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ULTRAMETRIC THETA FUNCTIONS AND ABELIAN VARIETIES
HORACIO TAPIA-RECILLAS®™

Let k& be a field complete with respect to a non-trivial, non-archi-
medean valuation and let g be a positive integer. Consider the follow-
ing question: if I" is a multiplicative subgroup of G, = (k*)? satisfying
certain “Riemann conditions”, can one construct in a natural way an
abelian variety defined over k¥ having G,/I" as its set of k-rational points?
This problem was first considered by Morikawa [3]. J. Tate provided a
complete solution for g = 1 (cf. for example [6]). J. McCabe [2] gave a
partial solution for g > 1. He showed how to attach to I" a graded ring
R of theta functions such that A = Proj. R is a g-dimensional abelian
variety over k. He further constructed a homomorphism ¢: G,/I" — A,
and showed that it is injective. But he could only prove that ¢ is
surjective under restrictive hypotheses, assuming that k is locally com-
pact of characteristic zero. Recently Raynaud [5], Gerritzen [1] and
Mumford [4] have generalized and completely solved the problem we are
considering. But their techniques are non-elementary and it is still per-
haps interesting to show that the map ¢ is surjective within the context
of Tate-McCabe theory, using only simple calculations with Laurent power
series.

That is the goal of this paper.

Let ord.:%k* — Reals denote the order function associated to our
valuation. In part 1 we start with a g X g matrix («/,;;,) with entries
in k* satisfying the following Riemann conditions: «,; = «/,; and the
associated matrix (ord. «7,;;) is positive definite. Following McCabe we
construct the ring R of theta functions associated to («;;), the abelian
variety A and the map ¢:G,/I'— A, where I is the multiplicative sub-
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group of G, generated by the column vectors of («,).

Part II is the heart of the paper. In it we assume that the off-
diagonal elements of (2/;;) have order 0. We call this case the “diagonal
case”. Here the reduction 4 of A plays an important role. For g =1
4 is a rational curve with an ordinary double point; in general 4 is a
rational variety which looks very much like a product of such curves.
We attach to each Pe A, a certain subset S(P) of {1,2,..-,g}; S(P)
describes how singular P is on A. We say that P is a unit point if S(P)
= (& ; this means that P is non-singular on 4. In § II. 3 we use an implicit
function type argument to show that ¢ is 1-1 and that all unit points
are in the image of ¢. The proof that any Pe A, is in ¢(G,) is by
induction on the cardinality of S(P). The key steps in the induction are
an addition formula on A, (Theorem II. 4.6), and the “decomposition
theorem”, (Theorem II. 6.6), whose proof depends on the study of the
zeroes of a certain Laurent series 0p.

We return to the general case in part III. Using the diagonal case
and an isogeny argument we show that ¢ is bijective, assuming only
that each ord. «/;; is rational. This mild restriction is unnecessary as
Gerritzen’s result show, but we have been unable to avoid it.

Throughout this paper we use the following notation: k is a field
complete with respect to a mnon-trivial, non-archimedean valuation,
ord: k* — Reals is the associated order function, @, .# and % are the valu-
ation ring, maximal ideal and residue class field of the valuation. U is
the unit group of ¢ and G, is the product of g copies of k*.

I

Part I is concerned with the definition and basic properties of the
ring of theta functions R. It contains a proof that A = Proj. R is an
abelian variety of dimension g over k.

Most of this material can be found in the first three chapters of
McCabe [2], but our arguments are somewhat simpler.

§1.1. The ring of theta-functions

A Laurent series over k is a formal sum > ,., &/, X7, &/; ¢ k, which
converges for all (z,, -..,2,) € G,. (we shall use standard multivariable
notation throughout. If I=(,, ---,%,) then X’ means [[,X%). The
Laurent series form a Fk-algebra . The subring of % consisting of
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series with ;€@ is called ¥,. £ is a domain, and if an element of
& vanishes on all of G, each &/; = 0. Suppose n>1and (r) =(ry, -+, 7y
e(Z/nZ). An element > &, X’ of ¥ is said to have n-parity (») if
/1 =0 unless each ¢; reduces to 7; mod.n. Let ¥ denote the sub-
space of elements of % having wn-parity (). Then we get a decomposi-
tion & = @,, £ ; the “n-parity decomposition of £”.

Let («7;;) be a g X g symmetric matrix with entries in k* such that

the associated matrix (ord. &;,) is positive definite.

Let Vj = (%]1, v ',Mjg)) Qj = ij- If m> 0, Rm(‘%ij) (OI' just Rm)
will denote the set of elements 6 €. which satisfy the following func-
tional relation:

(P) ﬁ(VjX) = q]—mXJ—Zma(X) j =1,2,..--,0.

Note that if 6(X) = Y b, X’ eR,, and VI = [[., &% it follows from
the relation (P) that the b;’s satisfy:
(P/) bIV§Q§" = b1+27n61 .7 = 1’ 2) e g
where ¢, =0, ..-,0,1,0,---,0)

(€]

THEOREM 1.1.1. Let m>0 and ¥ = @D, £ be the 2m-parity
decomposition of ¥. If R =R, N £, then:
1) R& is a l-dimensional k-vector space.

2) Rm = @(7) R;,:) and dimk Rm = (zm)g
38) R=&7R, is a graded k-algebra with R, = k.

Proof. Suppose > b;X’eR%. Using the relation (P') we see that
b; determines b; for I = I’mod. 2m. Thus dim. R < 1. To complete
the proof of 1) we exhibit a generator of R¢Y’. Take representatives of
r; in Z and by abuse of language call them », too. If ¢; = 2mt; + r,,
set

g
—_— ti(mti+7ry) Titg+7gl
bl_l’[qjj JtTy H&{j;/ oty
Jj=1 J>e

and let b; =0 if I £ (r) mod. 2m. Set o(X) = > b, X".
A calculation shows that the b, satisfy (P). Also

ord. b; = > ¢,(mt; + r,) ord. q; + § (rit, + rt; + 2mt,t,) ord. o,
J J
=m >, t;it, ord. &, + > r;t, ord. o,
7sé R
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Since the matrix (ord. «/,;) is positive definite, ¢ € & and 1) is proved.
2) and 3) are obvious.

The decomposition of R, in the Theorem is called the 2m-parity
decomposition of R,, and R is called the graded ring of Theta functions
associated to the matrix («;)).

There is a relation between the graded rings R(s7,;;) and R(&7),
n > 0, that we shall make constant use of. Namely:

() be Rm(eﬁ{zj) = 0 € Ry, (7))

These are easily verified. Using (a) together with Theorem I.1.1.
we get:

ProposITION 1.1.2. If n is o fixed positive integer, S, = R, (%)
18 o k-vector space of dimension 2mn)?, S = ®y S,, 18 a graded k-algebra,
R,C S, and R is a subring of S.

Next using (b) with m replaced by mn we see that 6(X) — (X7
defines a graded homomorphism S R of degree n?. The restriction of
this map to R is a graded endomorphism of R of degree n?. Both of
these maps will be denoted by «,. A dimension count shows that «,(S)
consists precisely of those elements of R that can be written as Laurent
series in X7,7=1,2,---,9.

THEOREM 1.1.8. R is integral over a,(R).

Proof. We first show that S is integral over R. ILet 6¢S,. For
1<i<g let T)0) = q»X™0(V,X). Then:

T,0)(ViX) = q(@:X)™o(VH(V . X))
= (@rXimgimm)(g; ™ (q. X )™V . X) = q; ™" X7 T,(6) .

Thus T, eS8, for i=1,2,---,9 and we have defined operators
T;:Sp— Sn. An easy induction shows that TiH)(X) = qr®X™g(ViX),
for all £. Thus 77 is the identity map on S,. Also

(T;THO) = Ti(Q}nX?mﬁ(VjX)) = qr XA Xo(V,;, V., X) .
Since this is symmetric in ¢ and 7, the T, commute.

For each 7, the various T;:S, — S, fit together to give a graded
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automorphism of S which we also denote by T,;. Let T be the finite
group generated by the automorphisms 7';. By the definition of T,, R
is the subring of invariants of S under T. So, S is integral over E and
a,(S) over a,(R). It remains to show that every 6 e R is integral over
a,(S). We may assume that ¢ is in some R,, and has a definite -
parity. But then 6* is a Laurent series in the X7, lies in «,(S), and the
theorem is proved.

Now let E be the g X ¢ matrix all of whose entries are 1. Then

the 29 X 2¢9 matrix (“%“ &5") clearly satisfies the Riemann conditions.
7]

Let R’ be the graded ring of theta-functions attached to this matrix.
We shall label the Laurent series variables by X,,...,X,,Y,,---,Y, in-
stead of X, --+,X;,. Then a Laurent series (X, Y) is in R}, if and only

if:
(1) oV,X,Y) = ¢;"X;"9(X,Y)
(2) 0X,V,;Y) = q;"Y;"0(X,Y) .

In particular, if ¢ and ¢ are elements of R,, then #(X)(Y) is in
R!, and we get a map R, ®, R,, — R.,..

PROPOSITION 1.1.4. The above map is bijective; thus R’ is the 2-fold
Segré product of R with itself over k.

Proof. Injectivity is clear. To prove ontoness it suffices to const-
ruct elements of pre-assigned 2m-parity in the image of R,,® R,,. This
may be done by taking 6(X)p(Y) where ¢ and ¢ have the desired 2m-
parities.

The following proposition is the key to the construction of a group
law on A = Proj. (R).

ProOPOSITION 1.1.5. If dcR,, then ¢/(X,Y) =60(XY,XY VeR},. 06
defines a graded endomorphism B of R’ of degree 2. pof maps 6 to
0(X? Y? and R’ is integral over B(R’).

Remark. 6(XY,XY™) is shorthand for
XY, -+, X, Y, X, Y, -, X, Y71 .
Proof.
gWV,X,Y) =0V, XY,V,XY™") = ¢;™X,Y ) *mq;™(X,;Y;)*™g .
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Since (X,;Y)(X,;Y;") = X? we get the first functional equation for ¢'.
Similarly, using the fact that (XY)(X'Y) = Y? we get the second, and
¢ € R;,. We see at once that g is a degree 2 endomorphism and that
Bop = a. By Theorem I1.1.3, with R replaced by R’, R’ is integral over

BER).

For technical reasons connected with characteristic 2 we shall also
need a 4-fold Segré product. The 4g X 4¢g matrix which has 4 copies of
(7;;) down its diagonal and all 1’s elsewhere satisfies the Riemann con-
ditions. Let R” be the corresponding graded ring of theta-functions.
Label the Laurent series variables by X,,---,X,Y,---,Y,Z,,---,Z,
T, --+,T,. The proof of Proposition I1.1.4, gives:

ProrosiTiON 1.1.6. The natural map R,Q®R,®R, R, — R 1is
bijective and R is the 4-fold Segré product of R with itself over k.

ProposITION 1.1.7. If 6 R, then
X, Y, Z,T) =0XYZ, XZ*'T, XY T, YZ'TY) e Ry, .
0 — 0" defines a degree 3 graded endomorphism n of R”. pop = a; and

R” is integral over p(R").

Proof. Similar to that of Proposition I.1.5 and based on the identities:
XYZ)XZ'TYXY'T™) = X3
XYZ)XYYTYZ'TY) =Y
XYZD)XZT-HYYZT) = Z°
XZ'THYX'YT)(YZT) =T¢ .

Remark. The proof of Proposition I.1.5 essentially rests on the

fact that A oA’ = 2] where A is the matrix G _%) Similarly, Prop-

osition I.1.7 uses the fact that Bo B’ = 81 where

1 1 1 0
1 0 -1 1
B =

1 -1 0 -1
0 1 -1 -1

§1.2. Finite generation of R

In this section we show that the graded ring of theta functions is
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a finitely generated algebra over k. In the course of the proof stronger
results are obtained, namely:

(1) if char. k # 2, R, generates R,, for large m.
(2) if char. k #+ 3, R, generates R, for large m.

LEMMA 1.2.1. The elements of R, have no common zero in G,.

Proof. Let q; = &7;;; by extending k¥ we may assume ¢; = b} with
byek*. If I =(@,- 1), t; =2mt; + r;, let
g .
CI = ﬂl b;] n Mmu .
i=

r>8
and set o(X) = 3 C; X"
Since ord. C; = %34 ord. q; + 2.5, 4,8, 0rd. &, and the matrix
(ord. &/,;) is positive definite, p e #. Clearly we have:

CI+5j = CI‘bZJ)'ij+l H Jf;; .
[y
Thus
g .
(sl———]l M§§>Cl = 07'Crs, >
and
¢(VJX) = b;lX;lgﬁ(X) "]. — 1, 2’ BRI/ AR

Let 0(X,Y) = o(XY)p(XY""). The proof of Proposition 1.1.5 shows
that 6e R,. So ¢ is in the image of R, ® R,. Now suppose all the ele-
ments of R, vanish at some point ze€G,. Then 0(x,Y) =0, so ¢(xY)
‘oY) =0. But & is an integral domain and ¢ # 0, so the lemma
follows.

THEOREM 1.2.2. Let m > 0. Then the elements of R, which are
power series in X have no common zero in G,.

Proof. Let z be any element of G,. By Lemma 1.2.1 there is a
0 € R(«/7) such that 6(x™) # 0. Then by the remark preceding Proposi-
tion 1.1.2. 6(X™) e R, («/,;;) and does not vanish at =x.

Let n > 0. We assume for now that char. &k does not divide » and
the group U, of n-th roots of unity is contained in k. Recall that S,
- Rmn(&{ ::Lj)-
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For m >0 and = (u, ---,u,) € Uy let R, , denote the set of ele-
ments 4 ¢ ¥ satisfying the following functional relation:

oV, X) = u;q7"X;0(X) j=1,2,---,9

PROPOSITION 1.2.3. Let n,U, and S,, be as above. Then each R, ,
is o subspace of S, of dimension (2m)? and S,, = @y Bp,. @) e UL

Proof. Let T,: % — % be the operators of Theorem 1.1.3. Ifde R, ,
then T,00) = u,0 and T3 = 6. By the proof of Theorem I1.1.3,S,, is
the subspace of % fixed by the 7%, so R, , CS,. Also the R, , are just
the subspaces of S,, corresponding to the various irreducible representa-
tions of the group 7. So S, = ®u Bn,- The proof that dimR, ,
=(2m)? is similar to that of Theorem I.1.1. We omit it.

PRrOPOSITION 1.2.4. With the same notation as above, the elements
of R, of pvre-assigned n-parity have no common zero in G,.

Proof. Let () =(ry,---,7,) be a given n-parity. Suppose e R,
with trivial n-parity. By extending k we can get C, e k* such that

o= ([l im0,
t=

If ©)=(C, ---,Cp, set oX) = (]9, X7)-0(CX). Then o(V,X)
= ([T0 Z 3 X[0q;"(C; X )7"0(CX) and it follows that ¢eR,, with n-
parity ().

The zeroes of ¢ are just translates of the zeroes of 6 by C-!. But,
by Theorem 1.2.2, the 0 ¢ R,, with trivial n-parity have no common zero.

COROLLARY 1.2.5. If m is a multiple of n, the elements of R, , of
pre-assigned n-parity have no common zero in G,.

Proof. If (r) is the given n-parity and xe G, choose §,¢ R, with
trivial n-parity such that 6,(x) += 0 and 6,e R,, with n-parity () such
that 6,(x) 0. If m = np, 677'0,¢ R, ., and has n-parity ().

The following simple lemma will be used to prove the finite genera-
tion of R.

LEMMA 1.2.6. Let M be a graded algebra over a field k. Assume:
M,, = 0 for all negative m, M,, is finite dimensional over k for all m and
there is a polynomial P such that dim M,, = P(m) for all large m. Then,
if M, generates M,, for infinitely many m, it generates M, for all large m.
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Proof. Let M be the subalgebra of M generated by M, and P be
the Hilbert polynomial of M ne By assumption, M, = M =» for infinitely
many m. Thus P and P are equal at infinitely many m, P = P and
dim M,, = dim M,, for large m.

Suppose now that we are in the situation of Proposition 1.2.3 with
n = 2. In other words, we assume that char. k # 2.

PROPOSITION 1.2.7. If char.k # 2 and n = 2, then S, generates S,
for all large m.

Proof. It suffices to show that each 6¢S,, is in S;-S,. For then S,
generates S, for all » and we can use Lemma 1.2.6.

By Proposition 1.2.3 we may assume 0 ¢ R,;, for some ue U, and
that 6 has a definite 2-parity. Choose 6, € R,; ,, with the same 2-parity as
6 so that 6,(1) #0. (see Cor. 1.2.5). Let ¢(X,Y) = 6(XY)0,(XY™). It
is easy to see that pe Rj,. Since # and #, have the same 2-parity, ¢ is
a power series in X%, Y? and therefore is in «,(S,) ® a,(S,), (cf. remark
after Proposition 1.1.2). Thus,

o(X, X) = 0,(1DOX?) = 6,(De(0) € ax(S,) - ax(Sy) 5 0eS,-S,
and we are done,
THEOREM I1.2.8. If char.k + 2, R(«/,;) generates R,,(</;;) for all

large m, and the graded subring R, = @y R,, of the ring of theta func-
tions is a finitely generated k-algebra.

Proof. By extending ¥ we may assume «/,; = b}; with b;; e k* and
b;; = by, Since S,(b;;) = R, (,;), the first part comes from Prop. 1.2.7,
and the second part follows.

THEOREM 1.2.9. If char. k = 2, the ring R of theta functions is a
finitely generated k-algebra.

Proof. Since multiplication by a non-zero element of R, gives an
isomorphism of the R,-module &7 R,,,, with an ideal in R, ®f R, .,
is a finite R,-module. So R is a finite K ,-module and a finitely gen-
erated k-algebra.

We now treat the case of characteristic 2. More generally we sup-
pose that char.k +3. We take n =38 and assume temporarily that
U, C k.
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ProOPOSITION 1.2.10. With the assumptions above, S, generates S,, for
all large m.

Proof. As in the proof of Prop. 1.2.7, it suffices to show that each
8eS, is in S,-S,-S;. We may assume that 6e R, , and has a definite
3-parity. Choose 6, ¢ R,;, with the same 3-parity as 6 so that 6,(1) + 0.
Choose 4, ¢ R,, with trivial 3-parity so that 4,(1) = 0. Set

oX,Y,Z,T) =0XYZ2),(XZ'Te,(XY'TY9,(YZ'T™) .

It is easily seen that ¢ e Ry, and is a power series in X3, Y3, Z3, T%, so it
lies in the image of a,(S;) ® ay(S;) ® ay(S;) @ as(S,). Then (X, X, X,1)
= 02(1)6,(1)A(X®) is in ay(S,) - ay(Sy)-a,(S,) and so 4e S, -S,-S,.

THEOREM 1.2.11. If char.k + 3 then Ry(</;;) generates R,,(«,;) for
oll large m, and ®F R,,, is a finitely generated k-algebra.

Proof. By extending k¥ we may assume that U; C k¥ and that «;;
= b}; with b;;€k* and b,; = b;;. Since S, (b;;) = Ryn(y;), the result
follows from Prop. 1.2.10.

Imitating the proof of Theorem 1.2.9, we have:

THEOREM 1.2.12. If char. k # 3, the ring R of theta functions is a
finitely generated k-algebra.

Finally, by Theorem I1.2.9 and Theorem 1.2.12, R is a finitely gen-
erated k-algebra no matter what the characteristic of the field & is.

§1.3. The structure of Proj. (R)

Let R be the graded ring of theta functions associated with the
matrix (#;;), let A denote the scheme Proj.(R) and A, the set of its
k-valued points. Let I' be the multiplicative subgroup of G, generated
by the column vectors of («,,). In this section we show that A is an
abelian variety of dimension g over k and construct a canonical homo-
morphism ¢: G,/[" — A,.

Let x be any element of G,. By Lemma I.2.1, there is a 6 ¢ R, such
that 6(x) = 0. Thus we have an evaluation homomorphism ¢,: R, — k
which induces a morphism ¢,: Spec. (k) — Spec. (B,). This gives us a
k-valued point P, of A. P, depends only on the class of 2 modulo I,
and we have defined a function:
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o: G,/ — Ay
x——>P$.

The following standard facts will be needed later on.

LEMMA 1.3.1. Let NCM be graded rings with M integral over N.
Then the open sets Spec. (M,), ne N;, 1 > 0, cover Proj. (M) and the maps
Spec. (M,) — Spec. (N,) piece together to give a wmorphism Proj. (M)
— Proj. (N).

LEMMA 1.3.2. Let M and N be graded algebras and ¢, ¢,: Proj. (M)
— Proj. (N) morphisms. Suppose further that ¢, and ¢, have the same
restrictions to Spec. (M,) for some neM, r >0, and M is a domain.
Then ¢, = ¢,.

We are now ready to interpret the results of the last two sections
geometrically.

THEOREM 1.3.3. Let p: R’ — R’ be the map 6(X,Y)— 6(XY,XY™).

Then:

) R’ is integral over B(R').

(2) A’ = Proj.(R’) is the scheme theoretic product A X A of A with
itself over k.

3) B induces a morphism f*: A X A— A X A.

4) The map A, X Ay, — A, X A, induced by p* takes (P,,P,) to
Pays Paye).

Proof. Assertions (1) and (2) come from Propositions I.1.5 and 1.1.4.
Lemma I.3.1 and (1) give a morphism A’ — A’ induced by 8. Since A’
identifies with 4 x A we get the morphism g* of (3), and (4) follows
from the definition of g.

With the notations above let:

1) m:A X A——>A be the morphism 4 X AﬂA X A %5 A where
7, is projection on the first factor.

2) —1,:A-—- A be the morphism induced by the automorphism 6(X)
— 40X of R.

3) 04:A——>A be the morphism A —> Spec. (k) —2 5 A where e is the
k-valued point P,

THEOREM 1.8.4. With the operations defined above A is a commuta-
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tive group scheme over k. The map ¢:G,/['— A, constructed at the
beginning of this section is a group homomorphism.

Proof (In outline). To show that A is a commutative group scheme
we must verify the commutativity of certain diagrams expressing the
associative and commutative law, and the existence of a unit and in-
verse. For example, for associativity we must show that the morphisms
mo(id, X m) and mo(m X id,) from A X A X A — A are the same. To
do this we choose affine open subsets U and V on A X A X A and 4
such that mo(d x m) and mo(m X id) take U into V. An obvious but
tedious calculation shows that the two induced maps ['(V) — I'(U) coin-
cide and we apply Lemma 1.3.2 (for a more detailed proof of a similar
result see Theorem 1.3.5). Finally, (4) of Theorem I1.38.83 shows that
m:A, X A, — A, takes (P, P, to P,,:i.e. that v — P, is a homomor-
phism.

THEOREM 1.3.5. For each n > 0 the map a¥f: A — A induced by «a,
18 just group scheme multiplication by n (which we will denote by n,).

Proof. Since R is integral over «,(R), we get a morphism of schemes
af:A—A. We show first that if 4 and ¢’ are in R, then the pull-back
of ¢/0e'((A X A),) under «f X id is #(X", X)/0(X", X), at least on some
principal open subset U of A, xn 5.

To see this, take » #0 in R,. Since R, = R,,® R, direct calcula-
tion shows that the pull-back of 6/ (X)y(Y) under o«f x id. is (X, X)
P (XM(X). Since a similar formula holds for the pull-back of
0 [ (X)(Y), we get our result where U is defined by (X" (X).

The theorem can now be proved by induction on n. 7 = 1 is obvious.
(n + 1), is the composite map

moffo(n, xid)iA—>AXA—>AXASA,

Fix G=+0 in R, and suppose FFeR,. Then F/G™ in ['(A;) pulls back
to F(X)G(Y)"/GX)"G(Y)™ under z, and this pulls back to F(XY)GXY )™
/GXY)"GXY-)™ under g*. By induction, (n, X id) = (¢f X id). If we
apply the result of the paragraph above with = G*", we conclude that
the pull-back of F//G™ under (n + 1) 4 = 70 f* o (o X id.) is FI(X**) | G(X )™
over the affine subset of A defined by GX""HGX"HGXMNGX). The
theorem then follows from Lemma 1.8.2 applied to the maps «,,; and
n + D,
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THEOREM 1.3.6. The scheme A = Proj. (R) is an abelian variety of
dimension g over k.

Proof. From Theorem 1.3.4, A has the structure of commutative
group scheme over k. Since R is a finitely generated k-algebra and an
integral domain, A is of finite type, reduced and irreducible. If L is a
finite extension of %, let R(L) be the graded L-algebra corresponding to
the matrix («;;) over the field L. Then R®,L ~ R(L) and is a domain.
Hence, A remains reduced and irreducible under finite extensions of k%,
and since it is projective, it is an abelian variety. Since dim. R, = (2m)?
for all m > 0, A has dimension g.

II

In this part we show that the map ¢: G,/I' — A, defined in §1.3 is
an isomorphism provided the elements off the main diagonal of the
matrix («7,;) are units in the valuation ring 0. Throughout part II we
make this assumption on the «/;,’s. Note that q, = «;; € 4 because of
positive definiteness.

§II.1. The reduction of A4

Let R = &y R,, be the graded ring of theta functions associated to
the matrix («7,;). If m is a positive integer, let R, , denote the sub-
space of R, consisting of Laurent series with coefficients in ¢. The 2m-
parity decomposition R, = @, BRY, r;€ Z/2mZ, induces a decomposition
R,=®,, R, where RY),=R>NR, , LetR,=R, ,/ #Ry,, R=&7R,.
Then R, is a direct sum of 1-dimensional subspaces R’ = R(),/ #RY,
over k.

There is an obvious map R, ,— k[X,, X;'] given by > «/; X’ -5 7, X"
The kernel is evidently .#-R,,, so R, identifies with a subspace of
Ek[X,, X;7']. We now calculate what this subspace is. Rather than taking
7; to be elements of Z/2mZ we shall take 7; to be integers with —m
<r; <m. Then, by Theorem I.1.1, every e R, , may be written as
>3 b;XT where

g
— ti(mej+7) gttt
b; = qujﬂnj J J;IZM%J ’“~b(,.)
i= g

where b,,€0,1 = (i, ---,1%,) and i, = 2mt; + 7r;.

https://doi.org/10.1017/50027763000017943 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017943

78 HORACIO TAPIA-RECILLAS

Now each o/, (7 # ¢) has order 0. Also t,(mt; + ;) > 0 and equality
holds only when ¢; =0 or when ¢t; = —1 and r; = m. Thus the reduc-
tion > b,X?, of 4 only involves monomials with |i,| < m. In particular
the monomials X7 appearing in a generator of E{’ are just those for
which the following conditions hold:

iy =7 whenever |7;| < m
i; = *+m Wwhenever v;=m.

ProposiTION 11.1.1. R, generates R,, for all m > 0.

Proof. 1t suffices to show that R.R, =R,,, for all m >1. If
R, ., = ®, R, is the 2(m + 1)-parity decomposition of E,,, it suffices
to construct a non-zero element of R.E, of arbitrary 2(m + 1)-parity
@ =@y, -,1), —(m+ 1) <r,<(m+1). We argue by induction on
2. 174, and define numbers ¢; and d; by:

c; =0, d;=r; if |r;] <m
c; =1 if r;=m, —m,m +1
di=m—1, 1—m,m ifr;=m, —m,m+1.

Let 0, generate R and 0, generate B®. The monomials X’ appear-
ing in 4,0, are just those for which:

i =7y whenever |7;] <m
i, =m or m — 2 whenever 7; =m
i, =—mor2—m whenever 7; = —m

i; = +(m + 1) or =(m — 1) whenever 7;,=m + 1.

In particular, a generator 0, of B¢}, occurs as a component of 4,0,.
By induction it will suffice to show that every other 4, occurring in 4,0,
has >[s;] <>l|r;. Now X* must appear in 4.0, So by the above,
either s; =r;, or |r;]>m and s; = =(m —2) or +(m —1). If (s) # (1),
we are in this latter case for at least one index j. Since m > 1,|m — 2|
<Iml, |s;] <|ryl, 23 18;1 < 20 |7r;| and the proposition is proved.

The above result and Nakayama’s Lemma show that E,, generates
R,.,, for all m. So the graded ring R, = ®; R,, is generated by R,.
Let B, be the space of linear maps R, — k. Then we may identify A,
with a Zariski-closed subset of the projectification of R,. The linear
maps i: R, — k which correspond to points of A, are those which can
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be extended to k-algebra maps R, — k. If xeG, then P, corresponds
to the evaluation map 4 — 6(x).

For Pe A,, the corresponding element of R, will be denoted by ip.
We shall normalize ¢, so that ¢p(R,,) = @. It is still, of course, only
determined up to multiplication by a unit of 0.

We next define bases ¢, and 2,, of R,, and R,,, that we shall make
constant use of. Namely, if «;e{—1,0,1,2} let 4, be a generator of
R, If a;€{0,1}, let 2, be a generator of R{<. The monomials X’ ap-
pearing in 4, are just those for which:

1y = ay whenever a;=0,1 or —1
iy = *2 whenever a;=2.

The monomials X’ appearing in A, are just those for which:

;=0 whenever  «; =0
1; = +1 whenever a;=1.

If PcA,, let X (P)=1p,). The X, (P) are projective coordinates
for P. Since the 4, are a basis for R,, and ¢» is normalized, the X (P)
are in @, but not all in ..

Now let A = Proj. (B) and A; be the set of k-valued points of 4.
Since R, generates R, we may identify A; with a Zariski-closed subset
of the projectification of féz. Let iz be the map corresponding to P. For
Pc4d,, X (P) =10, give projective coordinates for P.

Each normalized i,: R, — k gives by reduction a non-zero map R, — k.
Thus we get a reduction mapping P— P from A, to 4;. If P has
projective coordinates {X,(P)}, those of P are {X,(P)}.

§I1.2. A stratification on A4
To simplify notation let 6, = 6,..., and 6; =6,,...,1 .., for j=1,2,

---,9. We may assume that the reductions of 4,,64,,6,, ---,8, are 1, X, X,,
.++, X, respectively. Let x; denote the rational function 4,/6, j =1,2,
...,g on A. Since 4, is a polynomial in X, and X;! with coefficients in
k, the rational function 6,/6, on 4 is given by 3 ¢;#7, ¢; € k* where the

sum extends over all (i, ---,7,) such that

i,-:iz if aej=2.
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THEOREM 11.2.1. For each Pc A; there is o uwique subset S = S(P)
of {1,2,---,9} such that:

(1) if a2 =S, then X,(P)+#0
(2) if a2 pS, then X, (P)=0.

Proof. The uniqueness of S(P) is obvious. To prove the existence,
let (0,, .#,) be a valuation ring dominating the local ring (0p, #5) of P
on A. Let v be the order function attached to the ring 0,.

With %, = 8,/8,, let S = {j:v(x;) + 0}. Writing 8,/8, as >, ¢;x’ with
c; e k* we see:

(*) v(ext) = }; 1,0, > %}?2 min. (v(z)), v(x;1)
(**) v(0,/0,) > _}'_;2 min. (v(x,), v(z;Y) .

If a7%(2) = S, there is exactly one term 27 such that the equality in
(*) holds, so strict equality holds in (**). Suppose now that for some
a with «7(2) = 8, X (P) =0. Let = (8, -, B,) be such that X,(P) 0.
Then the rational function 6,/8, is in 4 C A, Since «'(2) = S, the
above calculation shows that:

0(0.18;) = v(@./8) — v(,/8) < 0

which is a contradiction, and (1) follows.

In order to prove (2), note that if «='(2) # S, we have strict in-
equality in (**). Now let g be such that §7'(2) =S. By ), X,(P) # 0
and so the rational function 4,/0,¢ 0. Since a7'(2)p S, the above calcu-
lation shows that v(0,/6,) > 0 and so 4,/0,¢ .#, Therefore 0,/0,¢ .45
= #, N 0 and (2) follows.

THEOREM I1.2.2. Letis:R,—k be the map associated to PecA; and
let S=S(P). Then:

(1) a') =8 = i) # 0
(2) DN S= i) =0.

Proof. 2[0,= ( dx")?, d;ek* with i, =0 when «; =0,i, = &1
when «; =1, and z; = 6,/0,.
It follows that:

(A2 /0y > }_12 min. (v(z)), v(z;")
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with equality if «~'(1) = S and strict inequality if «!(1) & S.
To prove (1) suppose a;€{0,1} with «~'1) = S. Choose g;e{--1,0,
1,2} so that g~%(2) = S. By Th.I1.2.1, 22/d,e 0. Furthermore:

v(22/0,) = v(22/0) — v(G,/8,) =0 .

Thus 22/0, is a unit in 0 and (1) follows.
Similarly, if ') 2 S, 22/0,e 05 N M, = M7 and (2) follows.

Suppose now Pec A, with reduction P. By the support S(P) of P
we meon the set S(P) of Theorem 11.2.1. We conclude this section with
some remarks which we will use constantly.

(a) Pc A, has empty support if and only if X,(P) is a unit.

(b) Suppose ¥ = (¥, - -+, Y,) € G, with |ord. ;| < $ord. g;. Then S(p(¥))
= {j:ord. y; = 0}

() 2,X) = 2] b, X* where ¢; = 2, + a; and ord. by = >, %,(t; + ) ord. q;

@ 6.X) =2 b, X! where i, = 4t, + «; and ord. b; = 33, ¢,(2t; + a,) ord. q,.

(a) is immediate from the definitions of S(P). We call such points
unit points; in the next section we study them carefully. We get (c)
and (d) by specifying m to be 1 or 2 in the remarks before Prop. I11.1.1.
To prove (b) we use:

LEMMA 11.2.3. Let 0+ qe # and yek* with |ord.y| < :ord. q.
Let xe{0,1},te Z and set s =t(t + @) ord. ¢ + 2t + @) ord. y. Then:
(1) if «a=0,s>0
(2) if a=1,8> —|ord.y|. For ord.y >0 (respectively ord.y <0) equal-
ity occurs if and only if t = —1 (respectively t = 0).

Proof. (1) is trivial. In order to prove (2) note that if ord.y >0
then s > 2 + 1)* — D ord. ¥, and if ord. y <0, s > (2t* — 1) |ord. ¥|.

LeEmMMA I1.2.4. Suppose y = (¥, - - -, Y,) € G, with |ord. ¥,| < }ord. g,.
Let S = {j:ord. y; #+ 0}. Suppose a;€{0,1}. Then:

*) ord. 2,(y) > —;glord. Y.
J

Furthermore, equality holds if o '(1) =S and inequality holds if
a (1) 2 S.

Proof. By (¢), 2,(y) = > byy* where
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ord. (b;y) = Zgjlsj = i}ltj(t, + ay ord. q; + (2t; + a;) ord. ¥, .
J= 7=

So by Lemma I1.2.3, ord. (b;¥") > —> ] cs|ord. ¥;| giving (*). Suppose
now that « (1) = S. Then there is precisely one monomial b4’ in 1.(y)
such that ord. (b,¥7) = —2,ecslord. y;] (whenever ord.y; = 0,t, = 0.
When ord. y, > 0,¢; = —1 and when ord. y; <0, ¢, =0). Thus equality
holds in (*). Finally, if a7'(1) 2 S, there is an index j such that «; =0
and ord.y; # 0. Then, s; > 0> —|ord. y;| and the last assertion follows.

Remark (b) is an immediate consequence of Lemma I11.2.4 and
Theorem I1.2.2. (note that i(22) = 2,(¥)* up to multiplication by a non-
zero constant independent of «).

§11.3. The unit points of A4,

Let U denote the multiplicative group of units of the ring ¢ and U,
be the set of unit points of A, (i.e. points with empty support). In this
section we show that ¢ induces a bijection U? — U,. The injectivity of
p: G,/ — A, follows easily.

Let PcU,. We shall normalize the coordinates of P so that X,(P)
=1, Then X,(P)e0 for all «:{1,2,.-+,9}—{—1,0,1,2}, Furthermore,
if PeA, and « is such that «”!(2) = &, then X, (P)e U. In particular
XP), -, X,(P) are in U. (here X; =X,,... 1 0.

THEOREM 11.3.1. The restriction of the canonical map ¢:G,/I"'— A,
to U? is a bijection of U’ with U,.

Proof. 1If ze U, it follows from remark (b) of § I1.2. that ¢(x) € U,.
In order to prove bijectivity, it is enough to show the following:

@) v:U07— U x— 0,(2)/0(), - - -,0,(x)/6,(x)) is 1-1 and onto.
(2) Two unit points with the same values of X, ---, X, must be equal.

We proceed to prove (1) and (2). We may normalize the 6, so that
=1+ .--, and 4, = X, + ---. Then « is “close to the identity” so
(1) is intuitively clear. To give a rigorous proof, suppose u = (u,, - - -, u,)
eU?. Let T:U?— U? be the map x — x—+(x) + u. It suffices to show
that T has a unique fixed point.

Let » =min. (ord. ¢;). If x,y e U’ set ord. (x — %) =min. ord. (x; — ¥,).
We know that 6,(X) = 3 C;X” where ¢; = 4t;, and ord. C; = } 2t} ord. ¢;.
Soif I+(@,---,0), ord. C; > r. It follows that if x,ye U?:
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(@) ord. (6y(®) — 6,(¥)) > ord. (x — y) + 7.
Let 6¥(X) = 0,(X) — X,0,(X). A similar calculation gives:
(o) ord. (6F (@) — 6F(y) > ord. (x — ¥) + 7.

Now the difference between the j’th coordinate of T'(x) and of T(y)
is 0¥(®)/6,(x) — 6F(¥)/0,(y). Using (a), (b) and the fact that 6,(x) and 6,(»)
are units, we see that this has ord. > ord. (x — %) 4+ r. So T is a contrac-
tion mapping. Since k is complete, so is U? and T has a unique fixed
point.

To prove (2) note that for any a, (6)* '([]%. ()8, is an element
of By, which only contains terms X’ with 0 < i, < 4. So we may write:

@ ([T @0°)0. = Fuln by, -+, 0)

where F, is a homogeneous polynomial of degree 4g with coefficients in
k. Lift F, to a homogeneous F, with coefficients in ¢. Then 62-*([¢-, 696,
and F, (6,0, ---,0,) differ by an element of .#R,,,. Since R,, generates
Ry, , we have:

ezv-l(ﬁ az)aa — F (0001 - -, 0,) + CG.(6,)
i=1

where C e # and may be taken independent of «, and each G, has coeffi-
cients in ¢. From this we deduce polynomial identities that hold on all
A. Namely suppose Pe A, with X,(P) = 1. Then:

) ([ XPP)XP) = £.EP), - X (P) + Co.X (P

where f,, 9. have coefficients in @. Suppose now that P and @ are unit
points with X,(P) = X,;,(Q). Then X,(P) and X,Q) are in ¢ and each
X,(P) is a unit. (*) and an easy induction show that X (P) = X ,(Q) mod C*
for all n. So X,(P) =X.(Q) and P = Q.

THEOREM II.3.2. ¢:G,/I' — A, is injective.

Proof. Suppose o(x) = ¢(1) = P. Modifying « by an element of I”
we may assume ¥ = (x,, ---,%,) with |ord. z,/ < 4 ord. q;. Now P is a
unit point. So by remark (b) of §II.2 each ord.z; =0 and ze U?. By
the theorem above, x = 1.
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§I1.4. An addition formula

THEOREM I1.4.1. Suppose Q,R e A, with disjoint supports. Then
S(QR) = S(Q) U S(R).

The proof of this result will occupy the rest of this section. It is
based on an addition formula, Theorem 11.4.6, which plays a central role
in this paper. Recall that A’ is the abelian variety attached to the
29 X 29 matrix with two copies of («/;;,) down its diagonal and ones
elsewhere. We identify {1,2,-.-,2¢9} with the disjoint union of two
copies of {1,2, ..., 9} in the obvious way. Then a map «:{1,2,---.,2g}
— {0, 1} may be thought of as a pair of maps g and 7:{1,2, ---, g} — {0, 1}.
Under the identification of R with R, ® R, 2(X,Y) corresponds to
2,(X)2,(Y), and similarly for R; and 6,(X,Y). If PeAj, S(P) may be
thought of as a subset of the disjoint union of two copies of {1,2, ..., g}.
On the other hand P identifies with some (Q,R)e A, X A, and we have:

LEMMA I1.4.2. S(P) is the disjoint union of S(Q) in the first copy
of {1,2,---,9} and S(R) in the second.

Proof. ip(2,(X,Y)) = g(2:)iz(2). The result follows easily from
Theorem I1.2.2. applied to A4’.

LEMMA 11.4.83. Let Q,ReA,. Suppose there is a subset S of {1,2,
-++, 9} such that

ord. i,z A,XY)2(XY™)) >0
for all B,7:{1,2, -+, 9} —{0,1}, with equality if ') =) =S and
tnequality if g7'(1) 2 S or y*1) p S. Then S(QR) = 8.

Proof. igror-y@Qs(X)2,(Y)) = iqrA(XY)2(XY™). So if the hy-
potheses of the lemma hold, Theorem II1.2.2 applied to A’ shows that the
support of (QR,QR™Y) is the disjoint union of two copies of S. By
Lemma 11.4.2, S(QR) = S(QR™Y) = S.

LEMMA I1.4.4. Suppose the monomial X°Y? appears in 2,XY)
2(XY ). Then:

whenever B; = r; both &, and p; are even
(#) Jwhenever p; = y; both 6; and 3; are odd
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Iwhenever r; =0, d; =79, mod. 4
whenever y; =1, §; # 5; mod. 4

Proof. 2,XY)2(XY™") is a sum of monomials of the form Xm*rym=-»
with m; = g, mod. 2 and n; = y; mod. 2. The result follows.

LEMMA I1.4.5. Suppose we are given By, 1,06, 7; such that B; and y;
are in {0,1},6; and y; are in {0, +1,2}, and (*) of Lemma 11.4.4 is satisfied.
Then the coefficient of X°Y" in 2,(XY)A(XY™) is (unit) (], q;) where j
runs over all indices such that é; =1; = 2.

Proof. Let 2,(X) = > b;X* and 2,(X) = > C;X?. The coefficient we
are studying is just b,,,:Cu_pr-  (*) shows that (6; + 7,)/2 = g; mod. 2,
and that (6; — »;)/2 =7, mod. 2. Also (J; + »,)/2 and (3, — 5,;)/2 are both
in {0, =1} except for the single exceptional case d; =5, = (6; + 7,)/2 = 2.
The result now follows from remark (c) of §II.2.

THEOREM II.4.6. 2,(XY)A,(XY™) = 3>3,;,C,.0,(X)8,(Y). Here ¢ and y
range over all maps {1,.--,9}— {0, +1,2} satisfying (a) and (b) below,
and C;, = (unit) (I] q,), the product ranging over all j such that §; =
7 = 2.

(a) whenever B, = y; then §; and 5; are in {0,2}. They are equal when

r; = 0 and unequal when y; = 1.

(b) whenever 8; + 7y, then §; and 5, are tn {—1,1}. They are equal when

r; = 0 and unequal when y; =1

Proof. 2,(XY)2(XY ") eR; and so may be written as >;, C; ,0,(X)
-6,(Y). Lemma II.4.4 shows that only ¢ and y satisfying (a) and (b)
can occur in this decomposition. Comparing coefficients of X°Y” and
using Lemma I11.4.5 we get the result.

Taking every B; and r; equal to 1 in Theorem I1.4.6 we get:

THEOREM 11.4.7.

where a ranges over all maps {1,2, ---, g} — {0,2} and the C, are units.

We mnow prove Theorem II.4.1. Suppose S(Q) N S(R) = &, and let
S =8(Q) USR). It suffices to show that the hypotheses of Lemma 11.4.3
are satisfied. So, by Theorem I1.4.6 we must show that > C, X,(Q)X,(R)
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is a unit when g7'(1) = y7'(1) = S and is in 4 when g7'(1) B S or y (1)
2 S.

Suppose first that g7'(1) =7y =S. For jeS(@Q) let §;, =2 and
7; =0, for jeS(R) let 6, =0 and 7, =2 and for jeS let §; =5; = 0.
Then 4,7 satisfy the conditions of Theorem II1.4.6 and C; ,X,(QX, (R) is
a unit. Suppose we have any pair 9,7 appearing in the expansion of
,(XY)2 (XY™, If X,(Q) is to be a unit we must have §; = 2 (and 5, = 0)
for jeS(@). If X (R)is a unit, 5, =2 (and d;, = 0) for j e S(R). Finally
if C,;, is a unit, §;, =79; =0 for 7¢S. So C;,X,(@X,(R) is a unit for a
single pair and > C, X,(Q)X (R) is a unit.

Suppose next that g7'(1) » S. Take an index jeS such that g, = 0.
If y, =1 then §; and 7; are in {#+1} and X,(QX (R)e.#. If y; =0 then
either 6, = 7; = 0 so that X,(Q)X,(R)e 4, or §; =7; =2 so that C, e ..
Thus > C, , X;(@QX (R)e 4. We argue similarly if y7*(1) 5 S.

§II.5. The function 6,

Let PecA,. Thenip:R,— k induces a map i, ®1: Ri=R, QO R,— R,.
If 0eR; its image under i, ® 1 is denoted by (#|X = P). If P = o(x),
then U(X,Y)|X = P) is just the Laurent series 6(z,Y).

We abbreviate 2,...; to 2, and let + be the element 4,(XY)A,(XY™)
of R;, For PecA, let 6p = (Y| X = P). 6p, like ip, is determined up to
multiplication by a unit in @.

If 6cR, and Qe A, we say that 6(Q) = 0 if iy(6) = 0. Note that
6(p(x)) = 01if and only if d(x) = 0. We shall need a simple result, Propo-
sition I11.5.2, concerning the zeroes of 6, which follows from:

LEMMA IL.5.1. 6-(Q) = 0 if and only if either Z(PQ) = 0 or Z(PQ™Y)
= 0.

Proof. (P,Q) and (PQ,PQ™Y) are in A, =A4, X A, and so give
homomorphisms Ry, — k. ip,.q = i1p @ty and i pg,re-0(X, Y) = ip ¢,0(XY,
XY .

Thus:

1pe(A)ipe-1(A) = tpo,po-1A(X)2(Y)?)
= ip,0 (V) = (ip ® 1) (Y = io(6%)

and the result follows.
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ProrosiTiION 11.5.2. Suppose P,Q,RcA, and 64(R) = 0. Then,
either 0pg-,(QR) = 0 or 6po((QR)™") = 0.

We next study the Laurent expansion of 6p.

ProrosiTiION I1.5.3. 6, = >, C.X, . (P)d, where o ranges over all
maps {1,2, ---,9} —{0,2} and each C, is a wunit.

Proof. Apply i @1 to both sides of Theorem II.4.7.

PRrROPOSITION I1.5.4. The reduction of 6(Y) is a non-zero polynomial
m Y; and Y;'(A <7< g), which does not involve Y; or Y;' if je S(P).

Proof. If «:{1,2,...,9}—{0,2} is chosen so that a~'(0) = S(P), then
X,_.(P) is a unit. So by Proposition I1.5.3 d, = 0. Suppose now 5 ¢ S(P).
Then, if a; =0,0, does not involve Y, or Y;! while if «; =2, X,_,(P)
€ #. The result follows.

§11.6. The decomposition theorem

Throughout this section we assume k algebraically closed. Our goal
is the following ‘“decomposition theorem”: Suppose PecA,. Then P
= QR where Q = ¢(2,1, ---,1) for some zek* and 1¢S(R). We begin
the proof with a criterion which guarantees that 1z S(R). Suppose
Re A, and (@, ---,%,) € (£*)?~'. We say that (@,, - - -,%,) is in Ny if there
exists u = (u,, - - -, u,) € U? such that w, lifts %, for ¢ > 1, and 6z(u) = 0.

ProposITION I1.6.1. If 1eS(R), then Ny is contained in a proper
Zariski-closed subset of (k*)7.

Proof. Let Gz be the reduction of 6. By Proposition II1.5.4, 85 is
a non-zero polynomial in Y; and Y;! for j>1. If (&, ---,%,) € Ny then
9}2(77’27 b '977(]) = 0.

We next derive some simple results on the zeroes of power series

and Laurent series in one variable.

LEMMA I1.6.2. Suppose H(X) = > ¢ o Xt e O[[X]] with H+ 0 and
oe M. Then there exists an x e 4 such that H(x) = 0.

Proof. Let s be the smallest index such that o/, is a unit. By the
Weierstrass Preparation Theorem, H(X) = G-(X°® — > i7* C;X¥) where G
is a unit in O[[X]] and each C;c.#. Now k is algebraically closed and
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x may be taken to be any root of X* — > 37! C, X"

LeMmMA I1.6.3. Let %, be the ring of everywhere convergent Laurent
series, >.=. o, X!, with </;e0. Suppose Ge ¥, with G # 0. Then any
root & of G in k* lifts to a root of G in U.

Proof. Let xe U be any lifting of . Replacing G by G(xX) we
may assume % = 1. Let «:.%, — O[[Y]] be the homomorphism mapping
X on1—Y, and H=(G. Then H=G1 —Y) =0, and H(0) = 0.
By the lemma above, H(y) = 0 for some y e .#, and G(1 — y) = 0.

The next result requires some notation. Suppose G is an everywhere
convergent Laurent series in X,X, -, X, and © = (u,---,u,) € U"
Let G, be the 1-variable Laurent series G(X, u,, - - -, u,). If g(X) = > 0,X’
is an everywhere convergent Laurent series let ord. g = min. (ord. b;).
Finally if g is a polynomial over £ in X, and X;'(1 <7 < n) let (U™,
={ue U": g@m) + 0}.

LEMMA I1.6.4. Suppose G is an everywhere convergent Loaurent
series m X, -+, X,. Write G = >7,9:X,, -, X)X} and suppose that
for at least two tndices 1, g, = 0. Then there exists a real number »
and o g+ 0 such that whenever we(U"), there exists a yek* with
G,(¥) =0 and ord. y = 7.

Proof. Let d;, = ord.g,., We may assume min. d; = 0. Multiplying
G by a power of X, and replacing X, by X;' if necessary we may as-
sume that d, =0 and that d; == oo for some positive j. Suppose first
that d, = 0 for some j > 0. Take =0 and § = g,g;. Then if ue (U"),,
90(w) and g¢,;(u) are units. So G, = > g, (w)X*® has at least two unit coeffi-
cients, G, has a root in £* and G, has a root with ord. = 0 by Lemma
I1.6.3. In general note that d;/i — co with 7. Let » = —min,.,d;/7 and
choose Cek* with ord. C = ». Replacing G by G(CX, X, --,X,) we
reduce to the previously handled case.

We apply the above result to 65, where P is a given element of A4,.

PROPOSITION I1.6.5. There exists a real number r and an h =0 such
that whenever (u,, ---,,) € U™t with h(,, ---,u,) # 0, then there exists
a yek* with 0p(y,u,, ---,u,) =0 and ord. y = 7.

Proof. 6p =>,C,X,_.(P)4, and the C X, ,(P) do not all vanish. So
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if we write 0,(X) = > = hy(X,, - - -, X)X we find that h; = 0 for all ¢
in some congruence class mod. 4. Now apply Lemma I1.6.4.

THEOREM 11.6.6. Suppose Pc A, with 1 S(P). Then P = QR where
Q= ¢,1,---,1) for some zek*, and 1¢S(R).

Proof. Taker and k as in Proposition I1.6.5. Choose z € k* with ord. z
= —7 and set Q =¢(z,1,---,1). Suppose that &= @,, ---,%,) € (k*)o-t
and k(@) # 0. We shall show that % is either in Npy—, or in (Npp)~'. It
will follow from this that either Npq-, or Np, is Zariski-dense. Replacing
z by z7' if necessary we can assume Np,-, is dense. By Proposition
11.6.1,1 ¢ S(PQ™Y). Since P = Q(PQ™"), the theorem will follow.

To show that % is either in Npg-; or in (Npg)~! lift it to (uy, -+, u,)
in U and choose y as in Proposition II.6.5. Set B = o(y, u,, - - -, u%,).
Then 6p(R) =0. Now, since ord.z = —7r, (Y2, U, -+ -, %,) is in U’ and

its image under ¢ is QR. Since ¢x(R) = 0, Proposition 1I.5.2, shows
that p9-1(QR) = 0 or 0,o((QR)™") = 0. In the first case % € Npg-,, in the
second case (W)~ e Np,.

THEOREM I1.6.7. In the situation of Theorem I11.6.6, S(Q) = {1} and
S(R) = S(P) — {1}.

Proof. @ and R have disjoint supports so we may apply Theorem
11.4.1.

§I1.7. ¢ is surjective

THEOREM I1.7.1. Suppose k is algebraically closed. Then ¢:G,/I’
— A, is surjective.

Proof. Suppose PcA,. We show that P eIm(p) arguing by induc-
tion on the cardinality of S(P). If S(P) = &, Theorem II.8.1 shows that
Peco(U?. If S(P)+ & we may assume 1eS(P). Since k is algebraically

closed we may write P = QR as in Theorem I1.6.6. Theorem II1.6.7 and
induction conclude the proof.

We next show how to eliminate the hypothesis of algebraic closure.

LEMMA I1.7.2. Let 0+ qe A4 and yek* with |ord.y| < $ord.q.
Suppose ac{0, +1,2},teZ and s = t@2t + o ord. ¢ + (4t + «) ord. ¥.
Then:

@D if a=0,8=>0

https://doi.org/10.1017/50027763000017943 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000017943

90 HORACIO TAPIA-RECILLAS

@ ifa==+1l,s>—lord.y|. If a=—1and ord.y >0, or if a =1 and
ord. y < 0 equality occurs only when t = 0.

@) if a=2,8> —2|ord.y|. For ord.y > 0 equality occurs only when
t=—1. For ord.y <0, equality occurs only when t =0,

Proof. (1) is clear. To prove (2) and (3) note that (@2t + «) > 0.
Thus the results hold if ord. ¥y =0. If ord.y >0, s> (2t(2t + a) + (4t + «))
ord. y, while if ord.y <0, s > (2t@2t + a) — (4t + a))|ord. y|. The calcu-
lation is now straightforward.

LEMMA I1.7.3. Suppose y = (yy, -+ -, ¥,) € G, with |ord. y;| < +ord. q;.
Let S={j:ord.y; +0}. Let «:{1,2,---,9}—{0,2} be the map such
that «'(2) = S. Then ord. 4,(y) = —2 3 c5]ord. ¥yl

Proof. By (d) of §11.2, 6.(y) = >, by’ where
ord. (b;y") = ilsj = i‘l(tj(th + apord. q; + (4t; + ay) ord. y,) .
j= Jj=

By Lemma I1.7.2, s; > —2|ord. y;| for jeS. Thus ord. (b;y")
> —22 eslord. ;). Also if equality is to hold we must have t; =0
for jeS,t; = —1 when ord.y, >0, and ¢; =0 when ord.y; <0. So
there is only one monomial for which equality holds, and the lemma
follows.

LEMMA I1.7.4. Situation as in Lemma I1.7.3. Suppose ord.y, + 0.
Define B;€{0, 1,2} by setting B; =a; if § > 1,8 = —1if ord.y, > 0 and
B =1 if ord.y, <0. Then ord.0,(y) = |ord. y,| — 2> ,cslord. y,|.

Proof. Entirely similar to that of Lemma I1.7.3.
THEOREM IL.7.5. ¢:G,/I' — A, is bijective.

Proof. Theorem II.3.2 shows that ¢ is 1:1. To prove ontoness
suppose PeA,. Let L be a complete algebraically closed extension of
k. By Theorem IL7.1 there is a y = (¥, -+, ¥,) € (L*)? with ¢(y) = P,
and we may assume |ord. ¥;| < Ford. g;. Suppose ord. y; # 0. Define «
and g as in Lemmas IL.7.2 and I1.7.3. Then

lord. ¥,| = ord. 6,(y) — ord. 6,(y) = ord. (X,(P)/X,.(P)) .

In particular there exists an z, € k* such that ord. 2, = ord. y,. Similarly
choose ;€ k* so that ord.xz; = ord.y, and let » = (x,---,2,). Then
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yzr'e Uy, so p(yx~") is a unit point. Since o(yx™!) = Pp(x™") it is in A4,.
Thus Po(xz™) € (U9 and P e o(G,).

IIT

In this part we show that the map ¢: G,/I" — A, is bijective assuming
only that the matrix (#,;) is such that each ord. &/;; is rational. We
do this by reducing to the diagonal case (cf. §II).

§IIL.1. Isogenies

Let () be a g X g matrix with entries in k* satisfying the Riemann
conditions (i.e. (#;;) is symmetric and (ord. .«;;) is positive definite).
Let S =(s;) and T = (¢;;) be g X g matrices over Z such that S-T = nl,
n # 0 and let

by = [] Ligps
k.4

It is readily seen that the matrix (D,;) also satisfies the Riemann
conditions. Attached to the matrix («/;,) are the period vectors V,, the
group I', the graded ring R(«7;;) of theta functions, the abelian variety
A and the map ¢: G,/I' — A,; similarly attached to (b,;) we have W,
I'",R(b;;),B and ¢': G,/I" — B,.

The following identities are obvious:

(1) [T o5 = I 73
J J
(2) 1—; by = o7,

Let 2,4, G, — G, be the maps defined by:

A@) =@, ---,y;)  where  y, = [] x

J
@) = (2, - -+, 2, where 2, =[] o4 .
J

ProposiTION III.1.1. 2, maps I" into 1,2, maps I" into I' and the
composition in either order is the map x — x™.

Proof. The image of V, under i, is the vector whose i-th compo-
nent is []; &7+ = [[, bi7. But this is just the vector []; Wis. Similar-
ly 2,(W,) = [, V»+. The last assertion is obvious.

For fe% let y(X) =60(Y}, ---, Y where Y, = [[; X% and ,(X)
=0Z,--+,Z,) where Z, = []; X‘¥.
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ProposiTION 111.1.2. If @€ R,(D;) then e R, (). If @
e R, (7;;) then e R, ..(b;;). Consequently 6 — , (resp. 6 — ) gives a
graded homomorphism of degree nu : R(b;;) — R(/;;) (resp. p,: R(<Z4y)
— R(b;;), and the composition (in either order) is the map a.: 6(X)
— O(X™).

Proof. (V,X) =0, ---,Z%) where Z, = [[;(«,,X,)*%. 1t follows
from (1) above that Z7 = ([], b/7)Y? and thus

&g, -, Z0) = (n W;ﬁ)(Y;z Y.
J
Since 0 e R,,(b;,),
%G@sz(ﬂbwmym(ﬂlﬁmmﬂwﬁm.

By (2) this is just &7 X7 (X), and so i, € R, .(o7;;). Similar-
ly for +,. The other statements are obvious.

PropoOSITION II1.1.3. The homomorphisms of Proposition 111.1.2 are
fintte and induce morphisms of group vorieties pf: A — B and pf:B— A.

Proof. Since the composition (in either order) is the map «,. which
is finite (¢f. Theorem I.1.3), 1, and p, are finite. So we get morphisms
of varieties A — B and B — A which are readily seen to be group variety
morphisms.

From Proposition II1.1.3 we get homomorphisms pf: 4, — B, and
1 B, — A,. The composite map A, — B, — A, is the map induced by
@yt R(oZ,;) — R(oZ;;) which by Theorem 1.3.5 is multiplication by =%

§HIL2. ¢ is bijective

ProrosiTioN I11.2.1. There is a commutative diagram of maps:

A 2

G,/ —>G,|I" G,/

b, b
v 5

A, —> B, —> A,

where the 2; are induced by the maps of Proposition II1.1.1.
Furthermore (A0 2)(x) = «™* and pf o pif 18 just multiplication by n’

Proof. The commutativity of the diagram follows in a straight-
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forward way from the definition of the maps. The last assertions fol-
low from Propositions III.1.1 and III.1.3.

Now we proceed to show that ¢ is bijective.

Let 4 be a subring of the reals, R. We say that a ¢ X g matrix
</ over R is A-diagonalizable if there exists an invertible matrix S, over
4 such that S«/S; is diagonal. Let Z, denote the localization (not the
completion) of Z at the prime £.

THEOREM II1.2.2. Let a;; = ord. «/;; and « be the matriz ().
Suppose that </ is Z,-diagonalizable for every prime £. Then the map
¢: G,/ — Ay is bijective (for the matriz («,)).

Proof. Let S, be an invertible matrix over Z, diagonalizing & and
let T, = S;!. Replacing S, and T, by integer multiples prime to ¢ we
get matrices S and T over Z with ST = ul, (n,4) =1 and S«&S¢ diago-
nal. Let ;; be defined as in §III.1. Then the matrix (ord. d;;) which
is equal to S«S?, is diagonal. So by the main result of § II, the map
¢’ of Proposition III.2.1 is bijective.

Now let ® € G,/I" be such that ¢(x) = 0. Then by Proposition III.2.1,
A@) =1 and so 2™ =1. But n may be taken prime to any 4. Since
the n? obtained in this way generate the unit ideal in Z,x = 1. Simi-
larly, if Pe A, let P’ = y#(P). Then P’ ¢ Im. ¢ and so n’P ¢ Im.¢. Since
# may be choosen prime to any ¢, PeIm. ¢ and the theorem is proved.

The following slight modification of Theorem II1.2.2 will be useful
later.

THEOREM II1.2.3. Suppose a;; = ord. o/;; € Z and generate the unit
ideal. Suppose further there exist positive integers my, - - -, m, such that
« @ diag. (my, - - -, m,) s Z-diagonalizable for every prime ¢. Then ¢ is
bijective (for the matrixz ().

Proof. Since the a;; generate the unit ideal, there exist q e k* with
ord. g = 1. Then the matrix

T

PR
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also satisfies the Riemann conditions and the corresponding order matrix
is o« @ diag. (m,, - - -, M,).

Let I'; be the subgroup of k* generated by ¢™, and E,; the corre-
sponding elliptic curve. Then by Theorem III.2.2 the map

is bijective. Therefore ¢ is bijective too.
The following simple result will be proved in the appendix.

LEMMA. Let («;;) be a symmetric matriz with entries in Z,. Then:
D if ¢+ 2, (ayy) s Z-dingonalizable.

2) if £ =2, there exist integers m,, - -, M,
which are powers of 2 such that (a;;) @ diag. (m,, - - -, m,) is Z,-diagonal-
1wzable.

Let («7;;) be our matrix satisfying the Riemann conditions. Combin-
ing the above lemma with Theorem III.2.3 we have:

COROLLARY 1. If ord.«/,;€Z and generate the unit ideal, then ¢
18 bijective (for the matriz (<7;))).

COROLLARY 2. If each ord. «y; is in Q, or less generally, if the value
group of the valuation is contained tn Q,then ¢ is bijective.

Appendix Quadratic forms over Z,

Let B be a discrete valuation ring, M a finite free R-module and
(,): M X M-—-R a symmetric bilinear map. The following lemma is
easy linear algebra.

LEMMA 1. Let ny, ---,n,e M and N be the R-submodule generated
by the ny's. If det.((n;,n;) is a unit in R, then the n,'s are R-linearly
independent and M = N @ N-.

We say that M is decomposable if M = N®O N’ with N and N’ non-
zero submodules of M and orthogonal; M is diagonalizable if it is the
orthogonal sum of 1-dimensional submodules; and M is primitive if there
exist m, m' e M with (m,m’) a unit in E.

THEOREM 1. If 2 is a unit in R, then M is diagonalizable.

Proof. We may assume M primitive. Let m,m’ e M with (m,wm’) a
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unit. Then (m + m/,m + m’) = (m, m) + (m’, m’) + unit. So there exists
neM with (n,n) a unit. By Lemma 1, M = Rn @ (Rn)* and we use in-
duction on the dimension.

COROLLARY 1. Let o be a symmetric matriz over Z, (4 + 2). Then
there exists an invertible matriz S over Z, such that S«/S° is diagonal.

Suppose now that 2 is not a unit in R.
LEMMA 2. If M is primitive and indecomposable, then dim. M < 2.

Proof. If there exists m e M with (m,m) a unit then by Lemma 1,
M = Rm @ (Rm)+. So M = Rm and dim. M = 1. Suppose that (m,m) is
in the maximal ideal of R for all m. Choose m, and m, with (m,, m,) a
unit. By Lemma 1 and indecomposibility, M = Rm, + Rwm,.

THEOREM 2. For any M there exists a diagonalizable R-module N
such that the orthogonal direct sum of M and N is diagonalizable.

Proof. We may assume M primitive and indecomposable. By Lem-
ma 2 we may assume M generated by e, and e, with (e, ¢), (e, €,) in the
maximal ideal and (e, e, a unit. Replacing e, by a multiple we may
assume (e, e,) = —1. Let N = Re, with (e;,¢;) =1. Then (e, + e, ¢, + ¢€;)
= 0. Since (¢, + e, ¢, + ¢;) and (e, + e, ¢, + €;) are units we conclude
from Lemma 1 that M @ N admits an orthogonal basis consisting of
e, + e, e, + e, and one other vector.

Remark. The proof of Theorem 2 shows the following: if = is a
generator of the maximal ideal of R, then N can be choosen to have the
form @ Ru, with (u;, u;) = z™5,;.

Taking R = Z, and = = 2 we have:

COROLLARY 2. Let & be a symmetric matrixz over Z, Then there
exist my, - - -, m; which are powers of 2 such that the matric o @ diag. (m,,
cee,mg) 18 Z-diagonalizable.
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