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1. Introduction

In this paper we deal with a linear equation Au = / i n a Hilbert space using
a general iterative method with a constant iterative operator for the approximate
solution. The method has been studied in many papers [1, 2, 4, 9, 13, 14] and
thoroughly treated by Householder [3] for matrix equations and by Petryshyn
[7] for operator equations in considerably general and unified manner.

Our aim is to extend and modify Reich's criterion of convergence for self-
adjoint non-singular operators (Theorem 1) and derive Theorem 2 concerning
self-adjoint singular operators. These theorems enable us to derive sufficient
conditions of convergence for a number of particular methods [1, 5, 13, 14, 17].
Theorems 3 and 4 are generalizations of previous theorems for AT-positive definite
operators and imply some results of [6, 8, 10, 12]. Methods I and II include some
standard iterative methods as special cases and give a possibility to accelerate
the convergence in comparison with these methods. (Some results on acceleration
of Gauss-Seidel and successive overrelaxation methods are being prepared for
publishing by the author.)

2. Preliminaries

X denotes a Hilbsrt space over the field of real or complex numbers, [X] the
space of all continuous linear operators mapping the whole of X into itself. R(A)
denotes the range of A e [X], N(A) the null space of A. Let Y be a closed subspace
of X. For every A e [X] we define

glbY(A) = inf ^—^ , lubY(A) = sup ^—^ , u e Y.
u*o \\u\\ «*o \\u\\

Obviously, \\A\\ = lubx(A). (The subscript A'will sometimes be omitted.) The
restriction Ao of A to Y has a bounded inverse AQ * if and only if glby(A) > 0
[16]. The spectral radius r(A0) of the restriction Ao is defined as the limit
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If Y = X the definition becomes the usual one, namely, r(A) = limn||y4"||1/n [16].
If A e [X] is symmetric on Y, i.e. if

(Au, v) = (u, Av) for all u,veY,
we define

( ^ ^ ^ ueY.m y G 4 ) i n f , M ^ ) s u p
u#0 (u, w) U#0 (M, U)

If A G [A'] is self-adjoint, i.e. symmetric on X, then \\A\\ = Max(|m(/i)|, \M(A)\)
by [16].

An operator A e [X] is non-negative on F if it is symmetric on Y and
/Wy(j4) ^ 0. If, in addition, (Au, u) = 0 only for w = 0 on Y, A is positive on F.
4̂ is positive definite on 7 if it is symmetric on Fand mY(A) > 0.

LEMMA 1. 1 If A e [X] is non-negative on X, then

\\Au\\2 ^ \\A\\(Au, u) forallweA-.

PROOF. Put (f>(u, v) = (Au, v). Since A is self-adjoint and non-negative, <f> is
a non-negative Hermitian form and therefore satisfies the Schwarz inequality

(<t>(u,v))2 ^<t>(u,u)<j>(v,v);

setting v = Au, we get

(Au, Au)1 ^ (Au, u)(A2u, Au) ^ ||/4||(^w, u)(Au, Au),
and

^ \\A\\(Au,u).

LEMMA 2. Let A e [X] be non-negative on X, and let Ybea closed subspace ofX.
Then the restriction Ao of A to Y has the inverse AQ1 if and only if Ao is positive on
Y; AQ1 is bounded if and only if Ao is positive definite on Y.

PROOF. For every non-zero u e Y, we have

\\Au\\1 ^\\A\\(Au,u) ^\\A\\\\Au\\\\u\\

b> Lemma 1 and the Schwarz inequality. Hence (Au, u) = 0 if and only if Au = 0,
and AQ1 exists if and only if A is positive on F. From the last inequality it follows
that

glbY(A) S \\A\\mY(A) ^ \\A\\glbY(A),

so glbY(A) > 0 if and only if mY(A) > 0.

1 Due to T. Reid.
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LEMMA 3. Let the restriction Bo of Be [X\ to a closed subspace Y of X have a
bounded inverse BQ 1. Let W e [X] be positive definite on the subspace Z = BY (the
image ofYby B). Then the operator B*WB is positive definite on Y.

PROOF. B*WB is symmetric on Y and for every non-zero u e Y,

(B^VBu^ = (WBu,Bu) . \\*tf ^ .

(«,«) (Bu,Bu) \\u\\2 ~

This proves the assertion.

LEMMA 4. Let A e [X] be positive definite on a closed subspace Y of X and let
B e [X] be symmetric on Y.Ifa is a real number such that

\a\lubY(B) < mY(A),

the operator A + aB is positive definite on Y.

PROOF. For every non-zero u e Y, we have

) ^ ^ ^ .

i i i i
by the Schwarz inequality. Since A + aB is symmetric on Y, it is also positive definite
on YifmY(A)-\(r\ lubY{A) > 0.

3. Convergence

We consider the equation

(1) Au=f

where A e [X] is self-adjoint a n d / i s a given vector in X. Let P and P'1 e [X],
Then the equation

u = (I-PA)u+Pf

is equivalent to (1) and we form successive approximations

(2) un + l = (I-PA)un + Pf n = 0, 1, 2, • • •,

starting with an initial approximation u0 e X. The process (2) is said to be totally
convergent for a fixed fe X if the sequence (wn) converges for every u0 e X (not
necessarily to the same limit).

It is known [16] that the series

converges uniformly for Te [X] with r(T) < 1. Therefore (2) converges totally
to a unique solution u* of (1) for a n y / e Z i f r(I-PA) < 1, and

https://doi.org/10.1017/S1446788700011320 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700011320


244 J. J. Koliha [4]

(3) «* = £ {l-PA)nPf.
n = 0

The following lemma generalizes the result which has been proved by Stein
for finite matrices (cf. [3], p. 103). Petryshyn ([11], Lemma 3) derived similar
necessary and sufficient conditions in the case that T is a self-adjoint operator of
tht form T = I-fiK.

LEMMA 5. For Te [X], r(T) < 1 if and only if there is a self-adjoint operator
A e [X], positive definite on X, such that A — T*ATis also positive definite on X.

Lemma 5 is an immediate consequence of the following more general assertion.

LEMMA 6. Let Te [X], let Y be a closed subspace of X invariant under T {i.e.
TY <= Y) and let To be the restriction ofTto Y. Then r(T0) < 1 on Y if and only if
there is an operator A e [X], positive definite on Y, such that A — T*AT is also
positive definite on Y.

PROOF. Let A and H = A-T*AT be positive definite on Y. Then it may be
deduced from Lemma 4 that there is a real number a, 0 < a < 1, such that
H—GA is positive definite on Y. Then we get

(4) (T*ATu, u) = {[A-H]u, u) ^ (l-o)(Au, u) for all ueY.

Put |«| = (Aii, «)* for every u e Y. The norm |-| on Yis equivalent to the restriction
of ||-|| to Y. Also the associated operator norm |-| on [Y] is equivalent to the restric-
tion of the operator norm ||-|| to [Y]. Therefore, since Te [Y] by assumption,

r(T0) = lim \\TS\\1"1 = lim |To
n|1/n on Y. 2

n~* co n - * GO

(4) implies that for every ueY,

\Tu\ = (ATu, Tuf = (T*ATu, uf ^ (1-CT)*|M|,

and accordingly, \T0\ ^ (-cr)* < 1. Thus r(T0) g \T0\ < 1.
Suppose now that r(T0) < 1. The number series £"=0 | |r*"rS| | converges

since it satisfies the Cauchy root test:

lim Urcf-To-H1"1 ^ lim(||T0*"|| • ||ro
n||)1/n = lim ||ro"||2/" = r2{T0) < 1;

we have used the relations T£" = T%* and ||ro*|| = | | r o | | for To e [Y] ([16], pr .
249, 250). Therefore the operator series £ „ % T*"T^ converges in the sense of
the uniform operator topology on. Y to a positive definite Aoe [Y]. Ao can
be extended to an operator A e [X]. A — T*AT is positive definite on Y as its
restriction to Y is the identity operator on Y.

Lemma 5 follows from Lemma 6 by putting Y = X.

2 Writing 11 ro|[ instead of lubY(T).
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The following two theorems represent the main objective of the present paper.
Theorem 1, dealing with a non-singular operator A. is a generalization of Reich's
result for finite matrices (cf. [3], p. 111). Theorem 2 is concerned with the case of
a singular A.

THEOREM 1. Let A e [X] be self-adjoint, P andP'1 e [X], and let W = P'l +
P*~l-A be positive definite on X. Then r(I—PA) < 1 if and only if A is positive
definite on X.

Proof is given after the proof of

THEOREM 2. Let A £ [X] be self-adjoint, P and P~l e [X]. Let Y be the image
of N{Af by P,T = I-PA, and let Ao, To be the restrictions of A and T to Y
respectively. Let W = P~l +P*~X —A be positive definite on Y. Then

(i) Y is invariant under T, so that To e [Y].

(ii) Y n N(A) = {0}, i.e. AQ1 exists (not necessarily bounded).

(iii) r(T0) < 1 on Y if and only if A is positive definite on Y.

Let, in addition, A be positive definite on Y. Then

(iv) X is the direct sum X = N(A)@Y (not necessarily orthogonal). The pro-
jectors associated with the sum are the operators

00

U = lim Tn, V = X T"(l-T)
n-» oo n = 0

respectively. (The convergence is understood in the norm topology of [X].)

(v) R(A) = N(A)L, i.e. (1) is solvable if and only iffe N(A)1.

(vi) The iterative process (2) converges totally if and only if (I) is solvable;
the limit ii = limnun is a solution of (I), and

(5) u = Uuo + u*,

where

n = 0

(\ii) Let one of the following conditions be satisfied:

(a) PA = AP, (b) PA = AP*.

Then Y — N(A)L, U and V are orthogonal projectors, and u* in (3) is the
solution of (I) with the smallest norm for a given fe N(A)1.

PROOF, (i) Since A is self-adjoint, R(A) = N(A)X, and thus R(PA) c Y. If
ueY, then Tu = u-PAu e Y.

(ii) If ue N(A) n Y, then r ' u e N{Af and
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(Wu, u) = (P~lu, u) + (u,P'iu)-(Au, u) = 0.

Since W is positive definite on Y, u — 0.

(iii) By direct computation we obtain

(6) A - T*AT = (PA)* W(PA).

If A is positive definite on Y, then AQ1 is bounded, since glbY(A) S; mY(A).
(PAO)~X is also a bounded operator, and H = (PA)*W(PA) is positive definite on
Y by Lemma 3. The direct part of Lemma 6 gives r(T0) < 1 on Y.

Suppose now r(T0) < 1 on Y. Then the restriction PA0 of PA to y has a
bounded inverse

(7) (PAo)-l=i,1oe[.n
n = 0

Thus, according to Lemma 3, H = (i1^)*^/*^) is positive definite on Y. The
proof of the assertion (iii) will be accomplished when we show that

(8) (Au, u) = (Hu, u)+ £ (HTku, Tku), u e Y.
k = l

Since A = H+ T*AT by (6), we can verify by induction that

A = £ * k * * + l + \
k

and

(Au, u) =
t = o

for every M € X. If w 6 Y, (AT" + 1u, Tn+iu) -+ 0 and (8) is true.

(iv) Since A is positive definite on Fby assumption, r(T0) < 1 on Y by (iii).
Thus (PAQY1 e [T] by (7) and the composite operator V = (PA0)~

lPA is well
defined as R(PA) <= Y. Obviously,

( iMo)" 1 ^ = I r " ( / - T ) e [ X , Y] cz [Jf],
n = 0

where [X, Y] denotes the space of all linear continuous operators from X into Y.
V is a projector by the definition ([16], p. 241) if Ve [X] and V2 = V. Indeed,

V2 = (PAoy
lPA(PAo)-

1PA = (PA0)~
lPA = V,

since PA(PA0)~
1 is the identity operator on Y. Further,

R(V) = R((PA0)~
lPA) = Y,

N(V) = N((PA0Y
lPA) = N(A),

hence V is a projector of X onto Y and
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(9) X = N(A) © Y

([16], p. 241). The identity

k = 0

implies that U = limnr" = /— V and thus U is the complementary projector of V
which projects X onto N(A).

(v) As R(A) = N(A)1, we have only to prove that R(A) is closed. In virtue
of (9), R(A) = R(A0), and AQ1 maps R(A) continuously onto Y; since Y is
closed, so is R(A) by the well known property of a continuous mapping.

(vi) From (2) with T = I—PA we derive

(10) «„ = Tnu0+"^TkPf;

according to (iv) T"u0 -* Uu0 for every u0 e X, and hence («„) converges if and
only if the series

(11) £ TkPf
k = 0

converges, l f / e N(A)±, the series (11) converges to the sum (PA0)~
1Pf. On the

other hand, if (11) converges, TkPf-> UPf = 0 and Pfe N(U) = R(V) = Y, i.e.
fe N(A)1. (5) then follows from (10).

(vii) (a) Let PA = AP. Then, in view of (v), Y = R(PA) = R(AP) = R(A) =
N(A)1. Let us remark that since necessarily U* = U, T*n — T" -* 0 in weak opera-
tor topology on X.

(b) Let PA = AP*. Then T* = Jand also U* = U. Hence t/is an orthogonal
projector and so is V; thus Y = A^(^)x.

Let either PA = AP or PA = AP*. Then the sum u* of (11) lies in N(A)1 for
every fe N(A)L. Every solution u of (1) is of the form (5) with some u0 e X, and

since Uu0 e N(A) and u* e N(A)1.

PROOF OF THEOREM 1. If A is positive definite on X, N(A) = {0}, Y = X, and
the conclusion about r(I—PA) follows from (iii).

On the other hand, if r(I—PA) < 1, the operator PA has a bounded inverse
(PA)~l. Since P" 1 exists, so does A'1, N(A) = {0}, Y = X, and (iii) applies.

REMARK 1. (a) For A in the form A = D + S+Q with D self-adjoint and
P = (D + coS)~l e [X] (for a real number co), Theorem 1 has been proved by
Petryshyn [8] for a more general class of K-p.d. operators (for more detailed
account see Remark 2 of this paper).
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(b) In paper [11], Petryshyn proved among other things the assertion (iv) of
Theorem 2 (concerning the projection operator U) under the condition that P
is of the form P — /?/; he also proved part (v) of Theorem 2 for this special case.

(c) The assertion (iv) of Theorem 2 concerning the projector U has been
proved under considerably more general conditions in [2].

(d) For A in the form A = D-S-Q with D self-adjoint and P =
(D-a>S)~l e [X] (a> > 0), Petryshyn [6] has proved part (vi) of Theorem 2 with
the assumption (vii) AP = PA, using the additional condition that the spectrum
ff(T) of T = (D — (oS)~x[{\ — a>)D + coQ] contains only eigenvalues of finite
multiplicity with zero as its sole possible limit point.

(e) Weissinger has proved Theorem 2 (i), (ii), (v) and (vi) in the Hauptsatz
of [17] for the Gauss-Seidel method (see Table 1) under the condition that the
operators are either finite matrices or Fredholm integral operators. In his proofs,
however, he hardly uses this restriction. The method used in the proof of the direct
part of our Lemma 6 is essentially that employed in the proof of Satz 1 in [17].
The identity (6) of this paper is a modification of (2.5) in the quoted paper.

Now we apply our results to an abstract Fredholm equation

(12) u-Bu=f,

where B is self-adjoint and completely continuous on X. Obviously, (12) is an
equation of the type (1) with A = l—B. Let N be the null space of /— B, i.e. the
subspace of all eigenvectors of B corresponding to an eigenvalue 1. It is known that
N is of finite dimension. Let N1 be the orthogonal complement of N and Y the
image of A^1 by P, where P and P~1 e [X].

COROLLARY. If I-B is non-negative on X (i.e. M(B) g, 1) and W = P~1 +

+ P*~l — 1+ B positive definite on Y, then the iterative process

K.+ 1 = (I-P+PB)un+Pf, n = 0 , I , - - - ,

converges totally to a solution u of (12) if and only iffe NL.

PROOF. In view of Theorem 2, we have only to prove that l—B is positive
definite on Y. N n Y = {0} by Theorem 2 (ii), therefore (I-B)'1 exists and is
bounded as B is completely continuous ([16], p. 281). According to Lemma 2,
T—B is positive definite.

Let us remark that if 1 is not an eigenvalue of B, then /—B is positive on Jfand
thus, according to Lemma 2, positive definite on X; in this case r(I—P+PB) < 1.

4. Applications to ^-positive definite operators

Let Ke [X] be a fixed positive definite operator on X throughout this section.
An operator A e [X] is called K-symmetric on a closed subspace Y of X if

{Au, Kv) = (Ku, Av) for all u, v e Y,
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and K-positive definite (K-p.d.) on yif, for some positive a,

(Au,Ku) ^ a||w||2 fo ra l lueF
(cf. [6, 8, 10]).

It is known [10] that A e [X] is A"-symmetric on X if and only if A*K = KA,
and K-p.d. on 7 if A is AT-symmetric on Y and KA is positive definite on Y.

To obtain an analogue of Theorem 1 for A"-symmetric A, we replace A in
Theorem 1 by KA andPby PK'\ Then Win Theorem 1 bscomes KP~1+P*~1K-
KA while I-PA does not change. Obviously, KP'1+P*~XK-KA is positive
definite on X if and only if P" 1 + K'1P*~1K-A is K-p.d. on X. Expressing the
result of this substitution in terms of A>symmetry and A"-positive definiteness, we
obtain the following

THEOREM 3. Let A e [X] be K-symmetric on X, P and P~l e [X] and let
W = P-* +K~1P*'1K-A be K-p.d. on X. Then r(I-PA) < 1 if and only if A
is K-p.d. on X.

Similar substitution applied to Theorem 2 gives

THEOREM 4. Let A e [X] be K-symmetric on X, P and P~x e [X]. Denote Y
the image of N(A)L by PK~l, T= I-PA, and Ao, To the restrictions of A and T
to Y, respectively. Let W = P~v + K~1P*~lK-A be K-p.d. on Y. Then:

(i) As in Theorem 2.

(ii) As in Theorem 2.

(iii) r(T0) < 1 on Yif and only if A is K-p.d. on Y.

Let, in addition, A be K-p.d. on Y. Then:

(iv) As in Theorem 2.

(v) R{KA) = N{A)L, i.e. (1) is solvable if and only ifKfe N(A)L.

(vi) As in Theorem 2.

PROOF. If we replace A by KA,f by Kf and P by PK~l in Theorem 2, the equa-
tion (1) bscomes KAu = Kf which is equivalent to (1). The iterative process (2)
for the new setting coincides with the original one:

un + 1 = {I-PA)un+Pf.

Finally, N(KA) = N(A).

5. Special cases

The iterative process (2) is fully determined when the operator P is chosen.
For every particular method, we find the iterative operator T = I—PA and the
auxiliary operator W. Then we can apply Theorem 1 and 2 or 3 and 4.
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We make use of the following modification of a given method. The iterative
process (2) is extrapolated it we replace the operator P by <f>P (usually <p > 0). For
this concept and general theorem on convergence of extrapolated processes see
[15]. The iterative operator of the extrapolated method is I—<j>PA, and under
certain conditions <t> may t>3 found that r(I—(j)PA) is less than r(I—PA) and the
rate of convergence is increased (cf. [10, 12, 15]).

Method I. Let A e [X] be decomposed in [X] into the form

(la) A = D-B-F, B = L+L*,

where

(Ib) D and F are self-adjoint.

Let further a and p be real constants such that

(Ic) P = (aD + PL)'1 exists on X,

(Id) W = (2a-l)D + (p+l)B + F is positive definite on the image Y of

N(A)X by the operator P = (a.D + pL)~l.

PROPOSITION 1. / / the operators D, L, F and the numbers a, p satisfy the

conditions (la), (Ib), (Ic) and (Id), then the basic conditions of Theorem 2 (and

Theorem 1) are satisfied, i.e.

(i) A is self-adjoint,

(ii) P andP~x e [X],

(iii) Wl = P~1+P*~1-A is positive definite on Y.

The iterative operator T of Method I is

(13) T= (<xD + pL)-1[(*-l)D + (p+l)L+L* + F].

PROOF, (i) From (la) and (Ib) it follows that A is self-adjoint.

(ii) P~l e [X] by (Ic). Since the inverse^ = (aD + PL)~l exists on the whole
of X, P is bounded by the Banach theorem.

(iii) One can easily verify that W± = P'l+P*~i-A = (2a-l)D-l-
(P+ l)B + F = W with P defined in (Ic). The iterative operator is T = I-PA =
P(P~1~A), and this gives (13) for P = (aD + pL)'1.

In case that D — I and r (L) = 0, (Ic) is satisfied for all a # 0 and p ^ 0 since
then

(14) (xI + pLy1 = fl(-iy«-"-1firVelX].
n = O

The equality r(L) = 0 is satisfied if L is a strictly triangular matrix in n-dimensional
Euclidean space or a Volterra integral operator in L2[a, b].
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Specializing constants a and /?, we obtain Table 1. Methods (i)-(iii) are well
known standard methods; the parameters co and 4> (overrelaxation and extrapola-
tion factors respectively) are assumed to bs positive.

PROPOSITION 2. If the operators D, L, F and the numbers a, /? satisfy the con-

ditions (la), (Ib), (Ic), together with

(Ie) D is positive definite on Y,

and

(If) a > i, lubY((P+\)B + F) < (2a-l)mY(D)

or more restrictive condition

(If)' a > i, 10+11 lubY(B) + lubY(F) < (2a-l)mY(D),

then the auxiliary operator

(15) W = P~1+P*^1-A = (2a-l)D + (P+l)B + F

is positive definite on Y.

PROOF. Since a > \, the operator (2a — l)D is also positive definite. Then
we use Lemma 4 with a = 1, (2a—1)Z) in place of A and (fi+l)B + Fin place of
B, to infer that W is positive definite if (If) is satisfied. (If) follows from (If)' since
lub (kM+rcN) g |A| lub (M) + K\\ lub (N) for any two M, Ne [X], and any two
real k, K.

Two special cases of Method I are of a particular interest in numerical applica-
tions:

(A) The operators in (la) are matrices in n-dimensional Euclidean space. D
is usually the diagonal of A, L the lower triangle of A, F = 0. The equation (1)
can be transformed (if A is irreducible) into the equivalent equation whose matrix
has the unit diagonal entries, i.e. D = I.

(B) The equation (1) is a Fredholm equation of the form (12) (hence D = /),
where B = L+L*, and L is a Volterra operator (L is completely continuous on X
and r[L) = 0 by the definition), F = 0. If (12) is an integral equation in L2 [a, b],
then the operators B and L are defined by

(B«X0 = \"b(t, s)u(s)ds, (Lu)(t) = \'b(t, s)u(s)ds,
J a J a

where b(t, s) = b(s, t) is a kernel from L2([a, b] x [a, b]).
The following Table 2 gives sufficient conditions for positive definiteness of

the auxiliary operator W in (15) under the conditions (la), (Ib), (Ic) and (le) with
F = 0. The conditions for the extrapolated Gauss-Seidel and overrelaxation
methods are presented for the first time. The table is derived from (If).
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TABLE 2

ii

iii

II.II < -

fulfilled automatically

0 < to < 2

iv

V

vi

0 ^ 2m

' 11*11+™

0 < to < 2 and

||B||+2m

111.11+20,-™
' ||B||+m

Notation: a) m stands for m(D).
b) a+ means Max(a, 0) for any real a.
c) The symbol 0/0, which can appear in the formulae (v) and (vi), is to be taken as 0.

Method II. Suppose that K is an operator as in Section 4, i.e.

(Ila) K e [X] is positive definite.

Let A e [X] be decomposed in [X] into the form

(lib) A = D-B-F, B = L + L*,

where

(He) A, D and F are AT-symmetric on X,

(Dd) LK = AX.

Let further a, ft bs real constants such that

(lie) P = (otD + jSL)-1 exists on X,

(llf) W = (2x-l)D + (P+l)B + F is AT-p.d. on the image Y of TV^)"1 by

PROPOSITION 3. If the operators K, D,L, F and the numbers a, ft satisfy the
conditions (Ila), (lib), (lie), (lid), (lie) and (llf), then the basic conditions of
Theorem 4 (and thus Theorem 3) are satisfied, i.e.

(i) A is K-symmetric on X,

(ii) PandP~le [X],

(iii) Wt = P~1+K-lP*-1K-A is K-p.d. on Y.

The iterative operator T is given by (13).

PROOF, (i) A is AT-symmetric as required in (lie),

(ii) As in the proof of Proposition 1.

(iii) Note that D*K = KD by (He) and Section 4, and that also L*K = AX*
in view of (lid). Then
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= W.

REMARK 2. (a) Method I (ii). If we take F = 0, then the necessary and suffi-
cient conditions for the convergence established in Theorem 1, were given in [5].
Weissinger [17] has proved an essential part of Theorem 2.

(b) Method I (iii). If F = 0, D = I and the operators are finite matrices,
the restriction 0 < co < 2 in Table 2 is a well known condition for the convergence
of the overrelaxation method; Ostrowski proved it necessary and sufficient provid-
ed that A is positive definite (cf. [3], p. 112).

(c) Method I (iv) is basically identical with that of Wiarda. This method for
operators in Hilbert and Banach spaces has been studied by Schonberg [14]. The
sufficient conditions given there are formulated in terms of the operator norm.

(d) MethodII (iii) has been investigated by Petryshyn [6, 8, 12]. The necessa-
ry and sufficient conditions of the Main Theorem in [8] are essentially the same
as those of our Theorem 3 applied to Method II (iii):

THEOREM {Petryshyn). Suppose that Ke [X] is positive definite, and that
A e [X] is decomposed in [X] into the form

A = D + S+Q,

where S commutes with K and D is K-symmetric. Let co be a positive real number
such that (D + coS) has a bounded inverse on all ofX and the operator

co

is K-p.d. on X. Then a necessary and sufficient condition that the spectrum o{T) of
the operator

T= ^

lies in the interior of the unit circle is that A be K-p.d.
If we put L = -S, F = S*-Q, P = (l/co)D + S, then we see that the

auxiliary operator W in (15) is identical with G in the Theorem. We can easily
verify that the conditions (Ila), (lib), (lie), (lid), (lie) and (Ilf) are satisfied.

Methods II (ii), I(ii) and I (iii) are special cases of Method II (iii) (co = 1,
co = 1 together with K = I, and K = I respectively), and the necessary and
sufficient conditions for their convergence equivalent to those given in our Theorem
3 are also given in [8] and [12].

(e) Method II (iv). Theorem 2 in Petryshyn's paper [10] is a somewhat
stronger analogue of our Theorem 3 applied to Method II (iv) in the case that
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the operators are finite matrices. (In Petryshyn's notation B + F = — Q.) Theorem
3 of [12] gives the same necessary and sufficient conditions as our Theorem 3
applied to the extrapolated Jacobi method. [12] presents further generalizations
of the method.

(f) Method II (v) has been suggested by Sisler [15] for finite matrices. The
sufficient conditions for the convergence given in [15] are presented in terms of
spectral radii.
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