EMBEDDING ANY COUNTABLE SEMIGROUP WITHOUT
IDEMPOTENTS IN A 2-GENERATED SIMPLE SEMIGROUP
WITHOUT IDEMPOTENTS

by KARL BYLEEN
(Received 2 June, 1986)

Although the classes of regular simple semigroups and simple semigroups without
idempotents are evidently at opposite ends of the spectrum of simple semigroups, their
theories involve some interesting connections. Jones [§] has obtained analogues of the
bicyclic semigroup for simple semigroups without idempotents. Megyesi and Polldk [7]
have classified all combinatorial simple principal ideal semigroups on two generators,
showing that all are homomorphic images of one such semigroup P, which has no
idempotents.

In an earlier paper [1] a construction designed to produce regular simple semigroups
was used to show that any countable semigroup can be embedded in a 2-generated
bisimple monoid. In this paper a modification of the earlier construction is employed to
prove that any countable semigroup without idempotents can be embedded in a
2-generated simple semigroup without idempotents, and to produce certain 2-generated
congruence-free semigroups.

The reader is referred to the survey paper by Hall [3] and to Chapter 4 of Lyndon
and Schupp [6] for discussions of related embedding theorems for semigroups, inverse
semigroups, and groups. These references also contain extensive bibliographies. Clifford
and Preston [2] or Howie [4] may be consulted for standard definitions and results from
the theory of semigroups.

The author thanks Peter R. Jones for many helpful discussions.

1. The construction. Let (S, -) be any semigroup and let A and B be nonempty sets
which are disjoint from each other and from S. Let ar: A X §— A be a right action of S on
A (i.e., al(s - )= (al>s)Dt for all a € A and s, t € S, where al>s denotes (a, s)«). Let
B:S %X B— B be a left action of S on B (i.e., (s-t)<Wb =5<(t<b) for all be B and
s, te S, where s<\b denotes (s, b)B). Later in the paper juxtaposition will be used to
denote the binary operation of S as well as the right and left action, but in this section we
use the more complicated notation in order to reserve juxtaposition to denote
multiplication in the free semigroup W™ on the set W=AUBUS. Let P=(p,)
be an A X B matrix over W such that p,5,p=p..«s for all ac A, beB, seS§. Let
%(S; B, a; P) denote the semigroup with presentation

(W;ab=p,,, as=als,sb=s<lb,st=s-tVYaeA,beB, s, teS).

Let A denote the identity of the free monoid W* generated by the set W. For any
nonempty subset X of W let X* denote the submonoid of W* generated by X, and let X*
denote X*\{A}.
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LeEMMA 1.1. The elements of €(S; B, «; P) are uniquely represented by the words in
the set R=B*A*UB*SA* UB*A™.

Proof. The proof is conceptually the same as that of Lemma 1.1 of [1]. Define a
mapping ~:W*— R by induction on the length |[w| of w e W™ as follows: let w=w if
w)=1. If w=w,w,...w,,, with each w; € W and n =1, denote w,w,. . . w, by vtu where
veB* teSU{A}, and ue A%

if w,,,=aeA, let w=uvtua,

us ifu=t=A,
if w,1=s5s€eS, let w=quv(t-s) ifu=A, t#A,
vtii(al>s) if u =da # A where i € A*, a € A;

2

and if
vb ifu=t=A,
Wepr=beB, let w=qu(b) ifu=A, t#A,
vtdp,, if u=1da+# A where ie A* acA.

This inductive definition establishes that any element w e W* may be reduced by the
defining relations to an element w € R, and that |w| < |w|.

To complete the proof of the lemma we show that no two distinct reduced words
represent the same element of 6(S; B, a; P). Let y: W — J be the mapping from W
into the full transformation semigroup on R defined by (vtu)xy =vtux. This mapping
extends to a semigroup homomorphism from W™ into Jz. We use the definition of
the mapping ~:W*— R to check that each of the four types of defining relations for
€(S; B, a; P) is satisfied in T by the elements of Wy.

(1) (vru){(ay)(by)] = vrua(by) = (vrua)by = vrupe, = (vru)(pas¥), so (ay)(by) =

ab‘p'
7 (2) (vrw)[(aw)(sy)] = vrua(sy) = (vrua)(sy) = vru(al>s) = (vru)(al>s)y, so
(ap)(sy) = (al>s)y.

(3) If u=r=A, then (wru)[(sy)(by)] = (vs)(by) = v(s<Ib) = (vru)(sb)y, so
V)oY =(<b)y. Tt u=A, r#A, then (u)[EY)bY)]=[v(r-9)by)=
v((r - 5)<Wb) =v(r<(s<Ib)) = (vr)(s W)y, so (sy)(by)=(s<b)y. If u=aa+A, then
gv;l]tl))[)(SW)(bW)] = (vri(al>s))by =vrip s p = Vrip, s <p = (vria)(s <b)y, so (sy)(by)=

s<1b)y.

@I u=r=A, then (vru)[(sy)(ty)]=(vs)(ty)=v(s-t)=(ru)(s )y, so
p)ew)=(s-y. Hu=A, r#A, then (vru)[(sy)(ty)] = [v(r - 5)l(ty) = v((r -5) - ) =
v(r-(s-0))=r)s- -y, so (s)ey)=(s-)y. If u=aa+#A, then (vru)[(sy)(ty)] =
[vra(al>s))(ty) = vri((al>s)D>t) = vrii(al> (s - t)) = (vrida)(s - 1)y, so (sy)(ty) = (s - ).

Therefore the homomorphism  factors through €(S; B, «; P) giving a repre-
sentation of 4(S; B, «; P) in Ji. Let b e B. If vtu, yrx € R and (vtu)y = (yrx)y, then
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b((vtu)y] = b[(yrx)y], so butu = byrx and thus vtu = yrx. Therefore v is faithful and the
uniqueness in the statement of the lemma is established. W

As in the proof of Lemma 1.1 we will often denote a typical element of R by vtu,
where it is understood that v € B*, e SU{A}, u € A* and vtu # A. Since each element
of S belongs to R we have the following result.

PRrOPOSITION 1.2. The semigroup S is embedded in the semigroup €(S; B, «a; P).
ProposiTioN 1.3. If A#vu € B*A*, thenuve AT UB* US.

Proof. The proposition is established by straightforward induction on the length
ofvu. N

The construction of the semigroup €(S; f, «; P) from the semigroup § has a monoid
version in which a monoid €(M; B, «; P) is constructed from a monoid (M, -). In that
case we require «:AXM—A and B:M X B— B to be right and left monoid actions,
respectively, i.e., we also require al>1=a and 1<lb = b for all a € A, b € B. The matrix P
is an A X B matrix over AU B UM such that p,,,p =Pam<p forallae A, be B, me M.
Then €(M; B, «; P) denotes the monoid with presentation

(AUBUM;ab=p,,, am=abm, mb=m<b,mn=m.n, 1=A
VacA,beB, mneM).

By the method of proof of Lemma 1.1 it can be shown that the elements of the monoid
€(M; B, «; P) are uniquely represented by the words in the set B*MA*, or equivalently,
by the words in the set {A}UB*A*UB*MA*UB*A"*, where M denotes the set of
non-identity elements of the monoid M.

The relationship between the semigroup and monoid versions of our construction is
clarified by the following remarks. Suppose S is any semigroup and M is the monoid
obtained from S by adjoining a new identity element. If & and B are right and left

semigroup actions of S on 4 and B, respectively, let a’ and B8’ denote the right and left
monoid actions of M on A and B defined in the obvious way so as to extend a and B.

Then the monoid obtained from €(S; B, a; P) by adjoining a new identity element is
isomorphic to €(M; B', «'; P) (this follows from Lemma 1.1 and its analogue for
monoids referred to above).

In [1] the notation €(M; B, A; P) was used to denote the monoid €(M; B, a; P)
where « and f are the trivial right and left actions defined by al>m =a and m<lb = b for
allaeA, beB, meM.

2. The embedding. By choosing the actions « and B and the matrix P appropriately
the semigroup €(S; §, a; P) can be guaranteed to have certain nice properties. We show
how the result of the title may be obtained in this way. Suppose first that S, «, §, P are as
in Lemma 1.1.

PropPOSITION 2.1. If the semigroup S is idempotent-free, then so is €(S; B, a; P).
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Proof. Suppose y =y? in €(S; B, «; P). Let y =vtu € R. Then t # A, for otherwise
vuvu =vu, which is impossible since by Proposition 1.3 uve A*UB*US. Thus
vtuvtu = vtu, so uv € S and t(uv)t = t which implies that ¢(uv) is an idempotent of S. W

Lemma 2.2. If o and B are trivial, each row and column of P contains an element of
S, and the entries of P which belong to S generate S, then €(S; B, «a; P) is simple.

Proof. Let vsu, wtx € 4(S; B, a; P). If v# A then since each column of P contains
an element of S there exists u’ € A such that u'veS. If v=A let u’ = A. Similarly, if
u#A there exists v' € B* such that uv'€S. If u=A let v'=A. Suppose that t#A.
Then since the entries of P which belong to § generate S we have t =p,, 4, Payb;- - - Payby
where a;€A, b,eB for i=1,2,...,k. Hence in %(S;B, a;P) we have
wa u'(vsuyv'byazb,. . .apbx =wayrbiash,. . .aybx =wa bia,h,. . .abx =wix  where
reS. If t= A then either |w|>0 or |x|>0. If t=A and |w|>0 then w = Wb for some
b € B. Then wu'(vsu)v'bx = wrbx = wbx = witx, where reS. If t=A and |x| >0 then
x = a% for some a € A. Then wau'(vsu)v'® = wart = wag = wtx, where r € §. In all cases
wix <, usu, hence €(S; B, «a; P) is simple. W

THEOREM 2.3. Any semigroup without idempotents can be embedded in a simple
semigroup without idempotents.

Proof. Let S be an idempotent-free semigroup. Let A= {a} and B={b,;:s€ S} be
sets disjoint from each other and from S, where A is a singleton and B is a set in
one-to-one correspondence with S, and let P be the A X B matrix such that p, , = s for all
s€S. Let o and B be the trivial actions. Then 4(S; B, a; P) contains S by Proposition
1.2, is idempotent-free by Proposition 2.1, and is simple by Lemma 2.2. W

THEOREM 2.4. Any countable semigroup without idempotents can be embedded in a
2-generated simple semigroup without idempotents.

Proof. Let S be any countable semigroup without idempotents, and let A =
{a,, a5, as, ...} and B ={b,, b,, b3, ...} be countably infinite sets disjoint from each
other and from S. Let P be an A X B matrix over A U B U § such that (1) p,, =a,,, and
Prnitn=b,forn=1,2,3,...,(2) each row and column of P contains an element of S,
and (3) each element of S appears somewhere in P. Let « and B be the trivial actions.
Then § is embedded in %(S;B, «; P) by Proposition 1.2, and %(S; B, a; P) is
idempotent-free by Proposition 2.1 and is simple by Lemma 2.2. Furthermore, since
ab,=pm=a,.and a, . b, =poi1n=bpforn=1,2,3 ... each element of AUB is
generated by a, and b,. But each element of § appears as a product a;b;=p,;, so
AUBUS and thus €(S; B, «; P) is generated by @, and b,. B

The following result shows that Theorem 2.4 cannot be strengthened by replacing
“simple”’ by “bisimple”.

PRrOPOSITION 2.5. Any finitely generated bisimple semigroup is regular.

Proof. Let S be a finitely generated bisimple semigroup. Since § is bisimple either
(1) S has a non-trivial &-class, or (2) S has a non-trivial £-class, or (3) § is trivial.
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Suppose that (1) holds. Then every %-class is non-trivial and x € x§ for each x € §. Since §
is finitely generated there exists a maximal &-class L, of S. Since a € aS we have a = as
for some s € S. But this implies L, < L,, so a¥s and thus s = ta for some ¢ € S'. Hence
a = ata, and thus § is regular. The argument is dual if (2) holds, while the result is trivial
if (3) holds. H

Baer-Levi semigroups and Croisot-Tessier semigroups [2] are examples of right
simple semigroups without idempotents. Proposition 2.5 implies that such semigroups
cannot be finitely generated.

3. An example. Theorem 2.4 would be strengthened if “simple” could be replaced
by “congruence-free”. We do not know whether any countable semigroup (without
idempotents) can be embedded in a 2-generated congruence-free semigroup (without
idempotents), but we show that our construction can be used to provide an example of a
2-generated congruence-free semigroup without idempotents. This semigroup is of course
simple, but by Proposition 2.5 is not bisimple.

Let $=(s) be the infinite cyclic semigroup, let A={a;, a,,a;,...} and B=
{b1, by, bs, ...} be countably infinite sets disjoint from each other and from S, and let
@:AXS—A and B:S X B— B be the actions of § on A and B defined by a;s* = a; .,
s*bj=bj,x for i, j, k=1,2,3,.... Let P be an A X B matrix over AU B U S such that

(P1) pii=s;

(P2) pryij=pijmfori,j=1,2,3,...;

(P3) given x, y € {a,, b;, s} and distinct positive integers i, j there exists a positive
integer k such that p;, =x =p,; and pj =y = p4;.

We note that (P2) guarantees the condition p,, , = p, . Of our construction, and now
show that a matrix P satisfying (P1)—(P3) exists. Once the first row of P is specified, the
entire matrix is uniquely determined by (P2). One way to specify the first row of P so that
(P1) and (P3) are satisfied is as follows: for n=0,1,2,... let K,={xs"y:x,ye
{ay, by, s}}. Thus K, consists of 9 words from {a;, b,, s}*. Let w, be the concatenation
of the words in K, and let w be the w-word defined by w = swyw, wow; wowowy wowawy. . ..
Then any word in any K,, appears infinitely often as a subword of w. Let p,, be the nth
letter of w. Then (P1) is satisfied. We check that (P3) is satisfied. Let i, j be distinct
positive integers and let x, y € {a;, b,, s}. Without loss of generality we may assume that
i<j. Let r=j—i Then xs" 'y € K,_, so there exists a positive integer m >i such that
Pim =X, P1m+r =Y. Hence by (P2) we have p,,_;41i=x=pim-i+1 a0d pjp_jx1 =y =
Pm—i+1,j» Which establishes (P3).

ProposiTioN 3.1. 6({s); B, a; P) is a 2-generated congruence-free semigroup without
idempotents.

Proof. By (P1) we have a,b; =s, so by the actions of S on A and B we conclude
that AU B U S and thus €({s); B, «; P) is generated by a, and b,. By Proposition 2.1
€((s); B, a; P) is idempotent-free.

To show that €((s); B, «; P) is congruence-free it suffices to show that if p is a
congruence on €((s); B, @; P) and if vs™u, ys'x are distinct elements of €((s); B, a; P)
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such that us™upys'x, then p = , the universal congruence. We prove this by considering
several cases depending on the forms of the elements vs™u and ys'x.

Case 1. Suppose v =y =s" =s"= A. We prove that p = w by induction on |u|. As
the basis of the induction suppose |u| =1, so u = a; for some i. We now use induction on
|x|. If |x| =1, then x = g; for some j #i and a,pa;. By (P3) there exists a positive integer k
such that a;b, =s, a;b, =a,. Again by (P3) there exists a positive integer ! such that
a;b,=s, a;b,=b,. Hence spa, and spb,. Multiplying the first relation on the right by s,
and the second on the left by a,, yields s°pa,ps, and so every element of €({s); B, a; P)
is in the idempotent congruence class which contains s, a;, b;. So p = w. Now suppose
|x| >1, say x = £a; where £ € A™. If i #j then by (P3) there exists k such that a;b, = a,,
a;b, =s, so a,pxs where |£s| <|x| and £s # a,; so by induction p = w. If i = then by (P3)
there exists k such that a;b, =s, so spfs. Let £ = £a, where £ € A*. Then multiplication on
the left by a,,, yields a,,,0a,.,%a,,,, so by the case i # j we conclude p = w.

Now as the induction hypothesis for induction on |u| we suppose that if |u| =n and
upx, u#x, then p=w. Let |u|=n +1, say u = fla;,, x =%a;. If i #j then by (P3) there
exists k such that a;b, =s, a;by =a,, so dspXa;, and by induction p = w. If i =}, then by
(P3) there exists I such that a;b, =s, a;b, =s, so fispts and again p = .

Case 2. Suppose u =x =s™ =s" = A. This case is dual to Case 1, so p = w.

Case 3. Suppose v #y. (i) If u#A, x # A, then multiplying vs™upys'x on the right
by appropriate elements of B and using (P3) we conclude that vs™a,pys’a,; so
us™b,pys’b, and thus vb,,,,pyb,,;. By Case 2 p=w. (ii) If u=x=A, then again
us"™b,pys’b; so p=w. (ili)) If u=A, x#A, then vs"pys'x yields vs™zpys'a, by
multiplication on the right by an appropriate z € B*. There exist k and [ such that
a b, =a, and a,b,=b,. Thus vs"zb?'*'b,pys"b,, so by Case 2, p = w.

Case 4. Suppose u # x. This case is dual to Case 3, so p = w.

Case 5. Suppose v=y and u=x. Then m#r and vs"u =ys'x. If v=y =A, then
multiplication on the left by a, yields a,,.,upa,.1x, so p = w by Case 1. If u =y # A, then
multiplication on the left by an appropriate element of A™ yields a,s™upa;s’x, so again
p=wbyCasel. N

4. Congruence-free monoids. The first four cases of the proof of Proposition 3.1
can be adapted with only slight modifications (the induction in Case 1, for example, starts
with |u|=0) to prove Proposition 4.1 below. Let M be any monoid, let A=
{a,, a5, as,...} and B={by, by, b3, ...} be countably infinite sets disjoint from each
other and from M, let a and B be the trivial actions of M on A and B, respectively, and
let P’ be an A X B matrix over A U B U M which satisfies

(Pl)’ pn,n =dn+1, pn+l,n = bn+1 for h= 1; 27 3r e

(P2)" those entries of P’ which belong to M generate M; and

(P3)" given x, y € {1, a;, b;} and distinct positive integers i, j there exists a positive
integer k such that p; =x =p,; and py =y = py;.
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Then conditions (P1)’ and (P2)’ imply that the monoid €(M; B, A; P') is generated
by a, and b,.

ProrosiTION 4.1. Let p be a proper congruence on the monoid €(M; B, A; P'), with
A, B, M, P’ as above. Then vsupytx implies v =y and u = x.

ProrosITION 4.2. If M is a congruence-free monoid and p is a proper congruence on
€(M; B, A; P') with A, B, M, P' as above_ then either p is the identity or p=
{(vsu, vtu):s, te M, u € A*, v e B*}. /

Proof. Suppose p is a proper congruence on €(M; B, A; P'). Since M is congruence-
free the restriction p|M is either the identity id,, or the universal congruence w,,.
Suppose p|M =id,,. If vsupytx, then by Proposition 4.1 we have v=y and u=x.
Therefore, by multiplication on right and left, spr so s =¢. Hence p is the identity.
Suppose p |M = wy. Then {(vsu, vu):s, t e M, u € A*, v € B*} c p, while by Proposition
4.1 the reverse inclusion holds. Hence p = {(vsu, vtu):s,te M,uc A*, ve B*}. R

ProrosiTioN 4.3. Any countable semigroup can be embedded in a 2-generated
bisimple monoid which has exactly three congruences.

Proof. From Theorems 8.1 and 8.2 (and the remarks on p. 234) of [6] any countable
semigroup can be embedded in a countable algebraically closed monoid M, and any
algebraically closed monoid is congruence-free. A monoid N is bisimple if and only if for
each a € N the equations xw = a, ya =w, wz =1 can be solved by elements w, x, y, z € N.
Since any monoid can be embedded in a bisimple monoid (this follows from Preston’s
embedding [9] of any semigroup into a bisimple monoid, and the fact that local
submonoids of a bisimple regular semigroup are isomorphic), any algebraically closed
monoid must be bisimple (that algebraically closed semigroups are bisimple is noted in
[8]). Thus the monoid €(M; B, A; P'), with A, B, P’ as above, is bisimple by Theorem
2.4 of [1], is generated by a, and b,, and by Proposition 4.2 (provided M is non-trivial)
has exactly 3 congruences. B

We note that if M is trivial, then Proposition 4.2 implies that any proper congruence
is the identity, and so €(M; B, A; P') is a congruence-free monoid generated by a,
and b,.

In conclusion we pose some questions suggested by our results. The first asks for an
analogue for semigroups of the theorem that any countable group can be embedded in a
2-generated simple group (see p. 190 of [6]).

1. Can any countable semigroup be embedded in a 2-generated (finitely generated)
congruence-free semigroup?

2. Can any countable semigroup without idempotents be embedded in a 2-generated
(finitely generated) congruence-free semigroup without idempotents?

3. Does there exist a bisimple semigroup which is neither left simple, nor right
simple, nor regular?
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