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A NOTE ON THE CONCEPT OF MULTISET

J.L, HlCKMAN

In various papers on some of the theoretical aspects of

computing, the reader is confronted with a mathematical entity

called a "multiset", and is told that a multiset is "an unordered

collection of elements that may have repeated occurrences of

identical elements" (see, for example, Nachum Dershowitz and

Zohar Manna, "Proving termination with multiset orderings",

Lecture Notes in Computer Science, 71). These entities are then

manipulated in accordance with the classical laws of set algebra.

The purpose of this note is to present a formal foundation for

this concept of multiset, and to show by means of examples that

if this foundation is adopted then, although certain sections of

classical set algebra can be applied to multisets, it certainly

cannot be applied in total.

We are told by various authors of papers on computing that a multiset

is an unordered collection of elements that may have repeated occurrences

of identical elements. Then, sometimes without further ado, we are

confronted with various formulae that look like formulae from classical set

algebra, except that the operands are not sets but multisets. An

illustration is afforded by [?], in which, immediately after being

presented with the above definition, we invited to form the compound

M-X u Y , where M, X, Y are multisets with 0 # X c M . At no stage are

we told what "-", "u" and "c" stand for.
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Clearly one cannot expect a paper such as [7], in which multisets are

used merely as a tool, to contain a fully fledged formal theory. But, in

view of the apparent lack of any readily available standard treatment of

the topic, we suggest, with due respect, that those writers who wish to use

multisets might present the reader with some fundamental definitions, or at

least warn him that any analogy between multiset operations and set

operations cannot be pushed too far.

In formulating the definitions contained in this note, we have been

guided by two principles. Firstly, the principle that in any multiset one

should be able to say exactly how many times a particular element appears,

but not be able to "pick out" any one copy of a given element in preference

to any other copy (for otherwise the two copies involved would not be

"identical"). For example, if / is a mapping between two multisets and

x, y are two copies of a given element in the domain of / , then fix),

f{y) must be either equal or else copies of a given element in the range

of f . The second principle is that if one sets up a formal theory after

some results in the field have already been obtained, then one should make

every effort to have the theory fit the results, for clearly this is how

people want the concepts to work. In this effort we have taken into

consideration, in addition to those practical papers that we could find,

the list of intuitive multiset properties given by Knuth in [2] (although

we cannot entirely agree with his subsequent comments upon the construction

of a formal theory of multisets). We shall see later that it is very

difficult to define the complementation operator - in any way which

preserves our intuitive notions of what this operator should do, and it is

perhaps significant that Knuth, in contrast to Dershowitz and Manna,

eschews complementation of multisets entirely.

The set-theoretical background will be Zermelo-Fraenkel with the Axiom

of Choice. It is well-known that within such a system one can define a

unary predicate C with C(x) having the intuitive meaning, "x is a

cardinal". Given any function / , we use "Dom(/)" , "Ran(/)" to denote

its domain and range respectively.

DEFINITION 1 . A multiset (m-set) M is a function such that for

each x i Dom(M) we have C[M(x)) and M(x) t 0 . We define a binary

predicate E by taking xEM to mean "M is an m-set and x (. Dom(A/)" .
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The idea is of course obvious;' if M is an m-set, and xEM , then

M is supposed to "contain" M{x) copies of x (including a; i t se l f ) .

This suggests very strongly that the collection of al l m-sets M such

that M(x) = 1 for each xEM should be structurally equivalent to the

class of al l sets. This equivalence will be seen to hold in the sense that

each definition that we shall make will, when restricted to this special

subcollection of m-sets, be logically equivalent to some classical

definition in set theory. In view of this we shall take the convenient

step of informally identifying a set with the corresponding "unit" m-set.

DEFINITION 2. Let M, N be m-sets. We say that M is an

m-subset of N [M C N) if for each KEM we have KEN and

M(K) 5 N(K) , where "5" is the usual cardinal ordering. If

Dom(W) = Dom(tf) then we say that A? is a full m-subset of N . For any

m-set N , we define i t s powerset P(N) to be the set of all m-subsets of

N .

We note that according to this definition, P(N) is always an

ordinary set; we could see no good reason for introducing repeated

elements into a powerset. However, as we shall see later , this does mean

that one of the cornerstones of classical set theory, Cantor's powerset

theorem, fails for multisets.

DEFINITION 3. Let M, N be m-sets. We define an m-map s : M •+ N

to be a function Dom(A/) -»• Dom(w) . We say that s is m-injective if s

is injective and M(K) S H[S(K)) for each KEM , and that s is

m-surjective if s is surjective and M{K) > N[S(K)) for each KEM . We

say that s is m-bijective if s is m-injective and m-surjective.

This at first sight might seem an unnecessarily restrictive definition

of an m-map, for m-sets are supposed to be richer objects in some sense

than ordinary sets, and one might expect that this extra richness would be

reflected in the definition of an m-map. But as we explained previously,

we do not feel that one should be allowed to map identical elements to non-

identical elements: furthermore, the above definition does seem to reflect

the needs of those who use multisets. Hence i t is in accordance with our

two guiding principles.

DEFINITION 4. Let X be an ordinary set whose elements are m-sets.
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( a ) We d e f i n e UX by Dom(UX) = U{Dom(M); M d X) and

( U * ) U ) = s u p ( M U ) ; M S X & KEM) , fo r K Z Dom(UA") .

(b) We define fU by Dom(rU) = f"l{Dom(M); M £ X] and

(n*)U) = minWx); M € X & XEw} , for X € Dom(nz) .

If W is an m-set, then we define [}M, CW to be U(Dom(M)), fi(Dom(W))

respectively.

As observed by Knuth, we could alter our definition of "U" by

replacing "sup" with "sum" . There is no logical reason why one of

these two possible definitions should be given preferential treatment over

the other; we made our choice simply because we are at present interested

in the set-theoretical nature of multisets, and the above definition seems

to f i t in best with our investigations.

DEFINITION 5. Let M, N be m-sets with M c N : we define the
—tn

m-set N - M as f o l l o w s .

(1) Vtom{N-M) = {K (. Dom(tf); K f Dom(M) or K € Dom(M) & M{K) < N(K)} .

(2) For K € Dom(N-M) ,

(N-M)(K) = N(K) if Xf Dom(M)
= min{x; C(x) & N(K) = M(K)+x] if K € Dom(W) .

As far as we can see, the above definition is the one that best

reflects the requirements of those who have used complementation of multi-

sets. It is not however a particularly attractive definition, and i t does

have a couple of rather disturbing consequences.

This completes our l i s t of fundamental definitions: we now turn our

attention to the task of illustrating some of their logical consequences.

The following is not in any way intended as a systematic presentation of a

theory of multisets: we are concerned with showing, by a sequence of

examples, some of the resemblances and some of the differences between

classical set theory and a theory of multisets based upon the foregoing

definitions.

To start ; we see that the Axiom of Extensionality fails - if M, N

are m-sets, then the implication M = N =* VK(KEM *=> KEN) holds, but i ts

converse fails. This is hardly surprising, for i t is in the very concept
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of membership that the concept of a multiset differs from the concept of a

set.

It is true however that for any two m-sets, M, N we have

M = N *=> [M C N & N c M\ . The forward direction is of course a theoremv -in ~m

of the underlying logic; and the reverse direction follows from the simple

observation that

[M C N & N <= M\ =» (Dom(w) = Dom(ff) & V# € Dom(M)(w(X) = ffU))) .

Two of the cornerstones of classical set theory are the Schroder-

Bernstein theorem, which says that if X, Y are sets and f : X -*• Y ,

g : Y -*• X are injections, then there is a bijection h : X -*• Y ; and the

Cantor powerset theorem, which says that for any set X , there is an

injection X -»• P(X) but no injection P{x) •*• X .

Both these theorems are non-extendable in any significant sense. Take

the Cantor theorem f i rs t . If M is any m-set, then there exists an

injection M -*• P{M) only if M is an ordinary set. For if f : M -*• P{M)

is injective, then by our definitions we must have

1 5 M(K) 5 P{M)[f(K)) = 1 for each KEM .

To show that the Schroder-Bernstein theorem does not in general hold

for m-sets, we define M, N by taking Dom(W) = Dom(tf) = w (the set of

natural numbers), and for each n < w , we put M(n) = 2n ,

N(n) = 2n + 1 . We now define injective m-maps r : M -* N , s : N •* M

by v{n) = n , sin) = n + 1 . There is however no bijective m-map

t : M -*• N , because for any such t we would have to have M(n) = N[t{n))

for each n , which is of course impossible.

The m-set operations of U, D are reasonably well-behaved, since

they are defined in a straightforward in terms of the cardinal operations

min, sup , which themselves follow closely the behaviour of the classical

U, PI . We can for example show that for m-sets U and fl are

idempotent, associative, commutative, and distributive over finite

collections. We cannot of course expect full distrlbutivity over infinite

collections, for we do not have i t in the classical case. Classically we

have

n{sx, x € x) u (\{TX; x e x) c n{sx u TX, X € x]

https://doi.org/10.1017/S000497270000650X Published online by Cambridge University Press

https://doi.org/10.1017/S000497270000650X


216 J . L. H ickma n

a n d

U{Sx; x € X) n U{Tx, x € x) 3 U ^ n 2^; a: € X] ,

where {S } cv , {T } are families of ordinary sets; and these

inclusions also hold for m-sets. In every case the method of proof

consists in writing out the expression in terms of min and sup , and

taking i t from there.

The complementation operator is not so considerate. Consider

M = {a.5, £.5} , N = {a.3, b.3) , where we have adopted the notational

convention of expressing an m-set R as {K.R{K); K € Dom(i?)} . We have

0 ? N C M f and yet M - N = {a .2, b .2} S N , conflicting with the

classical law (M-N) n N = 0 .

Another case involves de Morgan's laws

[M-U{N ; x € X] = C\{M-N ; x (. X], and i t s o ther h a l f ] .

If we take the index 'set X to be finite, then de Morgan's laws do hold for

m-sets. The proof of this consists quite simply in expressing each side in

terms of min, sup , and performing some rather tedious manipulations.

When the index set is infinite however, the situation is quite

different. Take M = {w.N } ; that i s , M consists of all the

natural numbers, with each one being repeated N times. For each n put

N = {k.n+l-k}kin . Thus NQ = {0.1} , ^ = {0.2, 1.1} ,

N~ = { 0 . 3 , 1 . 2 , 2 . 1 } , and so o n . C l e a r l y U{# ; n < 10} = M , and so

M - U{N ; n < w} = 0 . On t h e o t h e r h a n d , M-N = M f o r each n ,

whence C\{M~N ; n < w} = M .

We concede that this is a contrived example, and that in most of the

cases arising in practice, de Morgan's laws would hold. We maintain,

however, that this example, like the preceding ones, shows that if

multisets are to play a role in mathematics, then their properties should

not be taken l ight ly.
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