SEMI-ALGEBRAS IN C(T)
by BERTRAM YOODY
(Received 2 February, 1973)

Let C(T) be the Banach algebra of all complex-valued continuous functions on the
compact set T of all complex numbers with modulus one. As usual we may suppose that 4
is embedded in C(T'), where A is the disc algebra, i.e., the algebra of all complex-valued
functions f(4) continuous for | | < 1 and analytic for |1] < 1. Weset M, = {fe4 :f(1) =0}
and M = {fed :f(2) = 0}.

Following Bonsall [1], we call a subset S of C(T) a semi-algebra if, whenever f, ge S and ¢
is a non-negative number, we have f+ge€S, fge S and #feS. In connection with the semi-
algebra S, we consider the real subalgebra S, = Sn(—.S) of C(T) and the complex subalgebra
S, = S,+iS,. It is convenient to let e = e(4) stand for the function identically one. Our
theorem shows that all these items are intimately related.

THEOREM 1. Let S be a semi-algebra in C(T), where —e¢S. Then either S, is dense in
C(T) or no M}, with |}.l < 1, is properly contained in S.

Proof. Suppose that S properly contains some M}, with |1| < 1. Without loss of
generality, we may take A = 0 in the ensuing argument. We must show that S, is dense in
C(T).

Consider the subalgebra

B=S_+Ce, (1)

where C is the field of complex numbers. Since S, contains the maximal ideal M, of 4, we get
B > A. Hence, by Wermer’s maximality theorem [5], the closure of B is either C(T) or 4.

If the closure of B is C(T), there exist a sequence {p,(4)} in S, and a sequence {o,} in C
such that, in the metric of C(T), p,(4)+a,e(4) » A~ 1. Notice that the functions Ap,(4) and
a, 4, as functions of 4, all lie in S, and that, in C(T), Ap,(1)+a, A= e(A). Therefore, by (1), the
closure of S, is the closure of B, which is here C(T).

Our conclusion would then follow if we could show that the closure of B cannot be 4.
Suppose that the closure of Bis 4. By (1) and the fact that S, contains the maximal ideal M,
of A, we see that

A=S_+Ce. )

Next we show that e¢ S.. For otherwise we could write e = f+ig, where f and g lie in
S,- Then we could write
~e=f2+g-2f.

Since the right side lies in S, = S, we get a contradiction.
It now follows from (2) that S. is a proper ideal in 4 containing M,. Therefore S, = M.
Now take geS. The function Ag(4) lies in S, = M, and is therefore an element of 4 vanishing
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at zero. Hence there exists we 4 such that 4g(1) = Aw(4), | 4| = 1. Therefore ge 4 and so
Mg © S c A, where —eé S.

We shall show from this that S = MJ. ForletveS. First weshow thatv(0) = —a,a >0,
is impossible. For suppose otherwise and set w = a™'v. Now M, is a maximal linear sub-
space of A4; so there is a scalar 1 and fe M, such that —e = f4-Aw. Evaluating at zero, we see
that 4 = 1, so that —e =f+we S, which is impossible. It follows that v(0) = bi, b real, b #0
is impossible, for otherwise %€ S and v*(0) = —b%. Next we show that »(0) = a+bi with
a, b real, a <0, b # 0 is impossible, for otherwise w = —ae+ve S and w(0) = bi. Next we rule
out v(0) = a+bi, a, breal,a > 0, b 0. For if this holds, then v"(0) must lie in the open left-
hand plane for some positive integer and ¢v"€S. By elimination we see finally that v(0) = 0 or
veM{. Therefore S = M.

However this is in conflict with the hypothesis that S properly contains M§ and the proof
of the theorem is completed.

The choice S = A shows that the requirement that —e¢.S cannot be dropped from the
hypothesis. Also, S, may fail to be dense and, simultaneously, S can properly contain some
M}, with |l| = 1. For consider ge C(T), where g¢ A and g(1) =0. The semi-algebra S
generated by M| and g properly contains M7 and fails to contain - e, but has the property
that S, is at a distance of one from —e.

The following special case of Theorem 1 is, to the author, somewhat surprising.

CoRrROLLARY 1. Let ge C(T), where g # 0 and g vanishes on a subset Ty of T of positive
Lebesgue measure. Let A be a complex number with | A [ < 1. If Sis the semi-algebra generated
by M} and g, then S, is dense in C(T).

Proof. A well-known theorem of F. and M. Riesz [2, p. 50] shows that g¢ 4, so that .S
properly contains M;. The conclusion follows from Theorem 1 if we verify that —e¢S.
Suppose that —ee S. Then there exists a finite subset £y, f3, ..., /, of M7 such that

—e=fo+ ¥ fid* )

Notice that, from (3), e+f, is identically zero on T,. The F. and M. Riesz theorem then gives
o = —e, which is impossible.

" Foraring R with identity 1, Harrison [4] defines a preprime as a nonvoid set closed under
addition and multiplication and not containing —1. He calls a maximal preprime a prime.
Civin and White [3, p. 243] showed that, if P is a closed prime in a Banach algebra B with
identity 1, then 1€ P and P is a semi-algebra. If further, B is a complex and commutative
Banach algebra, then iP, c P, [3, Proposition 1.11]. They also point out [3, p. 245] that
M7 with |,1| < 1isnot a prime in C(T). By using Theorem I, more can be shown along these
lines.

COROLLARY 2. Let S be closed semi-algebra in C(T) where —e¢ S and S contains some
M} with |A| < 1. Then S is not a prime in C(T).

Proof. Suppose that S is a prime in C(T). As noted above, this implies that iS, < S,,.
Consequently S, < S, so that S, cannot be dense in C(T). Theorem 1 shows that S cannot
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properly contain any M} with |cx| < 1. Therefore S =M. Butin this situation the proof of
Corollary 1 provides the existence of a preprime properly containing S. This is a contradiction.
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