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On the theory of soluble

factorizable groups

Otto-Uwe Kramer

Suppose that a finite soluble group G is the product AB of

subgroups A and B . Our question is the following: what

conclusions can be made about G if A and B are suitably-

restricted? First we shall prove that the p-length of G is

restricted by the derived lengths of the Sylow p-subgroups of A

and B , if A and B are p-closed and p'-closed. Moreover,

if in such a group the Sylow p-subgroups of A and B are

modular, the p-length of G is at most 1 . Next we obtain a

general estimate for the derived length of the group G = AB of

odd order in terms of the derived lengths of A and B .

Furthermore it will be possible to bound the nilpotent length of

G and also the p-length of G in terms of other invariants of

special subgroups of G .

Suppose that a finite group G is the product AB of subgroups A

and B . Our question is the following: what conclusions can be made

about G if A and B are suitably restricted? For example, there is

the well-known fact, first proved by Wielandt and Kegel [3, VI, it.3], that

G is soluble if A and B are nilpotent. But it is possible to get some

more information about the structure of G . So, for example, Gross proved

in [/] that the derived length of G modulo its Frattini subgroup is at

most the sum of the (nilpotent) classes of A and B .

In the first section we shall show that there are similar conclusions

if the subgroups A and B are only p-decomposed for a prime p ; that
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98 Otto-Uwe Kramer

is p-closed and p'-closed. (The group G is TT-closed for a set IT of

primes if the Tl-elements of G generate a (normal) ir-group. ) The basis

of this section is a result on primitive soluble groups. It says that in

such a group G which is the product of the p-decomposed subgroups A

and B , where p is the characteristic of the only minimal normal sub-

group M of G , one may assume that one of A and B is a Sylow p-sub-

group while the other is a Hall p'-subgroup of G . Then we shall

generalize results of Gross [7], Maier [5], Ward [7], and Kegel [4]. It

may be pointed out that the arguments presented here shorten the analogous

arguments in the papers mentioned.

In the second section there are no special restrictions on the sub-

groups A and B . We obtain a general estimate for the derived length

of the group G = AB of odd order in terms of the derived lengths of A

and B . As a corollary of this theorem we get a generalization of a

result of Inagaki [3, VI, 9-10]. Furthermore it will be possible to bound

the nilpotent length of G and also the p-length of G in terms of other

invariants of special subgroups of G .

Wielandt proved that a group G is soluble if and only if it has

three subgroups with pairwise relatively prime indices. At the end of this

note we shall prove a result that restricts the structure of such a group

G in terms of the derived lengths of the three subgroups with relatively

prime indices. Throughout this paper all groups considered will be finite

and soluble unless otherwise stated. The notation agrees with that in

Huppert's book [3].

1 .

For the following considerations we first need a lemma, which is a

generalization of a theorem of Kegel [4].

LEMMA 1. Let IT be a set of primes and G = AB with A # B , where

A is a nitpotent u-group and B a ^-closed subgroup with a nilpotent

Halt w-subgroup. Then there is a proper normal subgroup K of G

containing A or B .

Proof. If A = 1 , then any normal subgroup of G contains A . So

we may assume without loss of generality that A $ 1 . Let G be a

minimal counter-example to the lemma and M be a minimal normal subgroup
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of G . Let q tie the characteristic of M . If AM < G then, since

G/M = (AM/M)(BM/M) , due to the minimality of G there exists a proper

normal subgroup K/M of G/M containing AM/M or BM/M . But then K

is a proper normal subgroup of G containing A or B , a contradiction.

Hence suppose AM = G = BM . If q i IT , then G is a ir-group, and in

this case G is the product of two nilpotent subgroups by the hypothesis.

How the theorem of KegeI [4] mentioned above gives the desired

contradiction. So let q £ IT . Then G/M = AM/M = A/(MnA) = 4 , and

therefore G/M is a nilpotent ir-group. So we have B , = G , = M and

B > M .

If B < G , then any maximal proper subgroup K > B is normal by the

nilpotency of G/M . So we may assume B = G . Since B is TT-closed we

get B = G = A 2 G . As A is a proper subgroup of G , X = 4 is a

proper normal subgroup of G which contains A , a final contradiction. //

DEFINITION. A group G is called p-decomposed for a prime p , if

G is p-closed and p'-closed; that is, if the Sylow p-subgroup is a

direct factor of G .

A basic result for our considerations in this section is the following

lemma.

LEMMA 2. Let G = AB with A ± B he a primitive group and p the

characteristic of the only minimal normal subgroup M of G . Assume that

A and B are p-decomposed subgroups. Then one of A and B is a

Sylow p-subgroup of G while the other is a Hall p'-subgroup of G .

Proof. Since A and B are p'-closed subgroups of G , it follows

from [6, Lemma 1(2)] that [_A , , B ,] < 0 ,(<?) = 1 . Let g = ah (. G witlr

a € A and h € B . Then

So we get IA ,, B , = 1 . If A , is nontrivial, then A , > M since

M is the only minimal normal subgroup of G . Therefore B , centralize
P

the (selfcentralizing) normal p-subgroup M . So B , = 1 . In any case

A , or B , is trivial. So, without loss of generality, let A be a
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p-group. I t follows that B , € Hall ((G) . Now choose a complement W

of M in G containing B , . (This is possible since a l l complements of

M are conjugate.) Since B i s p-closed and p'-closed, the Sylow

p-subgroup B of B centralizes the Hall p'-subgroup B , of B . Let

T = F(W) be the Fitting subgroup of W . Then we have C^{T) < T , and T

i s a p1-group since 0 (W) = 1 by the primitivity of G . Hence T is

contained in S . . Therefore we get B 5 cJB P] 5 CJT) 5 NJT) = W ,
p P trv p ' (r Lr

since W is a maximal subgroup of G and G contains only one minimal

normal subgroup. So we have CQW = ^y(^) - T • Therefore we get
B S T . As T i s a p'-subgroup and S a p-subgroup we have B = 1 .

Therefore B € Hall ,{G) and A (. Syl (G) . II
P P

A group is called modular if i ts subgroup lattice is modular in the

lattice-theoretical sense. A nilpotent group is modular if and only if any

two of i ts subgroups are permutable.

THEOREM 1. Let the group G be the product of the p-deaomposed

eubgroicps A and B . Assume that the Sylow p-subgroups of A and B

are modular. Then the p-length of G is at most 1 .

Proof. Since the class of all groups with p-length at most 1 is a

saturated formation (see, for example, [3, p. 689]), a minimal counter-

example G to Theorem 1 i s primitive. Therefore G has exactly one mini-

mal normal subgroup, M, and we may assume that the characteristic of M is

p . Further, suppose A t B , so that the hypothesis of Lemma 2 is

satisfied. Then Lemma 2 implies that, without loss of generality,

A € Syl (G) and B € Hall ,(G) . Further, Lemma 1 implies (with TT = {p})

that there exists a normal subgroup K of G which contains A or B .

Suppose K i s a maximal normal subgroup with this property.

Firs t , l e t A < K . Then K = AB with B = K n B . Therefore the

maximal normal subgroup K satisfies the hypothesis of the theorem. Hence

due to the minimality of G i t follows that the p-length of K is at

most 1 . In particular p does not divide the order of K/M . Therefore

A 5 M and we get that G/M i s a p'-group. Hence the p-length of G is

as most 1 , a contradiction.

https://doi.org/10.1017/S0004972700036807 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700036807


Factorizable groups 101

So we may assume B 5 K . Again K satisfies the hypothesis of the

theorem [K = A.B with A = A n K ) and therefore due to the minimality of

G it follows that the p-length of K is at most 1 . We get

p \ \K/M\ . Therefore M is a maximal normal subgroup of A . Let W be

a complement of M in G . Then L = A n W is a complement of M in

A . It follows from [5, Lemma 3] that A is an abelian subgroup and hence

A = M . Therefore we get that G/M is a p'-group and we conclude that

the p-length of G is at most 1 , a final contradiction. //

The symmetric group Si on four elements is the product of a

symmetric group 5_ on three elements and an elementary abelian subgroup

of order k , the V> . S- and V^ are p'-closed (for p = 2 ) and have

modular Sylow subgroups. But S^ has p-length 2 .

Further, 5, is the split extension of the alternating group A, on

four elements by a cyclic group C2 of order 2 . Here A, and C^ are

2-closed and have modular Sylow subgroups. Thus we see that in Theorem 1

we can omit neither the assumption that the subgroups A and B are

p-closed nor the assumption that they are p'-closed.

THEOREM 2. If the group G is the product of two nil-potent

subgroups A and B which have modular Sylow p-subgroups, then the

nilpotent residual G is p'-closed.

Proof. A minimal counter-example G is primitive and the minimal

normal subgroup M has characteristic p again. By Theorem 1, the

p-length of G is at most 1 , in particular G/M is a p'-group. By

Lemma 2 we may assume that A is a Sylow p-subgroup and B is a Hall

p'-subgroup of G . Since B is nilpotent, also G/M is nilpotent, and

so the nilpotent residual of G is a p-group; in particular it is

p'-closed, a contradiction. //

The quaternion group B = Qa of order 8 has a faithful irreducible

G-module A (of degree 2 ) over GF(5) • Let G be the split extension

of A by B . Then G is the product of A and B and these are

nilpotent subgroups of G with modular p-subgroups for p = 5 • But G'

is not p'-closed. The symmetric group 5- = B on three elements has a
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faithful irreducible G-module A over GF(p) (with p 2 5 ). Let G be

the split extension of A by B . Then A and B are p-decomposed

(p = 5) , but the nilpotent residual G is not p'-closed.

In the following theorem we shall prove that the p-length of G is

restricted by the derived lengths of the Sylow p-subgroups of A and B ,

if G is the product of the p-decomposed subgroups A and B . (Denote

by I (G) the p-length of G and by d (G) the derived length of the

Sylow p-subgroups of G .)

THEOREM 3 . Let G = AB be the product of the p-decomposed

subgroups A and B . If the nilpotent class of the Sylow 2-subgroups of

both A and B is at most 3 ; then we have I (G) 5 max(d (A), d (B)) .

Proof. A minimal counter-example G i s primitive and we may again

assume that the charac te r i s t i c of the only minimal normal subgroup M of

G i s p . Then the hypothesis of Lemma 2 i s sa t i s f ied . So we may assume,

without loss of general i ty , A to be a Sylow—p-subgroup and B to be a

Hall p'-subgroup. Therefore we have I (G) = I {G/M) + 1 £ d (A/M) + 1 .

Since G i s a counter-example we must have d (A/M) = d (A) . Then i t

follows from Hall and Higman [2, Theorem 3-2.1] that p = 2 and

c l U ) = 3 • Lemma 3 in [/] then implies that IJ.G) £ 2 . Since A i s

not abelian, we get lAG) £ max(dp(i4), dAB)) , a final contradiction. / /

In th i s context we refer to the following theorem.

THEOREM 4. Let 2 \ \G\ and assume that A. are subgroups of G
Is

with gcd (|G : A^W = 1 (i = 1, . . . , r) . If exp [AJ denotes the

exponent of the Sylow p-subgroups of A. , the p-length of G is

restricted by I (G) £ max (exp [A.)) .
P £ P v

P r o o f . S i n c e g c d ( | G : A .\) = 1 , t h e r e e x i s t s a j 6 { l , . . . , r }
i %

with p { | G : A . \ . A Sylow p-subgroup P of A . therefore is a Sylow
3 3

p-subgroup of G . So we have exp (G) = exp [A .) . By Hall and Higman

[2] we get I (G) £ exp (G) , and therefore
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lp(G) 5 expp(^.) = max (exPp (^)) . / /
0

The proofs of Theorems 3 and h show how to get analogous estimates for

the p-length of G from the corresponding theorems of Hal I and Higman

[2]. So, for example, the following is true.

Let 2 and 3 not divide the order of G and let A. be subgroups
If

of G with gcd [\G : A^\) = 1 (£ = 1, ..., r) . If the Sylow subgroups
i

of A . have nilpotent classes not greater than 2 , the nilpotent length

r
of G is restricted by 1{G) 5 [ l(j|.) . If 2 divides the order of

i=l l

G , this result becomes false as one can see by the counter-example Si .

S. is the product of the quaternion group of order 8 , the Qr, , and a

cyclic subgroup C . We have cl (So) = 2 and cl(C-J = 1 , but

l(G) = 3 > 2 = l[QQ) + l[C3) .

Finally we want to generalize a theorem of Ward [7]. But before we do
this we prove the following result.

THEOREM 5. Let G be the product of the p-decomposed subgroups A
and B . Assume that A is abelian and that the derived length of B is

(S A)r

at most r . Then G P is px-closed. \fiere

(s ky

S - {G \ G is a p-group} and A = {G | G is abelian} and G "

denotes the residual of the formation (S A) .)

Proof. The class

X = SplSp[SpA)r = JG | G P is p'-closedj

is a saturated formation. Therefore a minimal counter-example is primitive
and we again may assume that the minimal normal subgroup M has
characteristic p . Lemma 2 implies that either A € Syl (G) and

B € Hall ,(G) or B € Syl (G) and A € Hall ,(G) . So we have to
P P P
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distinguish two cases.

First, let A € Syl {G) and B € Hall ,(G) . Since A is abelian

and A 2 M we get A = M . Therefore G/M S B , and so we have G* 5 W ;

(SA)'
in particular G F 5 M . Since M is p'-closed, we get a

contradiction.

So we may assume that B € Syl (G) and A € Hall r(G) . In this case

P P
we have B > M . By the lemma of Ward [7] we have that

centralizes any abelian normal subgroup of G/M . Since by the primitivity

of G the Fitting subgroup of G/M is a p'-group, and since A is an

abelian Hall p'-subgroup, F {G)/M = F(G/M) is abelian. Therefore we get

B^'^M/M 5 CG/M[F2(G)/M) 2 F2(G)/M . Since B^'^M is a p-group and

F (G)M/M is a p'-group, we have B S M . (This follows also from a

theorem of Hal I and Higman if 2 | \G\ without the use of the lemma of

Ward.) Due to the minimality of G the theorem is true for G/M . Hence

it follows that G e /M is p'-closed, a final contradiction. //

In just the same way we can prove:

THEOREM 6. Let G = AB be the product of the abelian subgroup A

and the nilpotent subgroup B . Assume that the derived length of B is

at most r . Then G^ is nilpotent.

At the end of this section we prove an extended version of a result of

KegeI [4] similar to Lemma 1.

THEOREM 7. Let G be the product of two different ^-closed sub-

groups A and B with nilpotent Hall Ti-subgroups. Then there exists a

proper normal subgroup K of G containing A or B .

Proof. Let G be a minimal counter-example and M be a minimal

normal subgroup of G . If AM < G , then since G/M = (AM/M) {BM/M) , due

to the minimality of G , there is a proper normal subgroup K/M of G/M

containing A M/M or B M/M . In any case K > A M or K > B M and so
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K i A or K t B , a contradiction. So we may assume AM = G = BM . By

the Isomorphism Theorem and as A and B are TT-closed, it follows that

MA and MB are normal subgroups of G . It is obvious that we may

assume MA = G = MB . If M is a ir-group, then also G is a ir-group,

and in this case G is the product of the two nilpotent subgroups A and

B . By a theorem of Kegel [4] we get the desired contradiction. So M

is a IT'-group. Then A and B^ are Hall tr-subgroups of G . By [3,

VI, 1+.6] we have that also A^B^ € Hall^G) . Therefore A^ = B^ . Now,

by the hypothesis of the theorem, A^ S A and B^ 3 B . Therefore

NQ[A^) > AB = G . So A is normal in G , and since G is not a

ir-group, it follows that A is a proper normal subgroup of G , a final

contradiction. //

The direct product S * S is the product of S * (?„ with

S_ * Cp . S x c2 is Tf-closed for TT = {3} . But there does not exist a

proper normal subgroup of S_ x 5_ containing one of the factors

S3 X C 2 •

2.

In this second part of the paper we want to remove the special

restrictions on the structure of the single factors, as for example that

they are p-decomposed. We want to get an upper bound for the derived

length of G in terms of the derived lengths of the single factors in

general.

First we state such an estimate for the case that the single subgroups

are A-groups; that is, that they have only abelian Sylow subgroups.

THEOREM 8. Let A. be subgroups of G with gcd [\G : A.\) = 1

and i £ {1, — , r] . Assume that the A. are ^-groups. Then we have

d(G) 5 £ d^) .

Proof. Since homomorphic images of G satisfy the same conditions,
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there exists exactly one minimal normal subgroup in a minimal counter-

example G . Therefore the Fitting subgroup G^ i s a p-group. Since

gcd [\G : A.\) = 1 , there exists a 3 € {l r) with p \ \G : A .\ .
i 3

A Sylow p-subgroup P of A . therefore is a Sylow p-subgroup of G .
3

So we have A. > G^ . Since G^ contains its own centralizer, the Fitting

subgroup of A . is a p-group. As a Fitting subgroup of an A-group
3

(i4.)w is abelian. Since Cr(Gw) £ G.. £ [A .)., , it follows that

Gii = (A.)., . Therefore we have d[A ./<?„] £ d[A .) - 1 . By induction we
N v J'N 3 N' 3

get d[G/Gk) £ Y. d[A.) + d[A .) - 1 . Therefore it follows that
N i ? y i 3

d(G) 5 I d{A.) + d(/l ) - 1 + 1 = Z d(4.) . //
j 1 - 3 t=l l

Now we handle the general case and prove:

THEOREM 9 . Let G = AB with (\G : A\ , \G : B\) = 1 aw<2 G o /

order. Then d(G) 5 ( ( d U ) + d ( B ) ) [d(A)+d(B)-l))/2 + 1 .

Proof. A minimal counter-example G has exactly one minimal normal

subgroup. This implies that the Fi t t ing subgroup of G i s a p-group for

a prime p . Let n = d(A) be the derived length of A and m = d(B)

tha t of 3 . Since ( j f? : J4 | , |G : fl|) = 1 , without loss of genera l i ty ,

p does not divide \G : A\ . Therefore A > ff,, and a Sylow p-subgroup

P of A i s one of <? . As [0 ,{A) , GJ 5 0 ,(A) n G.. = 1 , i t follows

tha t 0 ,(A) £ C^(G,,) £ G., and so 0 ,(A) = 1 . Therefore we have thatp u *• W N p

Aj, i s a p - g r o u p and A^ £ P € Syl (G) . I f ^ i s a b e l i a n , we g e t

A = Ĝ  , and so d{G/G^\ 5 d(B) = m and d(G) £ m + 1 . But

m + 1 £ {m+l)m/2 + 1 , since m 2 1 . Therefore we get a contradiction in

th is case. Otherwise A is an abelian normal subgroup of P . By

Hal I and Higman [2, Theorem 3.2.1] we get A ̂ A'~X £ 0 , (G) = G^ . So we

have d[A/GN) £ n - 1 . By induction it follows that

d[G/GM) £ (n-l+m)(n-Hm-l)/2 + 1 .
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Since A > G., , the derived length of G.. is not greater than that of A .

Therefore d{GM) < d(A) = n . Furthermore we have d(G) 2 d[G/G^\ + d{G^ .

Summarizing we have

d(G) 2 {n+m-l){n+m-2)l2 + 1 + n = (w+m)(n+m-l)/2 - (rc+m-l) + 1 + n 5

2 (n+m)(w+m-l)/2 + 1 ,

contradicting the choice of G . / /

In the case n = m = 1 our result is a theorem of Ito's [3, VI, U.U].

COROLLARY 1. Let G be of odd order and G = AB with

(\G : A\, \G : B\) = 1 . Put t = [d(A)+d(B)-l) [d{A)+d{B)-2] /2 + 1 . Then

G € MA ; that is, G is nilpotent. In particular, if G is the

product of two metabelian groups with relatively prime indices and

2 \ \G\ , then G is nilpotent.

The proof is similar to that of Theorem 9-

COROLLARY 2. Let tf* 2 G for all Hall subgroups H of G and

suppose 2 | |G| . Then G^2n "3"+2i £s nilpotent.

Proof. Since any homomorphic image of G satisfies the same

conditions, a minimal counter-example G is primitive. Let p be the

characteristic of the only minimal normal subgroup M and let

P € Syl (G) . Since P* S G and p" < $(P) we get Pn £ $(G) = 1 .

Therefore the derived length of P is at most n . Let Q be a

p-complement of G , a Hall p'-subgroup of G . Since Qn 2 G and

Q n M = 1 , we get QW = 1 . Therefore G is the product of the two

subgroups P and Q , which both have derived length at most n . By

Corollary 1 of Theorem 9 we get that c^2*1'1' ^n~2>'2+1
 i s n i i p o t e n t ;

2
that i s , G € NA2" " 3 " + 2 , a contradiction to the choice of G . / /

In the case n = 1 we have the well-known resul t of Inagaki's that

G' i s nilpotent, i f H' i s a normal subgroup of G for a l l Hall sub-

groups H of G . For n - 2 we get: if 2 j \G\ and #" 5 G for a l l

Hall subgroups H of G , then G is nilpotent.
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By a theorem of Wielandt [3, VI, 1.9] a group G is soluble if i t

possesses three soluble subgroups whose indices are pairwise relatively-

prime. In the last theorem we want to find an upper bound for the

nilpotent length of such a group in terms of the derived lengths of the

subgroups in question. We prove:

THEOREM 10. Let G be a group of odd order. Assume that G has

three subgroups U. ( i = 1, 2, 3) 3 whose indices are pairwd.se relatively
is

prime. Let n = d(lf ) , m = d[u ) , and I = d[u ) . Then

_ .. k,(n+m+l)/2-2,2 .„ 7 . , _ , .,(«+m+l+l)/2-2. .„
G 6 N k } % f n + m+l%s even and G £ W A 3 vf
n + m + I is odd.

Proof. If n=m=l=l, G has three abelian subgroups with pair-

wise relatively prime indices and thus it is abelian. So the theorem is

true in this case. For n = m = 1 and 1 = 2 we have that G is

metabelian by a theorem of It8's. For n + m + I 2: 5 the classes

^ a r e s a t u r a t e d f o r m a t i o n s . The refore

a minimal counter-example to the theorem is primitive. Let M be the only

k

minimal normal subgroup of G and \M\ = p . As the index of any sub-

group, which does not contain M is divisible by p , we may assume,

without loss of generality, that ! / , £ ) > / ( . Since
\0 ,[U.), M\ £ O All.) n M = 1 for i = 1, 2 , it follows that
*- p v1 J pi,

0 ,[U.) 5 CAM) = M . Therefore 0 , [U.) = 1 and so [U.).. is a
p v %J (r p v V v % N

p-group. If j without loss of general i ty , U. i s abelian, we have U-. = M

and so £/. i s a p-group. Therefore any prime divisor q f p of |G|

i s a divisor of the index \G : U | . So in t h i s case one of the three

subgroups J/. , U , and £/_ i s equal to G ; tha t i s , U^ = G , say.

Then we have d(G/M) £ d[U ) , so d{G) £ d[u^ + 1 = 1 + 1 . So G i s

contained in A n A . W e dist inguish two cases .

If m = I + 1 , then 1 + I + m i s even and G belongs to

Al+1 = A(l+Z+J+l)/2-2A2 _ A s i n t h ± s c a s e n = ^ a n d z = m + 1 w e g e t

the desired r e s u l t .
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If m < I + 1 and 1 + I + m i s odd, we have (l+l+m+l)/2 - 1 > m ,

whence G belongs to A A , again a contradiction. The other

cases are obvious.

So suppose that none of the U. (i = 1, 2) i s abelian. Therefore

U. V £ (i/.)^ £ P is an abelian normal subgroup of P € Syl (G) . By

Hall and Higman [2, Theorem 3-2.1] , we now have

V. % £ 0 , (G) = M .^ p p

Therefore d[u./M) £ d[u.) - 1 . If n + m + I is even, then also

n-1+m-l+l is even. So we get G/M € N ( «
+ m f Z - 2 ) / 2 " 2

A
2
 b y

induction, whence G" belongs to W

If n + m + I is odd, then also n-1+m-l+l is odd. In this

case we get by induction that G/M € N A , whence G1 belongs

to ^ n + m ¥ l + 1 ) / 2 - z
 f w n i c n proves the theorem. //

COROLLARY. If G has three metabelian subgroups with pairwise

relatively prime indices, then G" is nilpotent. If G has two meta-

belian subgroups and an abelian subgroup with pairwise relatively prime

indices, G' is nilpotent. Finally, if G has one abelian, one

metabelian and a third subgroup, which has derived length at most 3 and

if these subgroups have pairwise relatively prime indices, then G" is

nilpotent.
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