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In this paper we study the ideal structure of the direct limit and direct sum (with a special multiplication) of a
directed system of rings; this enables us to give descriptions of the prime ideals and radicals of semigroup
rings and semigroup-graded rings.

We show that the ideals in the direct limit correspond to certain families of ideals from the original rings,
with prime ideals corresponding to "prime" families. We then assume the indexing set is a semigroup ft with
preorder defined by a<p if fi is in the ideal generated by a, and we use the direct sum to construct an ft-
graded ring; this construction generalizes the concept of a strong supplementary semilattice sum of rings. We
show the prime ideals in this direct sum correspond to prime ideals in the direct limits taken over
complements of prime ideals in ft when two conditions are satisfied; one consequence is that when these
conditions are satisfied, the prime ideals in the semigroup ring S[ft] correspond bijectively to pairs (<&, Q) with
0 a prime ideal of ft and Q a prime ideal of S. The two conditions are satisfied in many bands and in any
commutative semigroup in which the powers of every element become stationary. However, we show that the
above correspondence fails when ft is an infinite free band, by showing that S[ft] is prime whenever S is.

When ft satisfies the above-mentioned conditions, or is an arbitrary band, we give a description of the
radical of the direct sum of a system in terms of the radicals of the component rings for a class of radicals
which includes the Jacobson radical and the upper nil radical. We do this by relating the semigroup-graded
direct sum to a direct sum indexed by the largest semilattice quotient of ft, and also to the direct product of
the component rings.

1991 Mathematics subject classification. 16S36; Secondary 2OM25, 16D30, 16N80, 16S10.

Introduction

It is often the case that a semigroup S can be decomposed as a union of
subsemigroups Sa indexed by another semigroup Q, with the property that SaSf ^ Sap for
a, /? e Q. When this can be done, the semigroup algebra F[S] can be written additively as
a direct sum of the sets F[SJ, yielding an Q-gradation of F[S]. So far we have not used
the semigroup structure of the Sr In many cases, the multiplication of an element of Sa

by an element of Sfi in S can be carried out by mapping the elements into Sxfi and then
multiplying in that semigroup (see for example [2, Chapter 4] or [10, Chapter IV]).
This leads to a corresponding formula for the multiplication in F[S]. It is this sort of
decomposition of fi-graded rings that we study in this paper, and so our results can be
applied to help find prime ideals and radicals of the ring F[S] if these objects are
known for the rings F[SJ. We will describe the prime ideals and various radicals in the
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case where Q is a band or a commutative power-stationary semigroup (see Section 3).
The description of prime ideals involves direct limits over the complements of prime
ideals in SI, and so we start with a discussion of ideals in direct limits. For more
information on semigroup rings, we refer the reader to [9] (although the results there
are mostly for types of semigroups different from those we consider in this paper).

Throughout this paper, Q is a set and -< is a preorder on SI, i.e., a reflexive and
transitive relation on SI. We assume further that (Q, -<) is directed, that is, that for any
finite set <xu...,aneSi, there is a /?eQ with jS>a, for each i=l,...,n. From Section 2 on,
Q is a semigroup for which the product a/? is an upper bound for a, /?; throughout most
of the paper, the preorder < is defined by a<fi if /? is in the ideal generated by a.

A system of rings ^ over (Q, -<) is a collection (Rx)xea of rings, together with ring
homomorphisms cj>tfi\ R3->Rp for all <x,/?eO with <x-</?, such that ^ . y O ^ ^ = #«,,,
whenever x<.fj-<y and such that <^a=idKii for all a. We make systems of rings over
(Q,-<) into a category by defining a morphism 0: ^2->^2' between the systems of rings
01, 01', to be a collection of ring homomorphisms 9^.RX^R'X for aeQ such that
^o(/)a,p = ^ . p o ^ for all <x,j?eQ with ct<p.

A prime ideal in a ring is a proper ideal with the property that whenever it contains a
product of ideals it contains one of the factors; a completely prime ideal is defined in the
same way with products of elements in place of products of ideals. It is easy to see that
any completely prime ideal is a prime ideal, and that in a commutative ring, the two
types of ideals are the same. We define prime and completely prime ideals in semigroups
in exactly the same way; here we regard 0 as both a prime and completely prime ideal.
Note that an ideal of a semigroup is completely prime if and only if its complement is a
subsemigroup.

In the first section we discuss the direct limit functor from the category of systems of
rings to the category of rings, and we determine the (one-sided and two-sided) ideal
structure of the direct limit of the system M. We show that the ideals correspond to
families of ideals in the rings Rx that are compatible with the maps 4>x p, and that the
prime ideals correspond to "prime" families. We also construct some examples.

In the second section, we assume SI is a semigroup such that a,fS<<xfl for all <x,/?efi,
and we use the maps <f>^f in the system to define a multiplication on the direct sum of
the rings R^ thereby constructing a direct sum functor from the category of systems of
rings to the category of Q-graded rings. This direct sum construction generalizes the
notion of a strong supplementary semilattice sum of rings introduced in [13], and
includes semigroup rings S[Q] as a special case. We wish to determine the prime ideal
structure of the Q-graded rings we obtain, but we are only able to do so when SI
satisfies a condition we call (f) and when all prime ideals in SI are completely prime.
When this is the case, we show that the prime ideals in the direct sum correspond to
prime ideals in the direct limits taken over the complements of prime ideals in SI. We
also show that prime ideals corresponding to distinct prime ideals of SI are incompar-
able, and so the study of a chain of prime ideals can be done over the complement of a
fixed prime ideal in SI; this leads us to a formula for the classical Krull dimension of the
direct sum of a system. We also note in Section 2 that to describe ideals in the direct
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sum, it suffices to consider the preorder defined by a -</? if /? is in the ideal (a), and so
this preorder is used throughout that section and the subsequent ones.

In the third section, we show that the results of Section 2 are valid when Q is a band
that is either regular or satisfies the d.c.c. on principal ideals (a band is called "regular"
if it satisfies the identity xyxzx = xyzx) or is a commutative power-stationary semigroup
(one in which every element x satisfies xk = xk+1 for some k); in these cases, there is a
bijective correspondence between prime ideals in the direct sum of the system and prime
families over the complements of prime ideals in fi. We also show that these results are
not valid when fi is an infinite free band by showing that S[Q] is prime whenever S is.

In the final section, we describe the radical of the direct sum R of the system for any
directed, hereditary radical containing the prime radical (for example, the Jacobson
radical or upper nil radical); we show that @a£i^x is in the radical of R if and only if
for each idempotent eeQ, the radical of Re contains X«<e</'a,e(rJ- This is under the same
assumptions as for the description of prime ideals, but at the end of the section we show
how to obtain this description for arbitrary bands. To obtain our description, we go
through two steps: first we show how to pass to the largest semilattice quotient of Q by
factoring out a special ideal K, and then we show that the direct sum of a system over a
finite semilattice is isomorphic to the direct product of the component rings. We use
these same techniques to show that the classical Krull dimension of R equals the
supremum of the classical Krull dimensions of the rings Re where e is an idempotent, in
case condition (f) is satisfied, all prime ideals of Q are completely prime, and all the
maps <pa ^ are onto.

Some remarks are in order before we proceed. First, some of the statements and
constructions for our direct sum differ from similar constructions in the literature such
as a semilattice sum of rings in that we assume <x,/?-<a/? rather than the other way
round, and so our maps (f>^p are defined when a<P, while in the literature they are
generally defined for a^fi. Of course this makes no substantive difference, since one
may always replace -< by its opposite: we have made our choice to agree with the
standard convention for direct limits (and because it appears to us that many natural
examples of posets, such as the positive integers, follow this convention). One
consequence of our choice is that when we speak of a semilattice, we mean an "upper
semilattice", while in the literature semilattice generally means "lower semilattice". In
any case, algebraically a semilattice is simply a commutative semigroup in which each
element is idempotent, and when Q is a semilattice or a band, it is the case both in this
paper and in the literature that when studying systems or sums of rings, there is a map
from Ra to Re when /?a/? = /?. We have tried to avoid confusion by mostly writing /?e(a)
instead of a-</? from Section 2 onward. Second, we have adopted the convention that
functions are written on the left of their arguments, so composition of functions
proceeds from right to left.

Remark 0.1. We will not assume our rings have an identity, and when they do, we
will not assume that the identity of a subring is the same as the identity of the whole
ring. If we did work in the category of rings with identity (declaring then that all ring
homomorphisms preserve the identity), then the direct limit construction in Section 1
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would yield a ring with identity, while the direct sum construction in Section 2 would
always yield a ring with identity if we assumed the semigroup Q had an identity.

1. Direct limits and their ideals

In this section we prepare for our description of prime ideals in semigroup-graded
rings by describing prime ideals in direct limits. First we recall the construction of the
direct limit of a system of rings, then we describe its ideals in terms of families of ideals
over the component rings, and finally we determine which families yield prime ideals.
We also provide some examples showing among other things that families yielding
prime or maximal ideals need not consist of prime or maximal ideals of the component
rings.

Let Si be a system of rings over (Q, -<). A direct limit of 3% is a ring R together with
ring maps </>„: RX-*R such that (pp°<px,p = <t>x for all <x,/?eQ with a«</J, and such that the
following universal property is satisfied. For any ring S and collection (/Ja e n of ring
maps fx: RX^>S such that ffio(f>a p = fa for all oc,/?efi with a.<fi, there is a unique ring
homomorphism/: R-*S with f°<px = fx for all aefl. We denote the direct limit of & by
lim^2 or by UmxenRx.

Proposition 1.1. / / 0t is a system of rings, then \im8$ exists and is unique (up to natural
isomorphism), and lim defines a functor from the category of systems of rings over (Cl,<)
to the category of~nngs. Moreover, \imxeilRx = \Jxenlm4)x and keT<pa={jf>clV.eT<t>^f for
each a e Q.

Proof. Let T be the Abelian group 0o t e n^ t ( and identify each Rx with its image in
T. For an element t = Q)xenrxe T, we define the support of t to be suppt = {aefi|ra#O}.
Let J be the subgroup of T generated by all rx — <pa p(rJ with raeRx and a.<fl. It is not
hard to see that J consists of all t = @x£ifx for which there exists a /?efi with /?>»<* for
all aesuppt, such that Y,a<p<Pi.^ra) = ^- It is well-known that R = T/J, together with the
canonical maps (j)x. RX-*R given by <l>x(rx) = rx+J, is the direct limit of the system Si of
Abelian groups. Thus to show it is the direct limit of this system of rings, we need to
show how to give R a ring structure and to show that. the Abelian group map
determined in the definition of direct limit is a map of rings.

We define multiplication as follows. To multiply the cosets of t = Q)xeilrx and
t' = Q)pear'p, we take a y>cc,P for all aesuppt and all /Jesuppt', and we define

aesuppr, Pesuppt'

The definition of J shows that this product is independent of the choice of y. To see that
the product is well-defined, we suppose for example that t'eJ and we show the sum in
the definition is in J. There is a deil with S>~P for all /Jesuppt', such that
Y,p<6<t>j>Ar'p) = Q- Since we may always increase such a S, we may assume that <5>y.
Thus lA,p<y(f)a.y(r

ai
<l>p.y(r'p)-'ZcL,fi<i<Pa,t(ra)<t>p,i(r'fi)eJ. But the second term in this differ-
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ence equals ( X ^ A . J W X L J - ^ M W H 0 ' s0 tha t Za./^A-yW^.y^)6-7. as desired.
We leave it to the reader to check that this multiplication is associative and hence
makes R into a ring.

Let S be a ring with maps/,: Ra-+S as above. Then there is a unique Abelian group
homomorphism/: R->S with / o <£a = fa for all a eft. Let a,/?eft and let y><x,p. Then

This shows that / is a ring homomorphism.
The final sentence follows from the corresponding fact about direct limits of Abelian

groups, and we leave it to the reader. •

Remark 1.2. If yeQ and <py $ is onto for all P>y, then it is not hard to see that <f>7 is
onto, and so limaenRtt^RJ[jfi>ykeT<l)yiP.

A family of [left, right, two-sided] ideals over Si is a collection ^ = (/Jt,en
 s u c n t n a t

each Ix is a [left, right, two-sided] ideal of Rx and ^ . ^ / J s / p for all a,/? eft with a</?.
We call the family compatible if </>̂ J(/p) = /a for all a,/?eft with a</?. Note that a
compatible family has the property that /a2ker0a for all aeft, since /a2ker0a0
whenever /?>^a. We partially order families over SR. by declaring / £ / if / a £ / a for all
aeft.

Proposition 1.3. Ler Si be a system of rings with R = \imxe{iRx.
(1) / / ^ = (/a)aen

 iS a family of [left, right, two-sided] ideals over 3$, then / = Xaen< «̂(̂ «) =

JS a [left, right, two-sided] ideal ofR. IfJ is a family of two-sided ideals, then

(2) There is an order-preserving bijection between the set of [left, right, two-sided] ideals I
of R and the set of compatible families of [left, right, two-sided] ideals £ over 3k given by
A-Kfc" l(I)),en, with inverse given by

Proof. (1) The first claim is obvious (using the fact that i? = lj(ten0a(^j), and the
second is not difficult.

(2) Let / be the left ideal of R. Then certainly each <j>~ V) is a left ideal of Ra. Now
(t>a,p(<l>j) \1)) ^ equal to <j>^v{l) by an easy set-theoretic argument, and so we define a
compatible family of left ideals by setting Ix = (j)~\I). If iel, then for some a eft, there is
an raeRa with i = 4>J(rx). Certainly rxe<t>~l(I), whence we see that / = U«enWJ-

Conversely, suppose / is a compatible family of left ideals: we know by (1) that
/ = l L n < W J is a left ideal of R. If rxe<f>^x(I), then 0a(O = ^ ( i» for some 0eQ, i,elf.
Let yeQ satisfy y><x,0: then <̂ y(</>a.),(rJ) = ̂ y(^,y(/p))e^y(/),). Since ker<£yc/y, this
implies rae0~y(/y) = /n. It is obvious that the correspondence preserves order. •

We call a compatible family maximal if it is maximal among proper compatible
families, that is, maximal among compatible families J with at least one Ia^Ra.
Theorem 1.3 implies that maximal [left, right, two-sided] ideals of R correspond to
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maximal compatible families of [left, right, two-sided] ideals. If each map <£a/, is onto, it
follows from Remark 1.2 that each of the ideals in a maximal family is maximal, but
this is not true in general, as Example 1.9 shows.

We now determine which families the prime ideals in a direct limit correspond to. It
is not hard to see that if /, J are ideals of limaenRa and J, # are the corresponding
compatible families over ^ , then the compatible family corresponding to U contains the
component-wise product Sf=(IaJJaetl. We say a proper compatible family 0> is a
prime family if whenever ^ 3 / / for families J,/ of ideals, we have SP^.J or ^ 2 / .

Proposition 1.4. Let OP be a compatible family of ideals over 01 and let P be the
corresponding ideal of UmxeaRa. Then the following conditions are equivalent.

(1) P is a prime ideal.
(2) & is a prime family.
(3) If J, f are compatible families of ideals with IJ^P^for all aeCl, then for any

aeQ, either Ia^Px or Ja^Pa.
(4) For any aeQ and any r^s^eR^ if (p^rJR^^^sJ^Pp for all /}>tx then either

rnePa or s,eP,,.

Proof. Set R = limxe{lRa.
(1)=>(2) Let J, J*be families of ideals with Jf <=:0> and let /, J denote the ideals of

R corresponding to J, J. It is easy to see then that IJ^P; since P is prime, we have
either / £ P or J s P , say / s P . Then /a£<fc~1(/)c0-1(p) = pa for all aeQ; this implies

(2)=>(3) This is trivial.
(3)=>(4) Suppose ra,saeRa satisfy the hypothesis of (4), let / be the ideal of R

generated by <pa(rx), and let J be the ideal of R generated by (pj^sj. Let J and / be the
compatible families of ideals corresponding to / and J, and recall that @=(R<x)aea- If
peii and y>«,p, then 4>JjraWp)4>M = WKM4>UWU*$eWpi)^p for a11

r'peRp. This proves QJJ^RQJJS^^P and so IRJ^P. Since ^l{IRJ)^(j>^\l)R4>j\J)
for any /?, this proves . / ^ / s ^ . Thus by (3), either <j>;\l)<^Pt, /?a = Pa, or (t>;\J)GPx,
and so either rx e Pa or sa e Pa.

(4)=>(1) Let r,seR satisfy rRs^p. Since R = Ulm</>a and Q is directed, there is an
aeQ such that r = <f>a{rj) and s = <̂ »a(sa) for some r^s^sR,, If P><x, we see that
r^(fy)s = <^(0a,?(ORptfy(sJ),whence <l>^ra)Rl)<j>a^sa)^<f)pl(P) = Pll. By (4), this
implies that one of rx,sa is in Pa, and so one of r,s is in P. This shows P is prime. •

There is an analogous result for semiprime ideals. For completely prime ideals, there
is a much simpler statement, which we leave to the reader: a proper compatible family
J corresponds to a completely prime ideal of lima6nRa if and only if each /„ is a
completely prime ideal or is all of Rx.

Corollary 13. Let 5? be a compatible family of ideals over 01 such that for any aefi,
there is a /?>-a with Pfi a prime ideal. Then 0* is a prime family.
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Proof. This follows from (4)=>(2) in Proposition 1.4. •

Thus when all the ideals in a compatible family of ideals are prime, it is a prime
family. We will give an example momentarily to show that the converse is not true, but
first we give some instances in which it is true.

Lemma 1.6. Let S? be a prime family of ideals over 38. and let aef i . If either I m i ^ is
contained in the center of R^ for all /?>-a or <j)^p is onto for every P><x, then Pa is a prime
ideal (or in the former case, we may have PCL = RX).

Proof. Suppose first that Im</>at/) is contained in the center of Rp for all /?>a.
Suppose ra,saefla satisfy r^asPa. Then for any P><x, we have (p^rJfa^sJePp, and
so by the centrality hypothesis, <!>,,,& JRfi<f>a^sJsPfi.

 N o w Proposition 1.4(4) gives
either ra or sa in Pa. This implies Pa is prime or all of Rx.

Suppose that 0aif is onto for all fi>a, and let ra,sxeRll satisfy rxRxsx^Px. Applying
$a>0 to this containment yields 0a,<i(r«)^/i0«,/i(r«) —^- By Proposition 1.4(4), this implies
either ra or sa is in Px. Thus Pa is prime (it is proper since 9 is proper). •

Corollary 1.7. Let & be a compatible family of ideals over 0t and suppose that either
each Rx is commutative or every 0 a J ) is onto. Then 5? is a prime family if and only if every
ideal in it is prime (in the commutative case, some ideals Pa may equal RJ. •

The next two examples show that even when all the maps 4>*,t a r e one-to-one, the
ideals in a prime family need not be prime, and that the [left] ideals in a maximal
compatible family of [left] ideals need not be maximal. They also show that the
Jacobson radical does not behave in a nice way with respect to direct limits. The third
example gives an instance of misbehaviour of the prime radical. Note that Q is a chain
in all of these examples.

Example 1.8. Let V be an infinite dimensional vector space over the field F with
basis eue2,--- and let Vn be the subspace spanned by eu...,en. Let R be the ring of all
linear transformations from V to itself of finite rank and let Rn be the subring consisting
of all elements of R whose range is contained in Vn (in fact Rn is a right ideal of R). Let
fl be the set of positive integers with their natural order, let <f>m „: Rm->Rn be the
inclusion map for all m^n, and let <pn:Rn->R be the inclusion map. Then since
R = U™= !#„, it is not hard to see that R is the direct limit of the rings Rn.

It is well-known that R is a simple ring (that is, R2 = R and R has no non-zero proper
ideals), whence 0 is a prime ideal. However, no Rn is a prime ring: if we let /„ be the set
of maps in Rn that annihilate Va, then /„ is an ideal of Rn with InRn = 0, and in
particular, /„ is nilpotent. (Note that RJl^MJ^F), and so /„ is the Jacobson radical of
Rn) Thus the family 9> with Pn=0 for all n is prime family in which no ideal is a prime
ideal.

Note that the prime, nil, and Jacobson radicals of the direct limit are 0, even though
these radicals are nonzero for all the rings in the system of rings.
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Example 1.9. The last example featured a maximal compatible family of ideals in
which every ideal is non-maximal. We now give a commutative example of this
phenomenon, which shows that the same thing can happen for families of one-sided
ideals. Let pn be the n'h prime number and let /iB = Z[pf1,.. . ,p~1]. Then every Rn is a
subring of Q, and R , c R 2 c •••; if we take the maps between these rings to be the
inclusion maps, their direct limit is K = U"=iRn = Q. Thus the only compatible family is
the one in which every ideal /n = 0; this is a maximal compatible family, but none of the
ideals /„ is maximal.

If we modify this example by letting pn be the n'h odd prime number, the direct limit is
R = {J™=lRn = {i\a,beZ, b odd}. In this case, the Jacobson radical of each Rn is zero,
but the Jacobson radical of R is 2R^0.

Example 1.10. It is clear that a direct limit of nil rings is nil, and a direct limit of
rings that equal their own Jacobson radical equals its own Jacobson radical. We now
give an example of a prime ring R containing nilpotent subrings K ^ ^ S ' - c J ? with
R = \J™=lRn. Thus the ring R is the direct limit of rings which equal their own prime
radicals, but R does not equal its own prime radical.

Let F be a field and let R be the free F-algebra without identity on the generators
xux2,..., subject to the relations that any product of n variables from xu...,xn is 0.
The theory of free algebras tells us that a basis for R consists of all words in xv,x2,...
that do not contain for any n a subword of length n with letters from xu...,xn.

Let Rn be the subalgebra of R generated by x1;...,xn: then (Rn)" = 0 and R is the
ascending union of the subrings Rn. To see that R is prime, suppose a,beR are nonzero
and let k be the maximum length of any basis word which occurs with nonzero
coefficient in either a or b. Then if we choose n>2k+ 1, we have axJbitQ, as can be seen
by examining the words of maximal length in this product: they are distinct and
nonzero. Thus aRb # 0, which proves that R is prime.

2. Direct sums of systems of rings and their prime ideals

A natural example of a directed set is an upper semilattice, that is, a partially ordered
set in which any two elements have a least upper bound. We will generalize this by
requiring that any two elements have a distinguished upper bound, but not requiring it
to be least. We wish to do this in a compatible way for different pairs of elements.
Given an upper semilattice, we may make it into a commutative semigroup by defining
the product of two elements to be their least upper bound: this yields an associative
product. Following this model, our generalization takes the following form: for the rest
of this paper, Q will be a semigroup with a preorder -< such that for any a,/?en, we
have <x-<a/? and /?-<a/?. Thus a/? plays the role of our distinguished upper bound. We
will define a direct sum functor from the category of systems of rings over (fi, -<) to the
category of Q-graded rings and study prime ideals and radicals in the resulting rings.

Recall that a ring R is Q-graded if it can be written as a direct sum R = ©a e nRa of
additive subgroups Rx such that RaRfi ^ Rxp for all a, ft e Q. We define a functor from the
category of systems of rings to the category of fi-graded rings by defining for any
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system ^ , a ring R = ®xeaR<1 called the direct sum of 01 and denoted @&. As an
Abelian group, the ring R is the direct sum of the Abelian groups Rx; the multiplication
on R is defined as follows. We identify each Rx with its image in R, and for
rxeRa,r'peRp, we define rx-r'fi = <pa.^(rjc^,,„(?•;,); for general products, we extend this
definition via the distributive law. Note that Rtt is not a subring of R unless a2 = a.

To check that this defines a ring, we simply have to check the associative law:

A symmetric calculation shows that this equals rx-(r'p-r'^. The associative law follows
from this.

If 0 : 3 2 - ^ ' is a morphism of systems of rings over (Q, -<), we define a map
6:®!%-+®!%' by 6 = <§)xen0x. This is clearly an additive map, and we leave it to the
reader to check that it is a ring homomorphism. Thus we have indeed defined a functor,
which we call the direct sum functor.

In the case where ii is a semilattice (with least upper bound as product), what we
have called the direct sum of the system & is also known as a strong supplementary
semilattice sum of the rings Rx, aeQ—see [13] or [1]. An il-graded ring which is
isomorphic (as an Q-graded ring) to the direct sum of a system ^ has been called a
strong £2-graded ring, or in the case of rings with identity, a special fi-graded ring (see
the remark below).

Throughout the rest of this paper, we will write R for the ring that is the direct sum
of the system M, and we will identify elements of each Rx with their images in R.

Example 2.1. If we let -< be any preorder with the property that <x,f}<txfi (for
example, the relation for which <x-<P is true for any a,/?, or the ideal preorder
introduced below), and for our system of rings we take each Rx equal to a single ring S,
and we take all our maps <f>x fi to be the identity on S, we obtain i?sS[Q] , the
semigroup ring of Q over S.

Conversely, suppose R = S[Ci] and set Rx = Six for each aef i . Define multiplication in
Ra by ignoring a, that is, (sa)(s'a) = ss'a. If we define a system of rings ^ by defining $„ p:
Ra-*Rfi via 0a<,(sa) = sj? for all seS, a ,0eQ, then in R, (sa)(s'/S) = ss'aj? =

P), and so R =

Remark 2.2. If we wish to work in the category of rings with 1, that is, if we assume
each Ra has a 1 and each (pafi preserves 1, and we want the direct sum construction to
yield a ring with 1, then it suffices, but is not necessary, to assume that the semigroup Q
has an identity e. Note that e will satisfy e<a. for all aef i . If we assume each Ra has a 1
and each <£„ fi preserves 1, then the notion of a direct sum of a system 32 is related to
the notion of a special fi-graded ring introduced in [8]. Given an ft-graded ring
R = @xenRx in which each Ra is a subring containing an identity \K the ring R is called
a special fi-graded ring if l a lp= la/) for all a,/?eQ. Of course this will be the case when

under the hypotheses in the first sentence of this paragraph. Conversely, when
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10 ALLEN D. BELL, SHUBHANGI S. STALDER AND MARK L. TEPLY

every element of Q is idempotent and -< is the preorder defined by a-</? if /?a/? = /? (this
is the case studied in [8], and this preorder is the same as the ideal preorder introduced
below), we may realize a special O-graded ring as (isomorphic to) the direct sum of the
system of rings obtained by defining maps <pa_p:Ra->Rfi via </>a,p(O = V^tf whenever
a<fl: see [8, Lemma 2.2].

We are now ready to begin our study of direct sums of systems: our goals include the
description of the prime ideals and the description of various radicals. Before we
proceed, however, let us note that these ideals are connected to the ring structure and
have nothing to do with the preorder -<. There is a minimal preorder -< on any Q with
the property that <x,/J-<a/? for all <x,/?efi, defined by declaring <x-</? if /? can be written
as a product (with one or more factors) involving a as a factor. If y e ft, let (y) denote
the ideal of Q generated by y: then a-<)? if and only if /?e(a), i.e., if and only if (/?)c(a).
For the rest of this paper, we will assume -< is the preorder on Cl just defined, and all
direct limits will involve this preorder: if we need to be explicit, we will refer to this as the
ideal preorder. We will frequently write /?e(a) instead of /?>-a. If we were to use a
preorder other than this minimal one, the difference would be that the maps <px ^ would
have more restrictions placed on them (for example, more of them would likely be
forced to be isomorphisms). In fact, if ^ ' is a system of rings over an arbitrary (fi,-<')
and 01 is the same system over (Q, -<) where -< is the ideal preorder, then the direct
sums ®Si and ©^ ' are identical fi-graded rings, since in carrying out ring operations,
we only need maps 4>a,t where /? is a product with a as one of the factors.

Another way to think of -< is the following: it is the preorder with the property that
a subset of Q is an ideal if and only if it is upwardly closed relative to -<.

Recall that the preorder -< on Q is compatible with the product if whenever <x-</? and
y<d, we have <xy</}S. This is equivalent to the condition that if <x<fl, then <xy-</fy and
ya.<.yP for all yeQ. Associated to our preorder -< is an equivalence relation 3 defined
by <x3/3 if a.<p and P<OL, i.e., a3/? if and only if (<*) = (/?) (this is Green's 3-relation).
When -< is compatible with the product, 3 is a congruence on O.

It is obvious that the ideal preorder -< is compatible with the product when Q is
commutative, but in a general semigroup, it is not compatible.

Lemma 2.3. Let £1 be a semigroup. Then the ideal preorder -< is compatible with the
product on Q if and only if (a)(/?) = (a/?) for all a,/?eQ. When this is the case, all prime
ideals in fi are completely prime.

Proof. First assume that -< is compatible with the product ft, and suppose a,/?,yeQ.
Then ay/?>-a/?, so ay/?e(a/?). This proves (<*)(/?)£(a/?), and the other inclusion is obvious.

For the converse, assume that (a)(/?) = (a/J) for all a,/?efi. Suppose a,/?, ye ft and u.<fl,
i.e., (0)^(a). Then (y0)=(y)(0)c(y)(a) = (ya). Thus y<x<yfi, and likewise ay-</3y; this
proves compatibility.

The fact that all prime ideals are completely prime follows easily from the equality
(«)(/?) = (a/?). D
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PRIME IDEALS AND RADICALS IN SEMIGROUP-GRADED RINGS 11

It is easy to see that if , / is a family of [left, right, two-sided] ideals over ^ , then
0 a £ n / B is a [left, right, two-sided] ideal of R. However, there are ideals of R that are
not of this form, and in many cases prime ideals are never of this form. Our next aim is
to describe the prime ideals of R, which we do under two fairly strong hypotheses on
the semigroup SI. One is that all prime ideals in SI are completely prime; the other is
condition (f) below.

Let $ be a completely prime ideal of Q, and define /(O) to be the additive subgroup
of R generated by the elements ra with oceO and the elements rx — (t>a^rx) with
<x,PeQ\<b and <x*<j3, where in each case ra is an arbitrary element of Rx. Thus
W - © « e A a ° d r=©aetf*eI(<b) if a n d onty »f f°r a n v yeSl\Q> which is >- than
every element of (supp r)\<t>, we have £ , < y0a>,(/,») = 0.

Lemma 2.4. Let 0t be a system of rings and let $ be a completely prime ideal of SI.
Then 7(<D) is an ideal ofR = @&, and

Proof. Set S = limaeny<I,R£, and let <px: RX-*S be the canonical map. Define a map n:
->S by ~*

7 1 ( 0 = JO a 6 0.

This certainly is an additive surjection and the standard facts about direct limits of
Abelian groups (see the proof of Proposition 1.1) tell us that /(O) is its kernel. To check
that n is multiplicative, take ra e Rx, r'fi e Rfi, so that their product lies in Rxp. If either a or
/? is in <D, then so is a/?, whence n(rar'p) = 0 = n{ra)n(r'fi).

Suppose that both a,/?eQ\<l>. Then a/?£<D, and so

•
We can give a complete description of the ideals containing an /(<t>) by using the

results in the previous section; we now translate those results to our current setting. We
will show that under certain conditions, every prime ideal of R contains an /(<D), and so
we will be able to find all prime ideals in this case.

Let 0 be a completely prime ideal of Si and let J be a compatible family of [left,
right, two-sided] ideals over the system 3?|nv®. W e W'U s a v the pair {<b,J) is a
compatible family of ideals, and if J is a prime family over the system ^?|n\<i» we will say
the pair (d), J) is a prime family. Now J determines a [left, right, two-sided] ideal
U«en\®W^a) °f ^//(O), where <pa takes ia to the coset ia + /(<D). Thus if we define the
ideal

7((D,./) = /(<D)+ © /* = /(<!>)+ U 7«
aefl\4> aefl\O

of R, we have R//(O, J*) s l im.en^a/ 'a- By using the directedness of •< on Q\<1), it is
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12 ALLEN D. BELL, SHUBHANGI S. STALDER AND MARK L. TEPLY

easy to see that every element i e /(O, J) can be written as follows: there is a y e Q\O and
an iyely such that i=@ae<tr<l + '£da<y(ra-(l>a,r(ra)) + i1, where each rxeRa and only
finitely many nonzero rx occur. Alternatively, we see that r = Q)xe(1rxe/(<!>, J) if and only
if for any yeft\<J> that is >- than every element of (supp r)\<D, we have Y^<y^>a.yira)e^r

Suppose conversely that / is a [left, right, two-sided] ideal of R containing I(<t>). Then
///(O) is an ideal of \imaeax<bRx, and so it equals /(O,</) for the compatible family J
given by Ix = <p~x(I). Since (pj^rJ = r* + '(*)> this means Ia = InRa. We summarize this in
the next proposition.

Proposition 2.5. Let £% be a system of rings and let O be a completely prime ideal of Si.
Then there is an order-preserving bijection between the set of [left, right, two-sided] ideals
I of R = ®3& containing /(<!>) and the set of compatible families ($ , . / ) of [left, right, two-
sided] ideals given by It-MPtilrtRJ^n^), w^tn inverse given by (O, J)\->I{<&, J). More-
over, if I is an ideal of R containing /(<I>), then R/I ^limxell^RJ(I nRx). •

We now turn to the question of describing prime ideals, which requires us to
introduce a new condition on Si. We say Si satisfies condition (f) if
(t) for any prime ideal <D of Q and for any a, /? e Q\4>,

there exists yeQ\O such that y'ay" = y'fLy" for all y',y"e(y)\<!>.
If all prime ideals in Q are completely prime, this can be re-stated as follows: £2 satisfies
condition (f) if and only if for any prime ideal O of Q and for any a,/?£fJ\O, there
exists y e Q\<I> such that for any d, e e Q, the two elements y5aey and ydfiey of £2 either are
equal or both lie in <t.

We will show in Proposition 3.1 that semigroups which satisfy condition (f) have the
property that the powers of each element become stationary, and that the converse is
true for commutative semigroups. In Proposition 3.4, we will show any regular or finite
band satisfies condition (f); however, an infinite free band does not satisfy (f).

Lemma 2.6. Let 01 be a system of rings, let P be a prime ideal in R = ®$, and let
<D = {aen|K,cj>/o r a / / /Je(a)}. Then

(1) <f> is a prime ideal of Si.
(2) / / fi satisfies condition (f) and all prime ideals in Si are completely prime, then

Proof. (1) It is clear that Q> is proper since P is proper. If A,B are ideals of Si with
/1B£<D, then I = @aeARa and J = @eeBRfi are ideals of R with IJ^P. Thus either / £ P
or J £ P, and so either A £ <S> or B £ O.

(2) Clearly @aeoRx^P. Let <x,f}eSi\<&, a-</? and suppose that rxeRx: we need to
show that ra — <paj{ra)eP. By condition (f), there exists yeOyD with y'ay" = y'Py" for all
yW'eiy)^- Set / = ©ae<y)K* this is an ideal of R, and it is not contained in P, since
yeSi\<t>. Let y',y"e(y), and suppose ryeRy. and sreRr. If either y' or y" is in fl>, then
(y'a/')> (yW)£<D, whence ry.{rx-<paJrJ)sreP. Otherwise,
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tfV. Yaf(ry)4>*. yay-{rj(l)r, y-ar(sr) - <f>r, y.fir(ry.)<pai y.pr(rJ(pr, rpr{sr) = 0.

Thus /(ra-&,,p(ra))/£p- this implies ra-<£.,p(rJeP. This proves /(O)cf. n

Combined with Proposition 2.5, Lemma 2.6 now yields the following description of
all prime ideals of R.

Theorem 2.7. Let 01 be a system of rings and suppose that Cl satisfies condition (f) and
that every prime ideal of Q is completely prime. Then there is a bijective correspondence
between the set of prime ideals P in R = ®M and the set of prime families (O,0>) with <D a
prime ideal o/fi, given by

^Pfor all

with inverse given by (O, ̂ )i-^/(O, &>).

If RaRp = Rafi for all a, /? e Q, which will be the case for example if each ring Ry satisfies
Ry=Ry and the maps (j)x^ are all onto, then it is not hard to see that in Theorem 2.7,
<J> = {aeil\Rx^P}. In general this is not true, but one can use Theorem 2.7 to prove
that if a-</?eQ\<D, and Rfi^P, then RX^P.

These results can also be used to find maximal one-sided ideals. Recall that a
maximal left ideal M of R is modular if R2 is not contained in M. Such an M contains a
prime ideal P (namely the annihilator of the module R/M), and so M contains an ideal
/(O). Thus we have M = /(O, Jf) for some maximal compatible family Jl of left ideals
over Q\<D.

We would like to compare prime ideals as well. The next lemma and its corollary tell
us comparable prime ideals correspond to prime families defined over the complement
of the same prime ideal <D.

Lemma 2.8. Let 01 be a system of rings and suppose that <J> is a completely prime ideal
of Q and that J is a proper additive subgroup of R = @3t containing /(<!>). Then

l>^Jfor all pe{a)}.

Proof. Set <^' = {<xeQ\R^J for all /?e(a)}: then <D' is clearly an ideal of fi. If ae<D,
then since O is an ideal, (a)SO, and since / ($ )£ j , we have R^J for all /?e(a). Thus
aeQ', which shows <D £<!>'.

Since J is proper, there is an aefi with Ra£J, say raeRa\J: note that a£<I>. Now if
/?ea<D', then /?e<i>', so R,cJ. If /?̂ <I>, then r . - ^ / r J e / W s J , and fa^rJeRpQj,
which contradicts ra$J. Thus we must have a<D'£<I>. As O is a prime ideal, this implies
O' •

Corollary 2.9. Let 91 be a system of rings and suppose that Q satisfies condition (t)
and that every prime ideal of fi is completely prime. Let P, F be prime ideals of R =
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with corresponding prime families {<b,8P) and (<b',3P'). Then P s P ' if and only if <& = $>' and

Proof. If fl>=<&' and & £ &', then clearly P £ P'.
For the converse, assume that P s P ' . By Proposition 2.5, it is enough to prove <J> = <!>'.

By Lemma 2.6, we have /(<!>) £ P ' and <D'= {a e Q |/?,, £ P' for all /?e(a)}, and moreover,
the hypothesis of Lemma 2.8 is satisfied with J = P'. Thus by Lemma 2.8, <t> = O'. •

Recall that if the supremeum of the lengths of chains of prime ideals of a ring R is
finite, this number is called the "classical Krull dimension" of R. Our results on prime
ideals yield information about the classical Krull dimension of @St\ to state the result in
the greatest generality, we need to introduce the ordinal-valued definition of classical
Krull dimension. We let Spec R denote the set of prime ideals of R and we set
Spec~1/? = 0 . For any ordinal n, we define

Spec'/? = {PeSpec/?|for any QeSpecR with (?=>P, we have QeSpec"/? for some K<n).

If there is an r\ with Spec"/? = Spec/?, we say R has classical Krull dimension, and the
classical Krull dimension of R is the least such n. This agrees with the simpler notion
given above when the classical Krull dimension is finite. See for example [3, Chapter
12] for more details on classical Krull dimension.

Proposition 2.10. Let & be a system of rings and suppose that Cl satisfies condition (f)
and that every prime ideal of £1 is completely prime. Then R = ©$? has classical Krull
dimension if and only i/limaen\«i>/?a has classical Krull dimension for each prime ideal 0 of
O, and when this is the case, the classical Krull dimension of R is the supremum of the
classical Krull dimensions of the rings li

Proof. For each prime ideal <J> of fl, let Spec,^/? denote the set of prime ideals of R
containing /(<!>). By Theorem 2.7 and Corollary 2.9, Spec/? is the disjoint union of the
various Spec^/?), and so Spec/? = Spec"/? if and only if Speca)/?nSpec''/? = Spec(i,/? for all
<D. As Spec<p/? corresponds in a natural way to Spec/?//(<D) and limaenN<II/?as/?//(<I>), we
have Spec/? = Spec'/? if and only if Spec limaenw,/?,I=Spec'' limaef2Vt/?a for all <£. The
proposition follows from this observation. •

Let us now summarize the results of this section for the special case of semigroup
rings, that is, the special case where each map $a</( is an isomorphism. Just as we use
Spec/? to denote the set of prime ideals of a ring /?, let us use Specft to denote the set of
prime ideals of a semigroup £1

Theorem 2.11. Suppose that Q. satisfies condition (t) and that every prime ideal of il is
completely prime, let S be a ring, and let S[fi] be the semigroup ring.

(1) There is a bijective correspondence between Specfi x SpecS and SpecS[fi], given by
(<D,n)>—>{Xaen

s<iaIXaen\<i>s
1i

eG}- ' / S an^ ^ nave identities, the inverse map is given by

https://doi.org/10.1017/S0013091500022720 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022720


PRIME IDEALS AND RADICALS IN SEMIGROUP-GRADED RINGS 15

Ph->(PnQPn,S). In addition, the prime ideals corresponding to (O, Q) and (O', Q') are
comparable if and only //d>=<D' and Q and Q' are comparable.

(2) The ring S[ii] is not prime i / | Q | ^ 2 .
(3) S has classical Krull dimension if and only if S[Q] does, and when this is the case,

the classical Krull dimensions of these rings are equal.

Proof. These statements follow easily from the results of this section. For example,
to verify (2) suppose 0 = /(<!>,</): then clearly we must have 0 = 0 . Now if a,/? are
distinct elements of fi, their product cannot equal both of them, say a/?#a. Then for
any nonzero seS, we have SOL — sa/? e I(<3>, J), which contradicts our assumption. Q

3. Bands, power-stationary semigroups, and condition (f)

Condition (f) is a very strong condition, which will not hold in many instances. Every
semilattice satisfies it, and we will show below that a commutative semigroup satisfies
condition (f) if and only if for every element x there is a positive integer k with
xk_xk+i yje t n e n t u m t o n o n c o m m u t a t i v e semigroups and show that every finite band
and every regular band satisfies condition (|), and so we may apply the results of the
last section to describe the prime ideals in direct sums of systems over such semigroups,
and we may apply the results of the next section to describe certain radicals. However,
an infinite free band does not satisfy condition (f).

Let us call an element a of a semigroup power-stationary if there is a positive integer
k with a* = a*+1 and call a semigroup power-stationary if every one of its elements is
power-stationary.

Proposition 3.1. Let SI be a semigroup.
(1) If SI satisfies condition (f), then SI is power-stationary.
(2) / / SI is commutative, then SI satisfies condition (t) if and only if SI is

power-stationary.

Proof. (1) Suppose condition (f) holds, let aef i , and let <I> be the largest ideal of SI
not containing any power of a (that is, <D = {/?efi|a"£(/3) for all positive integers «}). A
standard argument shows that this is a prime ideal of Q. By condition (f), there will be
yefi\<l> with y'ay" = y'a2y" for all /e(y)VD, y" e(y)\<t>. The definition of tf> tells us there is
a positive integer n with a" e (y)\Q>, and so a2 n + 1 =a 2 n + 2.

(2) Suppose SI is commutative and power-stationary, let O b e a prime ideal of fi, and
let (x,f}eQ\Q>. By the power-stationary property, there is a positive integer k with
a* = a* + I and pk = f}k+l. Set y = a*0*: this is an element of fi\<D since <t is prime. Note
that ay = Py = y. If y',y"e(y), then since y is idempotent, we have y' = y}>' and y"-yy",
whence y'a.y" = y'y&yy" = y'y". This is also equal to y'fiy", and so condition (|) holds. •

Example 3.2. Let n = {0,e l l ,e1 2 ,e2 i ,e2 2}, where the el7 are the standard matrix units.
This is a finite semigroup that satisfies the identity x3 = x2, and hence is power-

https://doi.org/10.1017/S0013091500022720 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022720


16 ALLEN D. BELL, SHUBHANGI S. STALDER AND MARK L. TEPLY

stationary, but does not satisfy condition (f). This may be seen by taking O = {0} and
a = c n , P = e12 in the definition of (f).

We say a semigroup Q is a band if every element of Q is idempotent, that is, if Q
satisfies the identity x2 = x. If in addition ft satisfies the identity xyxzx = xyzx, we say fi
is a regular band. (See [11, §11.3] for a discussion of varieties of bands; examples of
regular bands include commutative bands and normal bands.) Note that a commutative
band is the same thing as a semilattice. We wish to show every band that is either
regular or satisfies the d.c.c. on principal ideals satisfies condition (f); this requires us to
develop some of the properties of bands.

Lemma 3.3. Let Q be a band and let -< be the ideal preorder on £2. Then:
(1) -< is compatible with the product on Q.
(2) If tx, PeQ, then a<0 if and only iffaP = p.

Proof. (1) Let yefi . Then

<xyp = ay/?ay/J=ay/te/?ay/? e (a/J).

This proves (a)(/?)c(a/J); as the other inclusion is obvious, Lemma 2.3 implies -< is
compatible with the product on Q.

(2) Assume that <x-</J: then /? = ya<5 for some y,5eQ (since for example, ya = yaa). Thus
we need to show ya<5aya<5 = ya<5 is an identity which holds in any band. To do this, it is
of course enough to prove it in the free band on a, y, 5, in which case it is an immediate
consequence of the properties of words in a free band (it follows for example from [11,
Proposition II.2.7(iv)] or [5, Lemma IV.4.6]).

The converse is obvious. •

We can now show that regular and finite bands satisfy condition (f).

Proposition 3.4. / / Q is a band that is either regular or satisfies the d.c.c. on principal
ideals, then Q satisfies condition (f) and all prime ideals ofQ are completely prime.

Proof. The fact that all prime ideals are completely prime follows from Lemma 3.3
(1) and Lemma 2.3.

Let O be a prime ideal of Q, and let a,/?efi\<J>. First suppose fl is regular and let
y',y"e(a/?), so that y',y">a. Then y'ay" = y'ay'ay"ay"; by regularity, this equals y'ay'y"ay",
and by Lemma 3.3, this equals y'y". Replacing a by /? leads to the same conclusion, and
so we may take y = a/? in the definition of (t) (this is not in <D, since <J> must be
completely prime).

Suppose next that Q satisfies the d.c.c. on principal ideals and choose y e fi\<I> with (y)
minimal among principal ideals generated by elements of £2\<D. Then for any 6 e O\<I>,
we have (<5y)£(y), whence equality holds and <5y-<y. By Lemma 3.3, this implies

https://doi.org/10.1017/S0013091500022720 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022720


PRIME IDEALS AND RADICALS IN SEMIGROUP-GRADED RINGS 17

y = ydyy = ydy. Now if y',y"e(y)\<t>, we have y'ay" = y'yy'ay"yy" = y'yy", and the same is true
for ft in place of a. Thus condition (f) is satisfied. •

Thus we may apply Theorem 2.7 and conclude that, if Q is a commutative
power-stationary semigroup or a band that is either regular or satisfies the d.c.c. on
principal ideals, then there is a bijective correspondence between prime ideals of
R = ®& and prime families over complements of prime ideals of il; moreover, Corollary
2.9 tells us prime ideals of R corresponding to distinct prime ideals of il are
incomparable.

Note that a band il satisfies the d.c.c. on principal ideals if and only if its greatest
semilattice quotient fl/3 satisfies the ax.c. as a poset [when regarded as an upper
semilattice, or equivalently, satisfies the d.c.c. when regarded as a poset with the
"natural order"].

Unfortunately, the results above are not valid for arbitrary bands. In fact, we have the
following proposition.

Proposition 3.5. Let SI be a free band on infinitely many generators.
(1) Q does not satisfy condition (f).
(2) / / S is a prime ring, then the semigroup ring S[Q] is a prime ring.

Proof. (1) This follows from (2) and Theorem 2.11 (2); it may also be proved directly
by using the same idea as in the proof of (2).

(2) Let r = Y,xeliracc, r' = ^ a e n r^a be nonzero elements of K = S[fl]. Since r and r' have
finite support, there is a finite subset Y of the free generating set of il with the property
that every a. e supp rusupp r' lies in the subsemigroup of Q generated by Y. Let x be an
element of the free generating set of il that is not in Y, and let a, /? e fi be such that
r a # 0 # r p . Since S is prime, there is an seS with rxsr'fi^0. We claim that r(sx)rV0.

Since r(sx)r' = Yj(y.i)esupprySupPArysr'»)yx^ the claim follows once we know the follow-
ing fact: if a, /?, y, 8 are in the subsemigroup generated by Y, then ax/? = yxd if and only if
(oc,/?) = (y,<5). This fact follows from the properties of words in a free band: it is an
immediate consequence of [4, Lemma 2] or [5, Lemma IV.4.6]. •

As the ideal 0 in S[Q] cannot be of the form /(O,^) (since \il\ > 1), this proposition
shows we cannot extend the results of Theorems 2.7 and 2.11 to arbitrary bands. In fact,
we can say more. Suppose that il is an infinitely generated free band and that x is an
element of a free generating set. Then it is not hard to see that if P is the ideal of S[Q]
generated by x, then S[ii]/P s S[Ci]. If S is prime, this shows S[fi] cannot have classical
Krull dimension, and this clearly extends to any ring S which has a prime ideal.

Proposition 3.5 has other interesting consequences for an infinite free band il. It
follows from Theorem 4.9 that S[Q] has a nonzero nil ideal for any nonzero ring S, so if
S is prime, the semigroup ring S[ii] is neither left nor right Goldie. It follows that S[J2]
cannot satisfy a polynomial identity and cannot be left or right Noetherian if S is any
ring having a prime ideal. (These facts are known.)
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18 ALLEN D. BELL, SHUBHANGI S. STALDER AND MARK L. TEPLY

Remark 3.6. Since a band is finite if and only if it is finitely generated (see [4,
Theorem 1] or [5, Theorem IV.4.9]), Proposition 3.5 is valid for any infinite free band.

One may use [4, Lemma 2] to show that if r is any positive integer and Q is a free
semigroup on infinitely many generators in the variety defined by the identity xr = x,
then S[ft] is a prime ring if and only if S is a prime ring.

Proposition 3.5 can be extended to show that if Q is an infinite free band (or an
infinitely generated free semigroup of the type described in the last paragraph) and 9 is
a prime family, and if either every <f>aifi is onto or each Rx is commutative, then ©&> is a
prime ideal in

4. Radicals of direct sums of systems

Our aim in this section is to compute various radicals of the direct sum R = ©Si of
the system ^ , when Q satisfies condition (f) and all prime ideals of fi are completely
prime; our results apply to commutative power-stationary semigroups and regular or
finite bands. At the end of the section, we will show how to drop condition (f) and
extend our results to the case where Q is an arbitrary band. In order to compute the
radical, we show that R has a factor ring which is isomorphic to the direct sum of a
system indexed by the largest semilattice quotient of Q, and when Q is a finite
semilattice, we also show R is isomorphic to the componentwise direct product of the
rings Ra. We then use these connections to find the Jacobson and upper nil radicals of
R, as well as the prime radical in some cases. We also give a formula for the classical
Krull dimension of R when Q satisfies condition (f), all prime ideals of fi are completely
prime, and every map <j>x ^ is onto.

Descriptions of radicals in semilattice-graded rings and band-graded rings have been
given in several places, such as [13], [1], [8], and [7], to name just a few. Our results
are more general and our methods are fairly transparent.

We begin our study of radicals by relating quotient semigroups of Q to quotient rings
of ©01. Suppose = is a congruence on fi and 0t is a system of rings over Q. with the
ideal preorder: we wish to define a system of rings y over Q/=. If each equivalence
class xeO/ = is directed relative to the preorder inherited from Q, we may define rings
Sx = \imaexRa; for a ex, let (j>*\ Ra-*SX denote the canonical map. Using the directedness
of the equivalence classes, one may show that if x,yeQ/ = and x-<y relative to the ideal
preorder on Q/s , then there is a unique ring homomorphism #x y: Sx-*Sy defined by
the equation </>*,,, °</>a = $£° <&,,/; whenever a ex, fiey, a.<p. It is easy to verify that the
rings Sx together with the maps <f>x y form a system of rings over fi/ = . Now define a
map a: ®&->®y by setting ff(rj = ^ ( r j , where a is the equivalence class of a under
= . It is clear that a is an additive map; we leave it to the reader to check that it is a
surjective ring homomorphism and that its kernel is given by the next lemma.

Lemma 4.1. Let 3% be a system of rings over the semigroup il and let = be a
congruence on Q such that each equivalence class is directed. Then y defined above is a
system of rings over Cl/=, and the map a: @&-*©y just defined is a surjective ring
homomorphism with kernel
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K{dt, =) = j © ra | X # ( O = 0/or a// xefi/ = 1. •

Each equivalence class will certainly be directed if each equivalence class is a
subsemigroup of Q. This will be the case if and only if = is a band congruence, that is, a
congruence such that a2 = a for all a e fi. There is a particular band congruence that we
will use: the least semilattice congruence n on fi. This is a congruence with the property
that £l/n is a semilattice and such that for any congruence = with fi/s a semilattice,
arjP implies a = /?. Such a congruence exists and can be described concretely as follows
(see for example [10, §11.2]): anf} if and only if a and /? belong to exactly the same
completely prime ideals of Q. Our approach to finding radicals will be to show that the
ideal K(^) = K(i%, n) is contained in the radical of R, which allows us to pass to R/K(8$)
and so assume fi is a semilattice, where things are easier to prove. In fact, it is almost
immediate from the results of Section 2 that we can do this for any radical containing
the prime radical when fi satisfies condition (f) and all prime ideals in fi are completely
prime.

Let us suppose Q satisfies condition (f) and all prime ideals of Q are completely
prime: then the relation n has a more concrete description. By Lemma 3.1, for every
a eH, there is a positive integer k with a.k = ak + 1: set ea = ak. Then ex is an idempotent
and it is clear that atnex. It follows that for a, /? e fi, we have an/i if and only if ejr\e$.
Now let e , /ef i be idempotents. If (e)=(/), then clearly e and / belong to exactly the
same ideals of fi, and so enf. Conversely, suppose enf and e $ (/), and let Q> be the
largest ideal of fi containing / but not e. A standard argument shows G> is prime, which
contradicts enf. Thus we see ee(f) and so (c)S(/). By symmetry we may conclude
(e) = (/), and so we see that an/i if and only if e^,ef. Hence <xnfi if and only if there are
positive integers m,n with am3/r, and when this is the case, this relation holds for all
large enough m and n. Suppose that in addition £2 is commutative. Then it is easy to
verify that if e,/are idempotents, (c) = (/) if and only if e=f, and so in this case anf} if
and only if <xm = /?" for some positive integers m, n.

Suppose that ft satisfies condition (f) and that every prime ideal in Q is completely
prime, and let £(Q) denote the set of idempotents in fi. Then the last paragraph tells us
that if a eft, we have P<ex for any flntx. Thus the direct limit UmaexRa is Re for any
idempotent eex, where the maps $£ agree with the maps <f>xe. It "follows from Lemma
4.1 that

all ee

Lemma 4.2. Suppose that fi satisfies condition (f) and that every prime ideal of fi is
completely prime, and let Si be a system of rings over fi. Then the ideal K(3l) is the
intersection of all the ideals /(<D) with <I> a prime ideal of fi, and so is contained in the
prime radical of R =
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Proof. We begin by showing K = K(@) is contained in /(<!>) for all prime ideals $ of
Q. To do this, it suffices to show that if O is a prime ideal, e e £ = £(fi), and r = @aegra

satisfies Yjaee4>x,J.ra) = ̂  (where e is the equivalence class of e under n), then re/(<I>).
Suppose e$<&: then since e>~a for all aesupp r, the condition Y,*ee<t>z,e(rJ = Q ensures
that re/(<I>). If eeO, then for every aee, there is a k with a*3^> i-e., with ake(e)£<I>.
Since <t> is completely prime, this implies ae<S>, and sore/(<!>).

It now follows from Theorem 2.7 that K is contained in every prime ideal of R.
For each eeE, let <te be the largest ideal of Q not containing e: we've noted before

that Oe is a prime ideal. Now let r = ( J ) a e n r a ^0 " e m t n e intersection of all the ideals
/(<!>), and choose /? E supp r such that e = e^ is minimal relative to -< among idempotents
ex with ae supp r. Set r' = © ( , ^ ^ a . Since rel(<&e), we have ][]„-< e0a> „(/•„) = (). Moreover, by
our choice of e, we must in fact have r' = @xnerx and so r' e K. By the first paragraph of
the proof, this implies r' is in the intersection of all the ideals /(<5), and so r — r' is as
well. Since r — r' has smaller support than r, we may assume by induction that r — r'eK.
It follows that reK. •

In addition to the homomorphism a defined above from R to ®9>, there is another
homomorphism from R which is very useful. Let eeE be an idempotent in Q, and
define ij/e: R^Re by >/'e(©aienO = Zc<Ke</)<i,c(''J- It is straightforward to verify that \j/e is a
surjective ring homomorphism with kernel /(<J>e), where <l>e is the largest ideal of Q not
containing e. It follows from the proof of Lemma 4.2 that K(3%) = P)ee£ker \j/e.

Now define a map \\i: R-*\\e^E^e-: where the multiplication in the direct product is
componentwise, by iA(r) = (i/'e(/'))ee£. Since each \jie is a ring homomorphism, so is \p, and
ker \j/ = K.

Lemma 4.3. Let Si be a system of rings over a finite semilattice Cl. Then the map \p
just defined is an isomorphism.

Proof. We know ip is an injective homomorphism of rings; we only need to show it
is onto. Let Q = {/?!,...,/?„}, where we label the elements so that /?,--</?,• implies i^j, and
let s = (sfit)"=l eY\peciRp- Let i be the smallest index with s^.#0. If i = n, then s = i/f(spj
since /?„ is the greatest element of Q. In general, if we let s' = (/'(s^.), then the elements
PjEsupp s' satisfy Pj>Pi, so j^i. Thus s—s' is an element whose least index with a
nonzero component is larger than i, and so we may assume by induction that
s — s' = i//(r') for some r'eR. Hence s = t//(r' + Sp.), which proves ip is onto. •

Remark 4.4. We can explicitly compute the inverse of \ji in Lemma 4.3 as follows: let
M be the Mobius matrix of Q, that is, the inverse of the ftxfl matrix that has (a,/?)
entry 1 if a-<j3 and 0 otherwise. Then Mobius inversion formula tells us that M exists
and is an integer matrix (since -< is a partial order for a semilattice), and that if we pick

for each fieCl and we define ra, = Y^^<xmfia(j>pJ<s^ for all aeil, then ŝ  =

A similar result, which proves the same isomorphism as in Lemma 4.3, appears in
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[13, Theorem 3.7]. The referee has pointed out to us that the result in Lemma 4.3 also
appears in [6].

We are now ready to describe the radical in many cases. Let p be a radical: then since
\lie is onto, ipe(p{R))^p(Re) for all eeE, whence p(R)^f]eeE<j/;^(p(Ke)). Recall that a
radical p is said to be directed if any ring that is the union of a system of p-radical
subrings which form an upper semilattice under inclusion is a p-radical ring (see [1, §3])
and is said to be hereditary if any ideal of a p-radical ring is p-radical as a ring itself.
Examples of directed hereditary radicals include the Jacobson radical and the upper nil
radical; Example 1.10 shows that the prime radical is not directed. We will show that if
p is a directed hereditary radical containing the prime radical, then the equality
p(R) = f)e€Eijs~l(p(Re)) holds (it does not always hold for the prime radical). In
particular, if each Re is p-semisimple, then p(R) = K(M).

We begin with a description of radicals for semilattices. This description was proven
individually for several radicals in [13, Chapter 3].

Proposition 4.5. Let 3fc be a system of rings over a semilattice Q and let R = ©$. Let
p be a radical and assume that either £1 is finite or p is hereditary and directed. Then

Moreover, p(R) = @aetlp(Rx) if and only if 4>^,fi(p(RJ)^p(Rfi) whenever a)9 = p\

Remark. The condition a/? = /? in the description of p(R) can of course be re-stated
as a-</J; in terms of the "natural order" on Q it can be re-stated as a^p\

Proof. The set claimed to equal p(R) is n^n' /V 1(P(Rp)): ' e t u s denote this ideal
by L.

First assume Q is finite. Since p is a radical, we may apply Lemma 4.3 and get
p(R) = <A - MYlt^Re)) = ̂  " HFUnPW) = L.

In the general case, we noted above that p(R)^L always holds; to get equality, we
need to show that L is p-radical as a ring. We proceed as in the proof of [1, Theorem
3.2]. For any finite subsemigroup Q' of fl, let R' be the direct sum of the system
obtained by restricting to Q.', and let L' be the ideal of R' corresponding to L. Clearly
LnR'oL' and by the previous paragraph, L'-p(R'), so LnR' is a radical ring (since p
is hereditary). The subrings Lr\R' form a semilattice of subrings of L whose union is L
(since the subsemigroup generated by supp r is finite for any reL). Thus by the
directedness of the radical p, L is a radical ring.

Suppose each 0a.p(p(/?J)£p{Rp), take reL, and let ocesupp r be minimal relative to
-<. Then raep(Ra) (take /? = a in the definition of L), and so by our hypothesis,
<l>a.fi(ra)eRe for all pVa. This implies rxep(R). Since r—raep(R) = L, we may assume by
induction on |supp r\ that rfiep(Rfi) for all /fesupp r.

Conversely, suppose p(R) = ©zenPiR*) a nd let rxep(RJ. Then rxep(R), and by the
first result, we must have 0a,p(rj6p(Rp) for all f}><x. •
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We are now ready to state our main result, describing radicals when condition (f) is
satisfied. Recall that a radical p is said to contain the prime radical if p(S) contains the
prime radical of S for every ring S, or equivalently, if every nilpotent ring is p-radical,
and a radical is said to be supernilpotent if it is hereditary and it contains the prime
radical (cf. [12, §11]); examples include the upper nil radical and the Jacobson radical.
Our best results are for directed supernilpotent radicals. In the case of the Jacobson
radical of a special band-graded ring, our description is the same as that given in [8,
Theorem 3.1].

Theorem 4.6. Suppose that Q satisfies condition (f) and that every prime ideal of Cl is
completely prime, let ^ be a system of rings over Q, and let R = ©3&. Let p be a radical
containing the prime radical and suppose that either p is hereditary and directed or Q is
finitely generated. Then

P(R) = { © rx | X &, e(rJ e p(Re) for all e e E(Q)\.

Moreover, p(R) = {©xeilrai\Zx,e<PMep(Re)for all eeE(Q)} if and only if 0a,£

p(Re) whenever ee(a), and p(R) = @xenp(RJ if and only if this condition holds and in
addition {a e Q | p{Rx) # Ra} is contained in £(Q) and contains at most one element from
each ̂ -equivalence class.

Proof. Set L=f)eeEiS1)il/~
i(p{Re)): we wish to show L=p(R). Since p contains the

prime radical, Lemma 4.2 implies p(R)^K, and the discussion just after Lemma 4.2
implies L2K. Thus we may pass to R/K and so by Lemma 4.1, we may assume ft is a
semilattice. The discussion surrounding Lemmas 4.1 and 4.2 shows that when we pass
to R/K, we replace ee(a) by ac = e and n by = in the statement of the theorem, and we
also replace finitely generated by finite. The theorem thus follows from Proposition 4.5.
(To verify the very last claim in the theorem, suppose that ra e J?a\p(i?a), and suppose
0LneeE(Cl). Then rx — (j)xj(ra)ep(R) by the above, but it is not in ©xenp{Rx) unless
a = e.) ' •

This theorem is not valid for the prime radical, even when fi is a semilattice, as
Example 1.10 shows, since in that example, ©0t has a prime ideal corresponding to the
family (0,0), while Theorem 4.6 would imply p(@@) = @0i. We do have the following
result.

Proposition 4.7. Suppose that Q satisfies condition (|) and that every prime ideal of Q
is completely prime, let M be a system of rings over Q, and let R = @(%. Let p be the prime
radical and suppose every <j>a fi is onto or each Rx is commutative. Then

\ for all eeE(Q)
aefl arje

https://doi.org/10.1017/S0013091500022720 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500022720


PRIME IDEALS AND RADICALS IN SEMIGROUP-GRADED RINGS 23

Proof. Set ^ = {@a£nra|^a,e(/>t,c(rjep(i?e) for all ee£(fi)}. Lemma 4.2 implies that
K^p(R) and clearly K^L, and so just as in the proof of Theorem 4.6, we may pass to
R/K and assume Q is a semilattice and replace ^ by = in the definition of L.

Note that the hypotheses imply that 4>x J^p(RJ) £ p(Rp) whenever a-</?. When each Ra

is commutative, so is R, and the prime and nil radicals agree for R and for each Rx,
whence the proposition follows from Proposition 4.5. Thus we may assume each (paP is
onto.

We need to show that L is contained in every prime ideal of R. If ra e L, then ra is in
every prime ideal in Rx. Now consider a prime family /(<D,0>). If aefl\<5, then the
hypothesis that each <pa fi is onto implies that the ideal Px is prime, whence rxePa^
l{<b,0>). If ae<D, then rxkl{<$>,9) for all raeRT Thus rx lies in all prime ideals of R, and
so raep(R). •

We can also use these ideas to improve the results at the end of Section 2 on classical
Krull dimension in a special case.

Proposition 4.8. Suppose that Q satisfies condition (f) and that every prime ideal of Q
is completely prime, let Si be a system of rings over il, and suppose that every 0a p is onto.
Then R = @0t has classical Krull dimension if and only if Re does for all e€E(Cl), and
when this is the case, the classical Krull dimension of R is the supremum of the classical
Krull dimensions of the rings Re.

Proof. If aed\<b for a prime ideal <t>, then e = eaef2\O. Thus by Remark 1.2,
limaen\®^<z 1S isomorphic to a factor of Re and so by Proposition 2.10, the classical
Krull dimension of R is bounded by the supremum of the classical Krull dimensions of
the rings Re. But each Re is a homomorphic image of R (since t//e is onto), and so the
classical Krull dimension of each Re is bounded by the classical Krull dimension of
R. •

Proposition 4.8 may fail when the maps <px p are not onto, even if the rings are
commutative and Q is a semilattice. To see this, let F be a field, let Q = {1,2,...} with
the natural order, let Rn be the commutative polynomial ring F[xt,.. . , x j , and let (pm „
be the inclusion map (for m^n). Then each Rn has finite classical Krull dimension, but
R = ®St does not have classical Krull dimension, since it has F[xt,x2,...] as a
homomorphic image.

We conclude by showing that the results on directed radicals remain true for
arbitrary bands, even when condition (f) is not satisfied. Thus the results on the
Jacobson and upper nil radical carry over; however, the results on prime ideals, the
prime radical, and classical Krull dimension do not, as Proposition 3.5 and the
comments after it show.

The method we use is to pass to finitely generated subsemigroups, just as in the proof
of Proposition 4.5.

Theorem 4.9. Let & be a system of rings over a band Q, and let p be a directed
supernilpotent radical.
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(1) The ideal K(@) is nil and is contained in p(R).
(2)

P(R) = \© rx| X K A*)eP(Ri>)M all pen].
(HE!) a with f)<xf) = jl J

(3) p(K) = {0aenra|L.3W)a.<>(ra)ep(K0) / ° r a " 0eQ} i/ and only if we have
(pa.p(p(RJ)^p(Rp) whenever P<xp = P, and p(R) = <§)aeaP(Rx) if and only if this condition
holds and in addition, any a with p(i?a)#i?a is not ^-equivalent to any other element of SI.

Remark. The condition P<xP = P is the same as the condition d<P, and the condition
a3/S is the same as the condition /?a/? = /? and <x/?a = a.

Proof. Clearly (2) and (3) follow from (1) and Proposition 4.5 just as Theorem 4.6
follows from Proposition 4.5.

To prove (1), we proceed as in the third paragraph of the proof of Proposition 4.5.
For any finite subsemigroup SI' of Q, let R' be the direct sum of the system obtained by
restricting to SI', and let K' be the ideal of R' corresponding to K. It's easy to see that
KnR 'oK ' (since the relation n equals the relation 3, it is the same in SI and SI') and we
know by Proposition 3.4 and Lemma 4.2 that K'^p(R'). It follows that KnR' is p-
radical as a ring. Since finitely generated bands are finite—see [4, Theorem 1] or [5,
Theorem IV.4.9]—every element of R is contained in some R' and so the subrings
KnR' form an upper semilattice of subrings of K whose union is K. Thus by the
directedness of the radical p, K is a p-radical ring, i.e., K^p(R). Taking p to be the
upper nil radical, we conclude that K is a nil ideal. •

We now summarize the results of this section for the special case of semigroup rings.

Theorem 4.10. Suppose that SI satisfies condition (f) and that every prime ideal of SI is
completely prime, let S be a ring, and let p be a radical containing the prime radical. If SI
is finitely generated, or p is directed and hereditary, or p is the prime radical, then

p(S)[fi] + /C, where K = {]^.os«a|£«1^« = 0 for all eeE(Sl)}. Moreover,
= p(S)[Q] if and only if either p(S) = S or SI is a semilattice.

When SI is finite or p is directed and hereditary, these results remain valid if SI is an
arbitrary band.
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