R —> R satisfying the relation

(m + n)T(x2) = mxT(x) + nT(x)x

for all x G R. In this case T is a left and right centraliser.

Our last result is related to conjecture above.

THEOREM 3 . Let m and n,m ^ — n, be some nonzero integers and let R be

a \mn\ and \m + n\-torsion free semiprime ring. Suppose there exists and additive

mapping T : R —• R satisfying the relation

(23) (m + n)T{xy) = mxT(y) + nT(x)y,

for all pairs x, y € R. In this case T is a left and a right centraliser.

PROOF: We have the relation

(23) (m + n)T{xy) = mxT(y) + nT(x)y,

for all pairs x, y € R. We compute the expression (m + n)2T(xyx) in two ways. First

applying the relation above

(m 4- n)2T(x(yx)) = m(m + n)xT(yx) + n(m + n)T(x)yx

= mx(myT{x) + nT(y)x) + n(m + n)T(x)yx, x, y e R.
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Thus we have

(24) (m + n)2T(xyx) = m2xyT(x) + mnxT{y)x + mnT(x)yx + n2T(x)yx,

for x, y G R. On the other hand using (23)

(m + n)2T((xy)x) = m(ro + n)xyT(x) + n(m + n)T(xy)x

= m{m + n)xyT(x) + n(mxT(y) + nT{x)y)x, x,y G R.

Thus we have

(25) (m + n)2T(xyx) = m2xyT{x) + mnxyT(x) + mnxT{y)x + n2T{x)yx,x, y G R.

Subtracting the relation (25) from (24) we obtain mn{T{x)yx = xyT(x)) — 0, for all
pairs x, y G R, which reduces to

T(x)yx - xyT{x) = 0, x, y G R

since we have assumed that R is \mn\ -torsion free. Putting in the above relation first
yx for y then multiplying from the right side by x and subtracting the relations so
obtained one from another we obtain i2/[T(x),x] = 0, for all pairs x, y € R. From
this one obtains easily [T(x),a;]y[T(x),a;] = 0, for all pairs x, y € R. Hence it follows

(26) [ T ( x ) , x ] = 0 , x € R

by the semiprimeness of R. The substitution y = x in (23) gives

(m + n)T(x2) = mxT(x) + nT(x)x, x € R.

By (26) one can then replace xT(x) by T(x)x which gives (m + n)T{x2)

= (m + n)T(x)x for all x € R. Since we have assumed that R is \m + n\-torsion
free, it follows that T(x2) = T(x)x holds for all x € R. Of course, we also have
T(x2) = xT(x), for all x G R. In other words, T is a left and right Jordan cen-
traliser. By Theorem B T is a left and a right centraliser. The proof of the theorem is
complete. D

We conclude with the following conjecture.

CONJECTURE 2. Let R be a semiprime ring with suitable torsion restrictions and let

T : R —> R be an additive mapping satisfying the relation

T(x m + n + 1 ) = xmT(x)x"

for all x G R and some integers m ^ 1, n ^ 1. In this case T is a left and right

centraliser.
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