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Let E[t] be a locally convex Hausdorff topological vector space. An extended decom-
position of £[T] is a family {£«}„ G ̂  of closed subspaces of E such that, for each x in E and each
a in A, there exists a unique point xx in £„, with £ xa = x. Here convergence will have the

following meaning. Let $ denote the set of all finite subsets of A. The sum £ xa is said
aeA

to be convergent to x if for each neighbourhood U of 0 in .E, there is an element <j>0 of <5 such
that x— £ xae I/, for all 0 in O containing <f>0. It follows that £ *a is Cauchy if and only

ae4> aeA

if, for each neighbourhood U of 0 in E, there is an element <j>0 of $ such that £ xa e U,
OLGtfr

for all <£ in d> disjoint from <£0.
Let Px be defined by Pax = xx. Then Pa is a projection of £ on to Ex. Let S^ = £ Pa

for each </> in O. If each Pa (equivalently, each S^) is continuous, we say that {Ea}aeA is an
extended Schauder decomposition of E[x],

Motivated by corresponding questions in the theory of (countable) Schauder bases and
decompositions (see, for example, [9, §4]), we examine the following problems.

A. When is a weak extended Schauder decomposition strong?
B. For which locally convex spaces are extended decompositions Schauder?
If {Ea}aeA is an extended Schauder decomposition of E[o(E, E')], the partial summation

operators 5^ are easily seen to be strongly continuous. The problem in (A) is to prove the
strong convergence of {S^x} to x. In (B), the problem is to establish the continuity of the
partial summation operators.

These questions have been examined by Arsove and Edwards [2] and Marti [10] in the
case of an extended basis of a locally convex space. This is just the case of an extended de-
composition into one-dimensional subspaces. The answers obtained are:

(a) In a barrelled space, any weak extended Schauder basis is strong.
(b) In a Frechet space, any extended basis is a Schauder basis.

Our results, for decompositions, improve " barrelled " to " cr-barrelled " in (a), and
" Frechet" to " strict (LF)" in (b).

An extended Schauder decomposition of a space E[t] is said to be uniformly bounded
if, for every bounded subset A of E, (J S^A) is bounded in E[x\. This is equivalent to: for

every fi(E', £>bounded subset B of E', (J S;(B) is j3(F, £>bounded.
4>e<b

A locally convex space E[z] is said to be o-barrelled [4] if every o(E\ £)-bounded sequence
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in £ ' is equicontinuous, and to be o-quasi-barrelled if every p(E', £)-bounded sequence in E
is equicontinuous.

We denote by y(E, E') the topology on E of uniform convergence on the /?(£', £)-bounded
subsets of £ ' .

THEOREM 1. Let £ [T] be a o-quasi-barrelled space. Then any uniformly bounded extended
Schauder decomposition of £[<?(£, £')] is an extended Schauder decomposition of E[y(E, E')].

Proof. Let {Ea}aeA be a uniformly bounded extended Schauder decomposition of
E[o(E, £")]• Then each S^ is <r(£, £')-continuous. The adjoints S^ are then £(£ ' ,£)-
continuous, whence each S^ is y(E, £')-continuous. The main problem is to prove that,
for each JC in E, {S^x} is y(£, £')-convergent t 0 x- We know that {S^x} is a{E, £')-convergent
to x. Since y(E, E') has a base of a{E, £')-closed neighbourhoods, it is sufficient to prove
that {S^x} is y{E, £')-Cauchy. Suppose that this is false for some x in E. Then there is a
/?(£', £)-bounded set B in E' such that, for each (f> in ©, there exists 4>' in <t>, with (j>r\<j>' = 0
and Srx$B°. Choose a sequence {<£J of mutually disjoint finite subsets of A such that

for each k; then choose x'k in B such that

> 1 for each k. (1)

Let A = {S'<j>kx'k:k = l,2,...}. Then Ac [j S'^B). Since the decomposition is

uniformly bounded, A is /?(£", £)-bounded. Since E[z] is a-quasi-barrelled, A is equicon-
tinuous; hence A° is a r-neighbourhood of 0 in E.

Now U S^(£) is a C7(£, £')-dense subspace of E, and hence is also r-dense. We can

therefore find zeS^0(£), for some 0O in $ , such that x—zsA°.
Then

Now choose fc so large that 4>kr\4>o = 0- (This is possible since $ 0 is finite, and the sets <j)k

are disjoint.) The second term above is then zero, and we have a contradiction to (1).

COROLLARY. In a a-barrelled space, any weak extended Schauder decomposition is strong.

Proof. A <T-barrelled space is cr-quasi-barrelled, and has y(E, £') = /?(£, £'), while any
weak extended Schauder decomposition of it is uniformly bounded.

The result stated in the Corollary has been proved by Tweddle [11] in the case of extended
Schauder bases. The proof of Theorem 1 is modelled on Tweddle's, but is a little simpler.

To examine question B we use a technique formulated by McArthur [9]. Let £ [T] be a
space, such that £[a(£, £')] has an extended decomposition with partial summation operators
{S^}. Let V be a base at 0 of closed absolutely convex t-neighbourhoods. If VeV, let
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V = f) S;l(V), and let -V> = {V : Ver}. Then
<t>e<t>

(1) y is a base at 0 for a locally convex topology x' on E.
(2) T g T'.

(3) Each S^ is -r'-continuous on £.
These results are easily established. It is clear that the problem of proving the t-continuity
of the operators S^ is solved by showing that x — x'. It is also easy to see that

(4) If E[x] is metrisable, so is E[T'].

Finally, we have
(5) If E[x] is (sequentially) complete, so is E[x'].

We sketch the proof of this last statement. Let {*„} be a t'-Cauchy net (or sequence).
Then {xn} is t-Cauchy, hence T-convergent to xeE. Also {S^*,,} is T-Cauchy, uniformly
for 0 e $ ; so there exists y^eE (for each $e<I>) such that {Stj>xn—y^,} is T-convergent to 0,
uniformly for <j> e <I>. Now

x-y+ = (x-xtt) + (xn - S+xn) + (S^-yj,).

The first and third terms are T-convergent to zero as n-*co, uniformly for </>eO. The
middle term is a(E, E')-con\eTgent to 0 as # -• oo for fixed n, since the mappings {S^} are
the partial summation operators for a weak extended decomposition. Hence y$-*x with
respect to a{E, E'). Since each of the spaces {Ea}lteA of the decomposition is closed, we have
y^e £ Ea. By uniqueness of the decomposition, S^x = y^ for each <f>, and we now see that

aetp
xn -* x with respect to x'.

If E[x] is a Frechet space with a weak extended decomposition, then E[x'] is also a Frechet
space. Since x ^ x', the open mapping theorem for Frechet spaces gives x = x', which proves
that the decomposition is Schauder. This is what Marti [10] proves, for extended bases in
Frechet spaces.

A strict (LF)-spa.ce E[x] is an inductive limit of a sequence {Fn[Tn]} of Fre"chet spaces,
with Fn £ Fn+1 and xn+1 \Fn = xn. The topology x is the finest locally convex topology on
E such that x | Fn = xn for each n. Every bounded subset of E is contained in some En. A
strict (Z-F)-space is complete. For proofs of these statements, see [5].

THEOREM 2. Let E[x] = lim.FjT,,] be a strict (LF)-space. Then any weak extended decom-
position of E is an extended Schauder decomposition of E[x].

Proof. Denote the partial summation operators of the decomposition by {S^}^®.
Let T' be defined as above. For each n, put Gn= f] S# 1(Fn). Then Gn is a subspace of Fn,

4>Ett>

and is T'-closed in E, since Fn is T'-closed, and each S^ is T'-continuous. Since E[x'] is complete,
Gn[x' | Gn] is complete. If xeE, {S^}^^ is a bounded set and so is contained in some Fn.

00

Hence E = [) Gn.
n = l

For a fixed m, consider the topology x' | Gm. It has basic neighbourhoods

S;\V)]nGm= ft S^iV
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where V is a basic neighbourhood in E[z]. Now x\Fm = xm is metrisable; hence x'\Gm is
metrisable. Thus Gm[x' \ Gm] is a Frechet space.

So {Gn[x' | Gn]} is an inductive sequence of Frechet spaces. Let x" denote the associated
inductive limit topology on E, making E[x"] a strict (LF)-spa.ce, with x ̂  T' ̂  T". By the
closed graph theorem for strict (LF)-spaces [5], x = x".

If one restricts these results to the case when the index set A of the decomposition is
countable, one obtains known results in the theory of countable Schauder bases and decom-
positions. Theorem 1 and its corollary are obtained in [12] for countable Schauder decom-
positions, by a completely different method. Theorem 2 is proved by Bennett and Cooper [3]
for countable Schauder bases. Strictly speaking, when specializing the results above to the
countable case, one obtains results in terms of unconditional Schauder bases and decom-
positions. However, simple modifications of the proofs will adapt them to cover the usual
convergence of series.

From now on we consider the special case of an extended Schauder basis. Here the
spaces {Ea}aeA are one-dimensional; so we have Ea = span {xa}. The projections Pa are
given by elements x'aeE' by the rule Pax = <x, x'ayxa, and the partial summation operators
are given by the formula S^x = £ <x, x'ayxa.

ae<t>
It is clear that each Sj, can be extended by this formula to a linear mapping of (E')* (the

algebraic dual of E') into E.
An extended Schauder basis or decomposition is said to be equi-£chauder if the family

{^}*e« 's equicontinuous. This is equivalent to having (J S'^K) equicontinuous whenever
K is equicontinuous. *6CI>

Let E[x] denote the completion of the space E[x]. Then E is, by Grothendieck's
Completion Theorem, the subspace of (£ ')* consisting of all elements that are a(E', E)-
continuous on the equicontinuous subsets of E'.

The first part of the following lemma is well known, but we give a simple proof here for
completeness.

LEMMA. Let E[x] have an extended Schauder basis. Then

(1) for each x in E, {S^x}^e<> is bounded,
(2) if the basis is equi-Schauder, {S^z}^^^ is bounded for each zeE.

Proof. (1) Let x'eE'. If xeE, {S^x} is a Cauchy net; hence {(S^x, *'>} is Cauchy.
There is, therefore, an element 0O of $ such that | (S^x, x'} | ^ 1 whenever </>n$0 = 0. If
M= E | <*, *i> | ' | <*«» *'> |, then | (S^x, x") \ ̂  1+M < oo for all 0 e * .

a e <po
(2) Let x'eE'. Then {S'+x1} is equicontinuous. If Kis the closure of {S'^x'} for a(E\ E),

K is o{E', £)-compact, and equicontinuous. Now z is a(E', £)-continuous and therefore
bounded on K; hence

sup | <S^z, x'> | = sup | <z, S^x") | < co. So {S0z}^6(D is bounded.

It follows from (1) that the partial summation operators of an extended Schauder basis
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are pointwise bounded. Hence in a barrelled space any extended Schauder basis is equi-
Schauder.

THEOREM 3. Let E[x] be a quasi-complete space with an extended equi-Schauder basis.
Then E[%\ is complete. In particular, a quasi-complete barrelled space with an extended Schauder
basis is complete.

Proof. Let zeE. By part (2) of the Lemma, {S^z} is a bounded set in E. By hypothesis,
bounded closed sets are complete. So to prove that zeE it is sufficient to prove that {S^z}
is a Cauchy net.

Let U = K° be a r-neighbourhood of 0 in E, where K is an equicontinuous set. For
any xeE, sup | <x, SJ,x'> | = sup | <S ,̂x, x'> |; so {S'^x'} is a{E', £)-Cauchy, uniformly for

x'eK x'eK
x'eK. Now (J S'^K) = L is equicontinuous. Since z is o(E', £)-continuous on L, we can

find a o(E', ^-neighbourhood W of 0 in £", such that | <z, x'y \ ̂  1 whenever x'e Wc\L.
Since {S'^x1} is uniformly ff(£', £)-Cauchy on K, we can find (j>0 in <D such that S'^x'eW
for all x'e/T, if <j)n<p0 = 0. Thus

; for all x'eK

| <z, S;x'> | g 1 for all x'eK

| z, x'> | ^ 1 for all x 'eK

and we have proved that {S^z} is a Cauchy net.
This result has been proved by Kalton [7] for countable Schauder bases. Kalton's result

is a little better in this case, for he shows that sequential completeness implies completeness
for a space with an equi-Schauder basis. However, Theorem 3 cannot be improved in this
way. In an uncountable product of lines, let E be the subspace consisting of elements with
at most countably many nonzero coordinates, with the product topology. Then E is sequenti-
ally complete and barrelled, and has an extended equi-Schauder basis, but is not complete.

Let E[t] be a separable non-complete Montel space. (An incorrect construction of such
a space was given by Amemiya and Komura [1], and corrected by Knowles ,and Cook [8].)
Such a space, as Garling and Kalton [6] pointed out, has no Schauder basis. In fact, since
a Montel space is barrelled and quasi-complete, Theorem 3 shows that E[x] has no extended
Schauder basis.
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