ON THE RING OF INTEGERS IN AN ALGEBRAIC
NUMBER FIELD AS A REPRESENTATION
MODULE OF GALOIS GROUP

HIDEO YOKOI

1. Introduction. It is known that there are only three rationally inequi-
valent classes of indecomposable integral representations of a cyclic group of
prime order /. The representations of these classes are:

( 1) identical representation,

(II) rationally irreducible representation of degree I/—1,

(III) indecomposable representation consisting of one identical represen-
tation and one rationally irreducible representation of degree I—1 (F. E. Die-
derichsen [1], I. Reiner [2]).

We now consider the special case where the representation module is the
ring of algebraic integers of a number field and the operator group is a cyclic
group of Galois automorphisms of prime order, and show that the multiplicity
in this representation of indecomposable components belonging to each one of
the above standing rationally inequivalent classes is determined by ramification

numbers.”

2. Theorem on the different. In this note, we denote by oo for an alge-
braic number field 2 the ring of integers of 2 and by Dg; for an extension 2
of an algebraic number field L the relative different of 2/L.

The main aim of this article is to prove the following

THEOREM 1. Let k be an algebraic number field of finite degree and K be
a normal extension of k. Then the relative traces of all integers of K to k
constitute an integral ideal of k and the ideal is characterized as the maximal
divisor of k dividing the relative different Dgyr.

We must first establish two lemmas.

Received August 5, 1959.

9 In the case of absolutely abelian number fields, some results in this note have
recently been proved by H. W. Leopoldt [2a]. (This foot-not and [2a] are added Sep-

tember 15, 1959.)
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LemMa 1. Let B be any prime ideal of K and b be the prime ideal of k
contained in P. Denote by Kg resp. ky the B-adic completion of K resp. the p-
adic completion of k. Then the relative different Dxm/kp is characterized as the
highest power of B such that for any fixed natural number n we have Skt A
=0 mod. b" for every number A in Kg with the congruence A =0 mod.
p” . (Dxm/k?)-l.

Proof. Since the set of traces Sgyr, A of all elements in an ideal U of
the ring oxy forms clearly an ideal of the ring ok, we denote the ideal by
Skpikp¥.  Then we can prove that the ideal Sxm/k,,(a- A) coincides with the
ideal a* Skp, A for any ideal a resp. A of ky resp. K. Namely, since all
the ideals of kp are principal, the ideal a of kp is generated by an element a of
kp, hence if A runs over all the elements of %, then a+ A also runs over all
the elements of the ideal a+ . Therefore, our assertion follows at once from
Skgiepla s A) = a * Sxpiry A.

We next prove that we have Sxm/kp(Dxmlkp)—l=0kP. If we assume that
Sxm/kP(Dxm/kF)—l is not equal to Okps but is equal to a proper subideal b of Dkps
then it follows from the above result that wakP(Dxm/kp‘h)—z is equal to ok,
which is contrary to the fact that the different Dkyr, is the highest power of
B such that the inverse of every element in it has an integral trace with respect
to Kg/ ky.

Lemma 1 follows immediately from these two assertions.

LemMa 2. Let e be the ramification order of B with respect to Kg/kp,
and put Digig =1+ % (e>5=0, 7=0). Then we have Syiyoxy="9".

Proof. By Lemma 1 we have Skyr, A=0 mod. p” for every number A in
Ky such that

A =0 mod. v+ (Dxgyry) ™" ie. mod. B~°.

In particular, we have Skgk, Ao =0 mod. p” for every integer A, of Ok

D A. Speiser and E. Noether have proved the following theorem on integral normal
basis: When Ky/kp is normal, there exists an integral normal basis of Ky /ky if and only
if the ramification group is trivial, i.e. Ky /ky is tamely ramified (A. Speiser [3], E. Noether
[4]).

Lemma 2 together with this theorem implies that there exists an integral normal
basis of Kp/k, if and only if the 0-dimensional Galois cohomology group of ogy with re-
spect to Kp/k, is trivial (cf. Corollary 1).
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On the other hand, by Lemma 1, there is an integer B of 0xyp such that
B=0 mod. J'*+ P9 je mod. B°, but Skyikp B # 0 mod. prtL
Since the set of traces Skgky A of all integers A in Ky forms an ideal of

Oy, OUr lemma is proved.

Proof of Theorem 1. Let p= ,fI, % be the decomposition of a prime p of
k into powers of distinct prime divisors in K, and a be the ideal Sgxo0x. Denote
by 7 the exponent of p in Dgs ()"/Dgse in notation). Then from Lemma 2
and the product theorem of different,” it follows that Sk, kg A =0 mod. p" for
every ¢=1,2,..., g and for any integer A of 0k, and hence we obtain the
following congruence:

)
Sk A = ESKmilk,;A =0 mod. )"

for every integer A of ox. On the other hand, by Lemma 2, there are g inte-
gers A; of Ky, such that Skyk, A # 0 mod. p+! and Sy, ikp Ai = 0 mod. ! for
i=2,3, ..., g For these numbers A;, there is an integer B of X such that

we have B = A; mod. P*V% for every i=1, 2, ..., g hence we have

Sk, ity B = Scp iy A0 mod. p*
Siykp B = Skyp;tkp Ai =0 mod. p"**
fori=2,3...,4
q
Consequently, we have Sx/xB = 2 Skgip B % 0 mod. p"*'. Since this is true
iz1

for any prime ideal b of %, our theorem is proved.”*

%) The product of the differents of local fields coincides with the different of the
grobal field.

3) The theorem on integral normal basis corresponding to footnote 1 is not always
true in grobal fields, but it is true in absolutely abelian number fields (cf. H. W. Leopoldt
[2a]).

1) We can also give a well-known bound of ramification number from Theorem 1 in
the following way.

Let K/k be a cyclic extension of prime degree p over an algebraic number field &, p
be a prime divisor of p in %k and let p=9? be the prime decomposition of p in K. Then
the relative different Dk;r has R¢@~1D as its f-component, where v is the ramification
number of § in K/k, namely, the maximal exponent of $ such that we have A=A° mod.
v for every integer A of oz and for any Galois antomorphism ¢ of K/k Furthermore,
let e be the ramification order of p in k/P, where P is the rational number field and
p" be the p-component of Sgxox(y"/Skixvk), then pe SkpoxSp” implies r<e. From
Theorem 1, we see that v(p—1) <p(r+1), namely v <1-+pr/(p~1)+1/(p—1), and since
v is a natural number, we have vZ1-+pr/(p— 1) <1-+pe/(p—1) (cf. T. Takagi [5],
H. Hasse [6]).
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We can deduce from Theorem 1 the following two corollaries, but we do

not use them in this paper.

CoroLLARY 1. Under the same conditions in Theorem 1, the 0-dimensional
Galois cohomology group of ox with respect to K[k is trivial if and only if K/k

is tamely ramified at every prime ideal of k.°

Proof. By the well-known theorem of different,” a prime ideal p of %
divides Dg/r if and only if K/k is not tamely ramified at p. Hence our lemma
is clear from Theorem 1.

CorOLLARY 2. Under the same conditions in Theorem 1, if we assume
moreover that the 0-dimensional Galois cohomology group of ox with respect to
K/k is trivial, then the Galois cohomology group of ox with respect to K/ is

trivial for every dimension and for any intermediate field 2 of K/k."

Proof. If K/k is tamely ramified at p, then K/Q is also tamely ramified
at b for any intermediate field 2 of K/k. Hence, by Corollary 1, the assertion
of our lemma implies that the O0-dimensional Galois cohomology group of ox
with respect to K/ is also trivial.

Let © be the Galois group of XK/2 and put A= %a‘ f- for any integer
R

a =0 in ox and for any 1-cocycle {f:} (r€ ) of D in 0x. Then we have A - A°
= (Sgiqa) * fo for any ¢ in . In particular, since we may take the integer a
with Skioa =1 from the above assertion, we may write fo=A — A° with an
integer A in ox for every l-cocycle {fs} (¢€9) of D in ox. This shows that
the 1-dimensional Galois cohomology group of ox with respect to K/ is trivial
for any intermediate field 2 of K/k Therefore, from the well-known theorem

of cohomology group® we obtain our lemma.

%) Cf. E. Artin [7].

6 Cf. H. Hasse [8].

) This corollary is of course true for local fields, and it yields the results described
in footnotes 1 and 3 purely cohomologically in the following way. The 0-dimensional
Galois cohomology group of ok (resp. oxp) Wwith respect to K/k (resp. Kp/k,) is trivial
if and only if ok (resp. okyp) is Z[®]-projective, where Z[®] is the group algebra of Galois
group ® of K/k (resp. Kp/k,) over the ring Z of rational integers. Therefore, in particu-
lar, there exists an integral normal basis of Ky/k,, if the 0-dimensional Galois cohomology
group of oxg with respect to Ky/k, (T. Nakayama [9]).

8 Cf. T. Nakayama [10], G. Hochschild-T. Nakayama [11].
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3. Principal results

Tueorem 2. 'Let K be a normal extension of degree n over the rational
number field P, and 2 be a subfield of K such that K/ is cyclic of prime degree
! and that 2/ P is normal.

Furthermore, let v =1 be the common ramification number with respect to
K/Q of all the prime divisors & of 1 in K, and e be the common ramification
order with respect to /P of all the prime divisors |; of 1 in 2. Let m be a
non-negative rational integer such that I(m—1)<v < Im, and put no=n/l,

t =n(v—m)/e. Then we have the following basis of the ring ox:
0K=[Bl’ c e ey Bnn(l-l)r Wiy « o« « 5, W, El) e ey fn,—t]

with &= (wi+ai)/l (6=1,2,..., no—1t), where wj (j=1,2,...,m) is a

suitable basis of oq, and «i, Br are integers of K such that
Skieai =0, Skiofr=0 (i=1,2,...,n—t; k=12, ..., nel—-1)).2

Proof. Denote by [DK/QAJ g the exponent of &; in Dgi. Then we have
[Dgioldg; =vl—-1) =l(v —m) + (Im —v), 0= Im— v <I, hence Theorem 1 implies
that Sxio0x = ELI?'M, where the product runs over all the prime divisors of / in
2. Since £/P is normal by the assumption, the index of Sg;o0x in 0o is equal
to I*:

[og @ Sg/oox]= Ng» H ("= Jo-mimle _ gt

Let ox be a submodule of ox which consists of all elements 8 in ox such
that Sg/oB =0, and let [y, ..., Bnu-1)] be any basis of of. If we take the
basis [Bi, - - -, Bugd-13s M1, « -« » 7myd of 0x which contains the basis [, ...,
Bna-n] of of obtained above, then [Sgami, - - ., Skio7s,] forms a basis of
SK/QDK.

On the other hand, since we may choose a basis [w;, . .., wn] of 0o in
such a way that [wi=lwy, ..., of=lws ol =041, - . ., Wy, = wm,] forms a
basis of Skjo0x, there is a unimodular 7, X m, matrix U= («;) with integral

coefficients such that

. ng ng .
w; = El“ijsxlo.ﬂj= Skio 23 wijn; (i=1,2,..., m).
7= i=1

9 In the case where / is unramified in K/Q, we set »=0 for convenience, and then
we have m=0 and it implies #=0.
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np

Now, if we put &i= Suijn (i=1,2, ..., n), then we have Skfi = w;
iz

and the set [Bi, ..., Buu-1, 01, . .., 0, Etr1, ..., n,] is again a basis of
ox. Putting ai=1¢=wi (t+1=<i<m), we have Sxoa; =0, which proves our

theorem.

TaeoREM 3. Under the same assumptions in Theorem 2, the representation
of the Galois group & of K/Q by the ring ox is integrally equivalent with the
sum of t identical representation, t rationally irreducible representations of degree
-1 and n,—t indecomposable representations containing one identical represen-

tation and one rationally irreducible representation of degree 1— 1.

Proof. As a basis of ox, we may take a basis having the property stated
in Theorem 2. Let ¢ be a generator of the Galois group &. Then both (¢ —1)0x
and (¢—1)of are submodules of of and are generated by (¢—1)8;, ...,

(0— 1) Bno(l—lh (0‘ - 1)511 e o oy (0' - 1) Eﬂo—! and (J - 1) Bly o o ey (U - 1)67!0(’—1)
respectively.
Therefore, (¢ —1)¢i=(s—Vai/l (i=1,2,..., ny—1t) generate the factor

module § = (¢ —1)0x/ (¢ — 1) 0f and moreover form its basis. For, if we assume
that Eix,-(a— 1)%; = (¢ — 1) for some B in of and for rational integers x; (i=1,
2,...,m—1¢), then we have (a—-l)(Z{x,‘m/l—- 8) =0 and hence lﬁ=$x,~ai.
But since ai=1§;—wi;, we have > %w;=1I1(f—->)%;¢), which implies x;=0
mod. / for every i=1,2,..., no—tl. '

On the other hand, let Z[®] be a group ring of & over the rational inte-
gers and define S=1+o+ -+ - +4'€Z[®]. Then we may regard of as a
Z[®1/(S)-module, where (S) is the principal ideal of Z[®] generated by S.
Since Z[®1/(S) is a Dedekindian ring, we have by Chevalley’s lemma direct

decompositions

(%) 0k = WD U ® * + + BUpyp, ™
(0'1)01{:231@‘52@ A 63?8710

10) Each direct factor 9, of of in the decomposition (%) is Z[£l-isomorphic to an
ideal class of the ring Z[{] which consists of all integers of the field P({) obtained by
adjunction of a primitive /-th root of 1 to the rational number field P.

In particular, if we assume /<23, then the class number of the cyclotomic field P({)
is equal to 1 (cf. eg. H. W. Leopoldt [9]). Therefore, every factor %, is Z[®]/(S)-
isomorphic te Z[®]/(S).
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of Z[®1/(S)-module 0%, (6 —1)ox with U; 2%B; (i=1,2, ..., n).'"
Since (¢—1)o% is the Z[®1/(S)-submodule of (¢ —1)o0x, and since the
index of (s —1)%, in %, is the prime number /, each factor B, is either U, or

(¢ —1)%, and by permuting the summands in (*) we obtain the factor module

F=(a—1Dok/(s-1)oF
=W/ (a-DUD - -« DUny-t/(0 = 1) WUpy-s,

which is an additive abelian group of type (..., 1). Therefore, we may
choose a basis [71, ..., rm-t] of & with r;€U;, namely if we take a basis
[By,, . .., Bvi-1] of the »-th factor ¥, in (*), then we may write 7;= ix"jﬁij
with rational integers xi;. o
Since both [(¢—1)&;, ..., (6~1)&x-] and [ri, ..., 7n-t] are bases of

%, there is a unimodular (7 —¢) X (n,—#) matrix S= (s;;) with integral coef-
ficients such that

~

-1 no—1¢ no—¢
}—Jlxijﬁij=ri = z; siile—1)8i=(6—1) 2)sij8 (1=1,2, ..., no—1).
= 7= Jj=1

7

no—12

Now, we put £} = jEﬂs,yé,- for every i, then {8y, wj, &} (v=1,2, ..., n;
nw=12,...,1-1; j=1,2,...,¢t i=1,2,..., no—t) again form a basis
of ox and [w;] G=1,2,...,8, [Bu, ..., Bu-id (®=1,2,...,1), and [,
Bit, v« ., Bi-d (6=1,2, ..., no—1t) give respectively ¢, ¢, no — ¢ indecomposable
representations in Theorem 3.
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