CONVEXITY PROPERTIES FOR WEAK SOLUTIONS
OF SOME DIFFERENTIAL EQUATIONS IN
HILBERT SPACES

S. ZAIDMAN

1. In this work we obtain a simultaneous extension of Theorems 1.6 and
1.7 in Agmon and Nirenberg (1), together with a partial extension of the
result on backward unicity for parabolic equations by Lions and Malgrange (4).

2. Let H be a Hilbert space. (-) and || are the notations for the scalar
product and the norm in this space. Consider in H a family B(f), 0 < ¢t < T,
of closed linear operators with dense domain Dp,y (varying) with £ Let
L2(0, T, H) be the space of Bochner square-integrable vector-valued functions
with values in H. Our main result is the following

THEOREM 1. Let u(t) be a function defined for 0 < t < T and with values in
H, with the following properties:

(1) u(t) e L2(0’ Ty H)v u’(t) = du/dt e L2(01 T: H)r u(t) € DB(t) mDB*(l)
for almost all ¢, 0 <t < T; a(t) —BlHu=0, 0<t<T; lu@®]| >0 for
0t T.

(1) The scalar function Re(B(t)u(t),u(t)) is almost everywhere differentiable
in [0, T°], and the derivative d[Re (B (t)u (), u(8))]1/dt is integrable in every interval
a <t B, suchthat0 <a<pB<T.

(ili) There exist a constant k > 0 and an increasing twice continuously dif-
ferentiable function »(t), 0 < t < T, such that the inequality

2.1) Re[d(B(®)u (), u(®)/dt] > 3|(B() + B*()u(®)|?
+ (@/@) Re((B() — k)u, u)

holds, almost everywhere in 0 < t < T.
Then, if (1)—(iil) are fulfilled, the function log |e=*'u(t)| is a convex function of
s = w(t).

Proof of Theorem 1. We use the following (known) criterion of convexity:

LEmMA 1. Let f(t) be a continuous scalar function on 0 < t < T, with the
property that

[ rouwa > o0
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for any u(t) > 0, with compact support in 10, T[, and of the class C?[0, T].
Then f(t) is convex on [0, T].

Now, we shall prove the convexity of f(f) = log[e=2*!|u(t)|?] as a function
of s = w(t). Let Co?*(a, b) denote the class of functions twice continuously
differentiable, with compact support in (a, b). We observe that the class of
positive functions u(¢) € C¢%(0, T') is mapped by the transformation

(2.2) () — M(s)

defined by M (w(¢)) = u(f) on the class of positive functions M (s) € Cy2(w(0),
w(7T)). Hence, we have to prove, according to the lemma, putting { = w=1(s),
the relation

2 d M(S) }0

w(T)
2.3) S, tog expl =2k () (6))
for every non-negative M(s) in Co*(w(0), w(71)). Substituting s = w(t), we
deduce from (2.3) that the relation

(2.4) flog “H ()] G hGy o

must hold, for any non-negative u() in C02(O, T), where the dot indicates
differentiation with respect to ¢. Now, we write e~2*!|u ()|2 = ¢(¢), and follow
essentially the calculation of (1, pp. 137-138).

Observe that using (i), we can integrate by parts reducing (2.4) to

T .
2.5) T4 <o,
0 qw
for any non-negative u(t) > 0 in C¢2(0, 7). As we have, almost everywhere
on (0, T),
(2.6) ¢ = 2¢** Re(Bu, u) —2kq,
(2.5) becomes
T —% - _
@) f [e Re(B'u, u) kq] pdt <0,
0 wq

for all non-negative u(¢) in C¢?(0, 7). As u has compact support, say [«, 8],
in (0, T), we can apply (ii), integrate by parts once more, and obtain, on
account of (2.6),

(28) J;Tﬂ(t) [d(6_2“ Re(BZ;)u) - kQ)/dt . 2(3—2“ Re(f;z, u) - kq)z:l dt

— f u(t) [—~ (7™ Re(Bu, u) — kg:| dt >0

for all non-negative u in C2(0, 7). Hence (2.3) follows if we prove that the
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coefficient of wu(f) is non-negative almost everywhere on (0, 7°), or, using
gw > 0, that

(2.9) g—t (¢7*" Re(Bu, u) — kq) — _3 (™" Re(Bu, u) — kq)*

— -3 (™™ Re(Bu, u) — kg) > 0

almost everywhere on (0, T° ). But (2.9) equals

(210) ¢ § Re(Bu,u) — 267 (Re(Bu,1)* = 5 (¢ Re(Bu, ) — k)
= L Re(Bu ) — 5 ¢ (B + B )’ — § (¢ Re(Bu, ) — ko)
>e ™ Re(Bu u) — 3¢ ™|(B + B*)u|* — = (™ Re(Bu, u) — kg) > 0

by (iii). Thxs proves Theorem 1.

Remark 1. The theorem is obviously an extension of (1, Theorem 1.7),
where w(f) = e°, and stronger derivability hypotheses on #(f) seem to be
assumed.

Remark 2. Our Theorem 1 is also an extension of (1, Theorem 1.6). In fact,
we can derive from Theorem 1 the following

THEOREM 2. Let A be a symmetric operator in the Hilbert space H, with dense
domain. Suppose u(t) € L*(0, T; H), u(t) € L0, T; H), |[u(@®)] >0 on 0 < ¢
< T, u(t) € Dy for almost every t,0 < t < T, 14 — vyAu =0, a.e. on (0, T);
v is a complex number. Then log|u (t)| is a convex function of t,0 < t < 7.

This result extends (1, Theorem 1.6), where «(¢) is supposed to be twice
strongly continuously differentiable.

We apply Theorem 1. Hypothesis(i) is obviously fulfilled. The non-trivial
part in the proof is the verification of (ii). This result is a consequence of the
following.

LEMMA 2. Given

(a) a symmetric operator C with dense domain D¢ in a Hilbert space H;

(b) a function v(t) € L*(0, T; H), with 9(t) € L*(0, T"; H), belonging to D¢
for almost every t € (0, 1), such that Cve L*(0, T; H);

(c) a C* scalar function ¢(t), defined for t > 0, such that ¢(t) =0 for

t>T —06,¢8@) =1fort < T — 256 (6> 0).
Then
@.11) (C(tv), tv) = —2 Re f " (o), dso) /di)dt

for almost all t € (0, T).

https://doi.org/10.4153/CJM-1965-077-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1965-077-8

CONVEXITY PROPERTIES 805

Remark. A similar formula is proved in (3, p. 136, formula (4.8)). The proof
given there is easily adapted to our case.

Finally, one easily verifies (iii), taking # = 0 and w(f) = ¢, and Theorem 2
is proved.

We can, as a matter of fact, prove a further extension of Theorem 2 directly.
However, it will no longer be a special case of Theorem 1. We state this result
as follows.

THEOREM 2'. Let A be a symmetric operator with dense domain in H. Suppose
u(t) is a strongly continuous function with values in H, defined for 0 <t < T,
|u(@)| > 0, and satisfying

(212) — ), @, s@at = [ @@, v4* 90

for every ¢(t) € Co'(0, T; H), ¢(t) € Dy, 0 <t < T, A*¢ () € L*(0, T'; H).
Then, loglu(t)| is convex in t.

We indicate the proof briefly. Denote by A the closure of 4, and consider
a sequence {a,(t)} such that:

a,(t) € C*(—w, ©), a, =0  forlt| > 1/n,[a,dt = 1 (a, — 8).

The regularizations

(u*a,)(t) = fw u(t)oy(t — 7)dr

are well defined for 1/n <t < T — 1/n. It is easy to prove that the
C*(1/n, T — 1/n; H)-valued functions, (#*a,) (), also belong to D ; for every
t,1/n <t < T — 1/n, and that

(2.13) d(u*ay)/dt = vA (u*ay) for1/n <t < T — 1/n.
It is known that this implies that log |#*a,| is convex in ¢ for
1/n<t<T—1/n.
Asn— o, u*a, > u(t),0 <t < T; hence

lim log |u*a,| = log |u ()|, 0<t<T.

n—c0

As the limit of convex functions is convex, our result follows.

3. Our last application of Theorem 1 is a partial extension of a result by
Lions and Malgrange (4).

Let us recall their notations and definitions. Consider two Hilbert spaces
V and H, V C H with continuous immersion, 1 dense in H. The symbols
((,)) and (,) denote the scalar products in V and H respectively, while || ||
and | | denote the corresponding norms.
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Let ¢ be a real variable, 0 < ¢t < T; for every such ¢ a sesqui-linear form
a(t, u, v) is defined, continuous on V X V, which we shall suppose, less general-
ly than in (4), to be symmetric:

(3.1) a(t,u,v) = a(t, v, u), u,v € V.
Moreover, as in (2), we assume that

(3.2) a(t,u,v) € CU0, T1, u,v €V,

and there are two positive numbers A and « such that

(3.3) alt,v,v) + No|2 > o|]p]|2 forallvc V.

We remark that these relations readily imply that
la(t, u, )| < Mifull [loll,  |aC, u,0)| < Mllul] [lol|

foru,v € V,0 <t < T, where M is a positive constant.
The form a (¢, u, v) defines an (unbounded) linear operator 4 (£) in H through

(3.4) A®u,v) =alt,u,v); t€[0,T],4 € Dy, v € H
where
Dy = {u € V,|a@, u,v)| < Cylvjv € V.

From (3.1) it follows that A4 (¢) is self-adjoint in H. Its domain D,, is not
constant; but it is easily seen that
(3.5) Deacpimrz = V.

We indicate how one can derive from our Theorem 1 the following result.

THEOREM 3. Let u(t) € L2(0, T; V), u(t) € L2(0, T; H), u(t) € D 4y for al-
most every t € [0, T], (t) + A@)u(t) = 0. Then, if |[u@)| > 0,0 <t < T, the

Sfunction logle *!|u(t)|] s @ convex function of s = e°!, for some positive constants
kand c.

Remark. S. G. Krein (2) announced a similar theorem, but he assumes that
D4y is constant for 0 < ¢t < 7T7; this is less general than (3.5).

We shall show how Theorem 3 follows from Theorem 1, where w(f) = e°*
with some ¢ > 0 to be determined.

We need a preliminary result which is only slightly different from (4, Lemma
2.2).

LEMMA 3. Assuming the hypotheses of Theorem 3, the function 1 (t) belongs to
L2(a,B; V) for0 <a<pB<T.

The proof is an easy adaptation of that of (4, Lemma 2.2).
Next, apply Theorem 1, and verify that the conditions (i)—(iii) are satisfied
for B(t) = —A4 (¢). Consider the scalar function
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Re(Bt)u, u) = —a(t, u, u).
By Lemma 3, its derivative almost everywhere is
d[Re(B)u,u))/dt = —alt,u,u) — a(t, 4, u) — a(t, u, w).
We have
lat, u, w)| < M|ju@®)||? € L1(0, T),
lat, o, u)| < M||4]| ||u]] € L'(e, 8) for0 <a < < T.
Finally, we have to prove that ¢ > 0, 2 > 0 can be chosen such that for
w(t) = e,
—ad(t, u, u) — 2 Rela(t,u,n)] = —a(@t, u, u) + 2 Relat, u, Au)]
= —a(t,u, u) + 2|4 (Oul* > 2[4u]* — cRe((4 () + k)u, u).
This is equivalent to
alt,u,u) < clat, u, u) + klul?),
which follows from the facts that |d(¢, u, u)| < M|[u||? and a(¢, u, u) +
Nul? > af|u||?, with some ¢, £ > 0.

Remark. The above convexity property is valid for positive-norm solutions
u(t). But, with an obvious argument, it implies the backward unicity for all
solutions, which means, as is well known, that if (7)) = 0, then u(f) = 0,
0<t<T.
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