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ON MAXIMUM PRINCIPLES FOR DIFFUSION IN
THE PRESENCE OF THREE DIFFUSION PATHS
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Abstract

This note examines maximum principles for systems of parabolic partial differential
equations describing diffusion in the presence of three diffusion paths. The particular
system under consideration arises from a random walk model. For a more general system
constraints on the various constants are given which guarantee maximum principles.
Remarkably, the physical system arising from the random walk model automatically
satisfies these constraints.

1. Introduction

The diffusion of ions and point defects in metals which are comprised of a
continuous distribution of high-diffusivity paths such as grain boundaries and
dislocations has recently been modelled by Aifantis [1,2]. In the general theory it
is assumed that each point of the medium is simultaneously occupied by n
diffusion paths and the concentrations in each diffusion path are governed by a
system of n parabolic partial differential equations. Recently, Hill [8] presented a
simple discrete random walk model for diffusion which, in the continuous limit,
gives rise to this system of partial differential equations. Extensive study has been
completed for diffusion in the presence of two diffusion paths and the reader is
referred to Aifantis and Hill [3], Hill and Aifantis [10] and Hill [9]. Further
applications for this system of parabolic differential equations, when n = 2, arise
in the theories of seepage of homogeneous liquids in fissured rocks (Barenblatt,
Zheltov and Kochina [4]), the conduction of heat in heterogeneous media (Rubin-
stein [13]), and the transport of water through plant tissue (Molz [12]). In this
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note maximum principles are examined for the system of equations which
describes diffusion in the presence of three diffusion paths, namely

a 1 2 M12M2 a 13 u 3>

du2/dt = D2v
2u2 + a2xU\ — (a,2 + an)u2

- £>3V2«3 a32u2 - ( o 1 3 + an)u3,

(1.1)

for i;,(x,.'), ~'2(x, /) and y3(x, ') which arc concentrations and taken iu be
non-negative. The diffusivities £>,, D2 and D3 are non-negative constants. The
constants at] (/', j = 1,2,3; / ¥=j) represent transition probabilities in the random
walk model of Hill [8] and are therefore non-negative.

In this note we develop maximum principles for the more general non-con-
servative system given by

a 1 2 M12M2 a 1 3 u13u3>

du2/dt = D2V
2u2 + a2xux — a22u2

~ a33M3'

(1.2)

where au, a22 and a33 are further non-negative constants. We show that sufficient
conditions on the constants which guarantee maximum principles for the system
(1.2) are contained in

(anajj ~ a,jaj,)(ai,akk - a,kak,) > (a,,ajk + aikaj,)(a,iakj + a,jak,)

(1.3)

for /, j , k — 1,2,3; ; ¥=j, j ¥= k, k ¥= i. For the system (1.1) we find that these
inequalities are trivially satisfied upon substituting in (1.3)

3

7 = 1

Thus, remarkably, a maximum principle is available for the physical system (1.1)
without imposing any further conditions on the constants aIJ. These results are
given as theorems in the following section.

2. Maximum principles

In this section maximum principles are obtained for the systems (1.1) and (1.2).
The concentrations u]t u2 and «3 are defined over a bounded domain fl in the
x-space and for the finite time interval, 0 =£ t < T. This region of x — t space is
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denoted by

R={(x,f):x68u3fi,0^Kr}, (2.1)

where 3S2 is the piecewise continuously differentiable surface of fi. Theorem 2.1
states that for particular conditions on the concentrations, at least one of the
concentrations in the system (1.2) must attain its maximum on the boundary of R,
whenever conditions (1.3) hold. Theorem 2.2 is the corresponding result for the
system (1.1). The following lemma and definition are required.

LEMMA. Let A, B and fciy(/, j — 1,2) be positive constants. If

-buA + buB>0 and b2iA - b22B > 0, (2.2)

then

6,2*21 -*l l*22>0. (2-3)

PROOF. The first of (2.2) implies B>bub\2
xA. The second of (2.2) implies

A > b22b2\B. The elimination of either A or B gives bitb22b^2
lb2\ < 1. This implies

(2.3).

DEFINITION. We say that (u,, u2, w3) G H in S if and only if
(i){u,,M2,M3} G C2inS,and

(ii) {«,, M2, u3) satisfy (1.2) in S,
where S is an arbitrary region of the x — t space, and C2 denotes the set of functions
which are continuous together with their derivatives up to second order.

THEOREM 2.1. At least one of ux, u2 and w3 attains its maximum on the boundary
of R // the following hold:

(i) {«,(x, 0 , «2(*. 0 . K3(x. 0 } e H ifx G fi, 0 < * < T,
(ii) {«i(x, t), «2(x, /), «3(x, t)} are continuous if(x, t) G R,

(iii) {«,(x, 0 , "2(
x> 0 . "3(

x> 0 } > 0 i/(x, /) G R,
(iv) aua22 > ana2U aua33 > a 1 3 a 3 , ,

(v) ( f l , , a 2 2 - a]2a2i)(aua33 - a]3a3i) ^ (aua23 + ai3a2l)(aua32 + ai2a3]).

PROOF. The substitution of the new concentrations

u*2=u2

u* = «3

(2.4)
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for e > 0 , into (1.2) yields

Z),V2w* ~ du*/dt — anu* + ai2u* + ai3

[41

0,

a2luf ~ a22u\ + a23u^

£ > 3 V 2 M J — duj — a3 3H*

0.

{ ' '

Assume that uf, u* and u* all attain their maximum values in the interior of R,
respectively at the points (x,, f,), (x2, t2) and (x3, ?3). Therefore

^ 1 = 0 ? 2 , . *« f | ( x ( ) < 0 , ( « = 1 , 2 , 3 ) . (2.6)

It is observed that if uf has a maximum on S2 X (/ = T), then du*/dt > 0 there.
This only serves to strengthen the following inequalities. The substitution of (2.6)
into (2.5) yields

/,) + flI3«;(x,, r,) > 0,

' h) + a2iu*(x2, t2) > 0, (2.7)

The assumption that wf, «* and M* attain their maximum values at (x,, / ,) ,
(x2, t2) and (x3, /3) respectively, implies

u*{xl,t,)>u*{xJ,tJ), (i,j= 1 ,2 ,3 ) . (2.8)

Inequalities (2.8) can be used to strengthen inequalities (2.7) to obtain

2. h) + 0|3"*(X3. '3)'

i. '1) + a32«*(x2, t2).

(2-9)

The elimination of u*(xt, / ,) from (2.9) yields

(al2a2l - a,,a22)«2(x2' h) + {a\iai 3, t3) > 0,

(al2a
2l

, t2) + (al3a3l - aua33)u^(x3, t3) > 0.
(2.10)

Conditions (iv) of the theorem ensure that (2.10) is of the form (2.2). Application
of the lemma to (2.10) gives

{aua22 - aua2])(aua33 - ana3l) < (aua23 + al3a2l)(aua32 + al2a3l).

(2.11)
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Inequality (2.11) constitutes a contradiction of condition (v) of the theorem.
Therefore the assumption that «*, u* and w* all attain their maximum values in
the interior of R is invalid. Hence at least one of the following holds,

uf'Smaxwf, M? *£ maxu?, u? ^ m a x u ? , (2-12)
3R 3R 3R

where 9R denotes the boundary of R. By returning to the original concentrations
we see that at least one of the following holds:

H, «£ w. + eex(a"/Dl)'/2 < maxM, + e maxe^a"/D'
3R 3R

u2<u2 + zex(a*/D^ < maxM, + e
2 2 3R 2 3R

u3 < u3 + eex(a»/D^/ < maxM3 + e
3R 3R

(2.13)

Letting e approach zero yields

M|<maxM, or « 2 < m a x « , or w , < m a x « 3 , (2.14)
3R 3R 3R

concluding the proof of the theorem.

Theorem 2.1 also holds if conditions (iv) and (v) are replaced by either of the
following two sets of conditions:

(iv), aua22>al2a2l, a22a33> a23a32, 1

Ml (ana22-a12O2l)(a22a33 -^23^32) \ (2-15)

> (a22an + a23an)(a22a3l + a2la32),

or
(iv)2 aua33 >aua3], a22a3J> a23a32,

(2.16)

As a direct consequence of substituting (1.4) into the above theorem, the
corresponding maximum principle is obtained for (1.1). It has already been noted
that conditions (iv) and (v) of Theorem 2.1 are trivially satisfied upon this
substitution. Therefore the corresponding maximum principle for diffusion in the
presence of three diffusion paths is as follows.

DEFINITION. We say that {«,, u2, M3} e / / ' in S if and only if
(i) {w,, w2, M3) £ C2 in S, and

(ii) {«,, M2, w3} satisfy (1.1) in S,
where S is an arbitrary region of the x — t space, and C2 denotes the set of functions
which are continuous together with their derivatives up to second order.

https://doi.org/10.1017/S0334270000003775 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000003775


422 Alexander I. Lee and James M. Hill 161

THEOREM 2.2. At least one of ux, u2 and u3 attains its maximum on the boundary
of R // the following hold:

(i) {«,(x, 0, u2(x, t), «3(x, /)} £ Hl ifx £ 12, 0 < t < T,
(ii) {M,(X, t), u2(\, t), «3(x, 0} are continuous if(x, t) £ R,

(iii) {K,(X, 0, «2(x. 0, "3(x- 0} > 0 i/(x, 0 £ R.

Theorem 2.1 can be extended to systems in which there are more than three
diffusion paths. The details are involved and become more difficult for larger
systems. For n diffusion equations, corresponding to the system (1.2), inequalities
(2.9) may be generalized to

n

a,,u*{\,, I,) < 2 a, "*(x > t ), (2.17)
^=]

for i'• — 1,2,...,«. For four diffusion paths a theorem similar to Theorem 2.1 can
be proved in which conditions (iv) remain the same, condition (v) becomes a strict
inequality, and if two further conditions are stipulated:

(«llfl44 ~ a\4a4\)(a\\a31 ~ «13«3l) > (a41«13 + a43al 1 )(a3la14 + a34flll)>

[(^1,^44 ~ a\A^4\)(aua33 - a13a3l) - (a4lan + a43au){a3xaX4 + a34au)]

X [(aua22 - aX2a2x){ana33 - a13a3I) - (aI3a2, + a23au)(ana3x + a32au)]

^[(a4lan + a42au)(aua33 - a13a3l) +(a41a13 + a43an)(a]2a3l + a32a,,)]

X[(a13a21 + a23au)(a3xaX4 + a3 4an) + (a n a 3 3 - a]3a3l)(al4a2X + a24au)].

(2.18)

There exist similar sets of conditions under which a maximum principle holds for
systems with four diffusion paths. For further results concerning maximum
principles for coupled parabolic systems the reader is referred to Dow [5], Dow
[6], Dow and Vyborny [7] and McNabb [11].
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