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ABSTRACT

The purpose of this note is to draw attention to a semimartingale method which can be
applied to very general types of risk models to obtain local martingales or martingales,
which can then be used in the now classical way to evaluate ruin probabilities.
Relations to the theory of exponential families of stochastic processes are also pointed
out and utilized.

1. INTRODUCTION

Since Gerber (1973) introduced the use of martingale methods in risk theory, these
methods have become a standard technique, see also Gerber (1979). Several papers
have appeared, including Dassios and Embrechts (1989), Delbaen and Haezendonck
(1989) and Schmidli (1995), where martingale methods have been used to analyse
increasingly complicated risk models. A more comprehensive review of the litera-
ture can be found in Grandell (1991) and Schmidli (1994). In this note we use results
from the general theory of semimartingales to derive martingales or local martin-
gales which can be used in the now classical way to asses the probability of ruin in
very general risk models.

2. THE RUIN PROBABILITY FOR A GENERAL RISK MODEL

In this section we will consider risk processes of the following type

X, = u + B, + Z, + S,, (2.1)

where Bo = Zo = So - 0 such that the constant u is the initial capital. The process B
represents the total premium payments between time 0 and time t and the accumu-
lation of other regular and predictable streams of income or payment. It is assumed
to be a continuous process of finite variation. The process S is a jump process
representing the accumulated claims, while Z is a random perturbation which is
assumed to be a continuous local martingale. Thus S, is the sum of the jumps of X in
the time interval [0, t\. We assume that there exists a predictable process S of finite
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variation such that St — St is a local martingale. This is a very weak condition which
usually follows from the Doob-Meyer decomposition theorem. It implies that the
risk process is a semimartingale (It is, in fact, a particularly nice kind of semi-
martingale, which in the stochastic calculus is referred to as a special semimartin-
gale). We will, moreover, assume that the times at which claims occur cannot be
predicted. The technical way of expressing this is that we assume the process X to be
quasi-left-continuous. A more precise definition of this concept can, for instance, be
found in Jacod and Shiryaev (1987), but for the discussion here the slightly loose
definition just given is sufficient. Note that a quasi-left-continuous process is by no
means required to have continuous sample paths. To state these conditions pre-
cisely, it is necessary that all processes are defined on a probability space (il, J7, P)
with a right-continuous filtration {J-t}. It is not necessary to be very precise about
this here, but it may certainly be so in some applications.

The process Z need not simply be some unspecific perturbation. It could, for
instance, be due to the randomly varying value of a portfolio of stocks. If A, is the
value of the portfolio at time t, a simple classical model for the variation of A is the
geometric Brownian motion dAt = aA,dt + aAtdW,, where W is a Wiener process.

In this case the accumulated income in [0, t] from the stock portfolio a J Asds is
r °

included in Bt, while Z, = a J AsdWs.
o

We have assumed that the sum of the jumps of X in [0, t] is convergent. This is
not the case for all semimartingales, but we make the assumption because it
simplifies the exposition considerably and is satisfied for most risk models of
practical interest. Note, however, that there exist results without this assumption
which are similar to, but more complicated than, the following. Since S represents
the claims, all jumps are downwards. The assumptions imposed imply the existence
of a predictable random measure u(u>;dt,dx) on (0, oo) x (—oc,0) satisfying
v{{t} x (—oo, 0)) = 0 almost surely for all t > 0 and

t o

- I I xv(ds,dx) <oo (2.2)
J a
0 -oo

almost surely for all t > 0, such that

/ o
f fSt - / xv(ds, dx)

J J
0 -oo

is a local martingale, see Jacod and Shiryaev (1987, Section II. 1). In the context of
risk theory, v could be called the claim intensity measure. The net-profit condition
for the model (2.1) can be expressed as

I 0

Bt>-f I xv(ds,dx) for a l l / > 0 . (2.3)
0 -oo
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This means that the insurance company adopts the sensible policy to let the
premiums follow the claim intensity. Whether this can exactly be done in practice
depends on how the claim intensity varies with time.

If we make the further assumption that there exists an ro > 0 such that

e~rxv(ds, dx) < oo (2.4)

almost surely for all t > 0 when 0 < r < ro, then it follows from the general
semimartingale theory that the stochastic process

M,(r) = exp[-r(X, - u) - Gt(r)\ (2.5)

is a local martingale for every r in [0,r0], see Liptser and Shiryaev (1989, Chapter
4). Here

t o

G,(r) = ~rB, + l-r
2

<Z> + J J (e~rx - \)v{ds, dx) (2.6)
0 - o o

and < Z > denotes the predictable quadratic variation of Z.
The local martingale M(r) can be used to evaluate the ruin probability in the way

that is now standard in risk theory. Let

r = inf{/ > 0 : X, < 0}

be the time of ruin. Then because a non-negative local martingale is a super-
martingale and because M0(r) = 1, it follows that

1 > E(MTAt(r)) > E(MT(r)\T < t)P(r < t)

for every r in [O,ro] and / > 0. Hence

P (^f )^(exp[Q]lr<0 *»»»'€ [0,,,], ^ )

where we have used that XT < 0 on {T < t}; see also Gerber (1979, p. 133).
By Jensen's inequality we see that

E(exp\-GT(r)}\T < t)'1 < £(exp[Gr(r)]|r < t). (2.8)

Note that GT(r) is a strictly convex function of r satisfying that GT(0) = 0 and

r 0

-G'T{0) = BT+ f f xv{ds,dx) > 0 (2.9)
0 -oo

by the net-profit condition (2.3). That we can differentiate the integral with respect
to v under the integral follows by a standard argument because zero is an interior
point in the range of r-values for which the integral exists. From these observations
it follows that
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£(exp[-rw + Gr(r)]|T< t)

is a strictly convex function of r which decreases from the value 1 at r = 0. When
(2.4) holds for all r > 0, it increases to plus infinity as r —> oo. Hence there exists a
unique r* G [0, r0] for which this function attains its minimum, and by (2.8)

C-)]k<0 (2101

is probably often close to the best evaluation of the ruin probability obtainable from
(2.7).

A simpler evaluation of the ruin probability is obtained if an r-value R, > 0 exists
for which the denominator of (2.7) equals one. This r-value need not be unique, and
it typically depends on t. We see that

P{T < t) < e~R'u. (2.11)

If R, exists for all t > 0 and if R - lim R, exists, then
t^ oo

P(T < oo) < e~uR. (2.12)

Example 2.1 Consider the classical risk model perturbed by a Wiener process W:
N,

Xt = u + ct + aWl-^2Yi. (2.13)
/ = i

Here c is the premium rate, N is a Poisson process with intensity A, and the F,'s are
positive independent identically distributed random variables with distribution func-
tion F and mean value [i. We assume that W, N and {F,} are independent. This model
has been studied by Gerber (1970), Dufresne and Gerber (1991), Furrer and Schmidli
(1994) and Schmidli (1995).

In this particular case, B, = ct, <Z>,= a2t and v(u>; dt, dx) = \F* (dx)dt, with
F*(x) = 1 - F (-x), so

Gt{r)=g(r)t= (-re +l-a2r2 + X[^F(-r) - \]\t, (2.14)

where ipf(s) = Je~sxdF(x) is the Laplace transform of F. Since X in this case is a
process with independent increments, it is well-known that M,(r) is a martingale for
every r in the domain of ipF. We see that R, = R is the positive solution of g(r) = 0.
When a2 = 0, R is the classical adjustment (or Lundberg) coefficient.

A bound on finite time ruin probabilities, which is more precise than exp (-Ru),
can in some cases be obtained as follows. For r € [R, r0] we have that g(r) > 0, so
by (2.7)

P{T < t) < exp[-ru + g(r)t] forall r € [R,r0]. (2.15)

The right hand side of (2.15) attains its minimum at r*, which is given as the
solution of g'(r*) = u/t, provided there is a solution in [0, ro]. Otherwise the
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5.3 Discussion

In parallel with the previous case, this time the product term xnxax in the expression for
E(R'X)involving the unobserved number of deaths ax based on head counts has been
replaced by a'x, the observed number of deaths base on policy counts. Again result
(5.4b) follows trivially from result (5.4a).

A knowledge of the reciprocals of the dispersion parameters y/x is required to form
the weights if the distribution assumptions (5.4a or b) are to be fully implemented. In
the event that the results of a study into the variance ratios for the policies in question
are available, this will furnish estimates for the first two moments xnx and 2nx of the
number of duplicate policies so that modelling can proceed. Alternatively if it is assu-
med that the square of the coefficient of variation of the number of duplicate policies
held by an individual is sufficiently small so as to make the first term on the RHS of
expression (5.5) for y/x is negligible in comparison with the second term,

l

and the situation is analogous to that discussed in Section 4.3.

6. ILLUSTRATION

The dual methodologies are illustrated using the Pensioners' widows 1979-1982 expe-
rience reported in Table 15.5 of Forfar et al. (1988). The data (ax, rx), comprising the
numbers of deaths ax and matching central exposures rx, are reported in the age range
17 to 108 years inclusive. There are 2 + 5 = 7 completely empty cells in the extremi-
ties of the age range and 28 + 12 = 40 cells contain no reported deaths. The detail of
the graduation contained in the above Table is based on Gompertz's formula fitted by
the 'conventional' approach, in which the numbers of deaths are modelled as Poisson
random variables. The data have been regraduated using both the 'conventional' ap-
proach based on assumptions (3.4a) with predictor-link formulation

and the dual approach based on assumptions (3.5a) with equivalent predictor-link
formulation

logmA. =

where mx denotes the respective mean responses. The associated graduation formula,
implied by these formulae, is taken from Forfar et al. (1988). Some details of the res-
pective fits including the parameter estimates are recorded in Table 6.1. The corres-
ponding parameter estimates have opposite signs as expected, but differ slightly in
absolute value because the data entries involving zero deaths feature only in the
'conventional' analysis. Similarly the corresponding values of both the deviances and
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We shall now describe simple situations where the ruin probability can easily be
evaluated. We^suppose that for each t > 0 there exists a distribution function Ft such
that Fs(x) > Ft(x) for all x> 0 and all s < t, i.e. the claim-size distribution at time 5
is stochastically dominated by a single distribution F, for all s < t. This is, for
instance, the case if the claims are subject to deterministic inflation. Under the
condition just imposed, jis < Ji, for .? < t and

s

f[<pu(-r) - l]AMdM < [£,(-/•) - 1]A, for s < t, (3.4)

where fit denotes the mean value of F,, <pt(u) = Je uxdFt{x), and Av = f Xsds is
the integrated intensity of N. °

Now we make the further assumption that the insurance company adopts the
prudent policy that for some constant c > 1

Bs > cjl, / \udu (3.5)

for s < t. If, moreover, a] is bounded by a constant (j for s < t, (3.4) and (3.5)
implies that

Gs(r) < [-rcjl, + p,(-r) - \]AS +-r2tfs

= g,(r)As+\r*tfs (3.6)

for all s < t. The function g,(r) is well-known from classical risk theory. Under the
conditions imposed it is convex, g;(0) = 0 and g'r(0) < 0, so there is a range [0,Rt] of
r-values for which g,(r) < 0. Note that Rt is an analogue of the classical adjustment
coefficient. For r e [0, r0] it follows from (2.7) that

The Laplace transform of AT is rarely known, but when the Laplace transform of
A, is known, it is sometimes possible to proceed in a way analogous to the
derivation of the upper bound (2.16). Quite generally we can use that
—ru + jr2(jt has a minimum at r = u/(ttf), which implies the inequality

P{T <t)< e4"2/«c,2)

provided u/(t(,2) < Rt. In general, we have the result

P(T < t) < expf-RtU + ^Rfft).

This evaluation is, of course, most precise when we can choose R, such that gt(R,) =
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0. Note that we could, in a similar way, treat the case where Q1 is a random variable
independent of AT provided the Laplace transform of (,j is known. Another possible
and manageable assumption is that the process a2 is bounded by a constant times the
intensity A.

Finally, we make the stronger assumption that for s < t the intensity \s is
bounded by a constant d, > 0. By (2.7)

with ht(r) = gt{r)d, +^r2(j. The right-hand side of (3.8) is of the type considered
in Example 2.1, and many ideas that have been used to study that example can be
applied here too. Obviously,

P(T <t)< exp(-/?,w), (3.9)

where R, is the unique strictly positive solution to h,(r) = 0. Here we use that h,(r) is
strictly convex with h,(0) = 0 and h't(0) < 0 provided the strong net-profit condition
(3.5) is satisfied.

4. THE MARTINGALE CASE

Sometimes it can be proved that E{M,{r)) = 1 for all / > 0. Then it follows that the
supermartingale M,(r) is a martingale. We shall briefly consider this situation, where
more accurate results can be obtained, see e.g. Gerber (1979) and Schmidli (1995).
A nice way of seeing this, which also shows how the theory is related to the theory
of exponential families of processes, is to define for each r G [0, /"o] a new prob-
ability measure Qr by

Q,{A) = J' Mt(r)dP (4.1)

for A G Tt and for all t > 0. By the fundamental identity of sequential analysis (see
e.g. Kiichler and S0rensen, 1994)

P(T eB) = EQr(exp[rXT + GT(r)}l{r e B])e-
m, (4.2)

where B C R. The right-hand side can be evaluated as discussed earlier.
The family of probability measures {Qr : 0 < r < r0} was also studied in S0r-

ensen (1993). Under an additional assumption on v it is the exponential family of
processes generated by the semimartingale X. This is, for instance, the case for the
general type of models considered in Section 3 when the claim-size distribution is
constant. We will now concentrate on such models.
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Under Qr the process X is of the form

r

J

Nl

asdWs - ^ Yt, (4.3)
/ = 1

where W is a standard Wiener process, N has intensity <p(—r)\, the claim-size
distribution is exp [rx — log tp(—r)]dF(x) (i.e. it belongs to the exponential family
generated by F), and

B, = B, - r < Z > .
i

All independence assumptions made under P hold under Qr too. These results
follow e.g. from Jacod and Memin (1976), see also Kiichler and S0rensen (1989).

We shall now consider the event {r < oo}. The probability of this event under Qr

is determined by the predictable drift of X under Qn given by
t oo

Bt- xexp[fx - log<p{-r)]dF{x)tp(-r)\sds = B, - r < Z > + <p'{-r)A,
0 0

where we have used that, by standard exponential family theory, the mean value of
the claim-size distribution under Qr is —(p'(—r)/tp(—r). We saw in Section 2 that
under the net-profit condition —Gt(r) is a strictly concave function of r satisfying
G/(0) = 0 and —G't(0) > 0. Now suppose the model is sufficiently ergodic that
t~xGt{r) converges almost surely to a non-random limit g(r), which will then be
convex. Assume further that we can find R > 0 such that g(R) = 0. Then
-g'(i?) < 0, so —G't(R) will tend to minus infinity as t —> oo. Hence
Qr(r < oo) = 1 for r > R, so it follows from (4.2) that

P(T < oo) = EQ(exp[rXT + GT(r)})e-
ru (4.4)

for r> R.
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