ON PRQJECTIVE-SYMMETRIC SPACES
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Introduction

This paper deals with a type of Riemannian space V,(# = 2) for which
the first covariant derivative of Weyl’s projective curvature tensor

(1) W?n = Ri.lk - (‘5: R‘,—O?R,,)

n—1
is everywhere zero, that is,
(2) W?ik,l =0

where comma denotes covariant differentiation with respect to the metric
tensor g, of V,. Such a space has been called a projective-symmetric
space by Gy. Sods [1]. We shall denote such an n-space by v,. It will be
proved in this paper that decomposable Projective-Symmetric spaces are
symmetric in the sense of Cartan. In sections 3, 4 and § non-decomposable
spaces of this kind will be considered in relation to other well-known classes
of Riemannian spaces defined by curvature restrictions. In the last section
the question of the existence of fields of concurrent directions in a y,
will be discussed.

1. Scalar curvature of a ¥,
Gy. Sods [1] has proved that for every y,(n > 2)
1) Ryi—Ruy,=0.
From the identities of Bianchi we have

Ru,k“Ra,H'ngmm,n =0.
In virtue of (1.1) this reduces to

" Rpirsn =0
or
. %Rn’ =V
Hence R is a constant. :
113
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For a v,,

Russteom = & Rism—Ens Rixm
(1.2) R..
= "2_ (ere8is—Ens8ur)-

From (1.2) it follows that in a y, the scalar curvature R is a constant if and
only if Ry, =0.
It is known that for a V,

R
Ry = 3 (Enigir—Emeus)-

Therefore, in a V,
R
Wi = Rmn"; (eregis—Ens&ux)

= 0.

This shows that every V, is a ¢,.
We can therefore state the following theorem:

THEOREM 1. Every V, is a y,. The scalar curvature of a vy, (n > 2)
s a constant but that of a vy, is, in general, not so. A vy, is of constant scalar
curvature if and only if it is symmetric in the sense of Cartan.

2. Decomposable o,

A Riemannian space V,, is said to be decomposable if it can be expressed
as a product V,x V,,_, for some 7, i.e., if coordinates can be found so that its
metric takes the form

r n
(2.1) ds? = 3 gy dxtddfi 4+ T g, , detrdzh
ay,8,=1 @y, By=rtl

where the g, , are functions of #', 23, - - - 2" only and the g, ,, are functions of
a1, g7+2 . . - z» only. Greek letters with subscript 1 are taken to have the
range 1 to » and those with subscript 2 to have the range 41 to #. The two
parts of {2.1) are the metrics of ¥, and V,_, and are called decomposition
spaces of V,,. We now suppose that a y, which is not of constant non-vanishing
curvature is a product space V,_, X V,. The curvature restriction mentioned
above is necessary, because, as proved by Ficken [2], a space of constant
non-vanishing curvature cannot be decomposable. Now,

1
W“lﬂﬂx”l = R"xﬁﬂl‘l—— n—1 Lg“l"lRﬁﬂx—g“ﬂlRﬂ:"s)
(2.2)
1

n—1

g“x')’x R’s"s
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because, the components of the metric tensor, the curvature tensor and the
Ricci tensor of V, are zero unless all subscripts of the Greek letters are alike.
Therefore

1
(2.3) Wb ridan, = 7_1 Bayyy Bayaya,

In virtue of (2) it follows from (2.3) that

Rﬁ'a’,l: = 0.
Similarly we have
R“x?’l-'\x = 0.
Therefore
Rﬂgﬁ;’h":vA: =0 and R“xﬁ;‘)’;’ukx =0.

So the decomposition spaces are symmetric in the sense of Cartan and
therefore their product is so. Hence we have the following theorem.

THEOREM 2. A decomposable projective-symmelric space is symmetric
in the sense of Cartan.
Henceforth by a y, we shall mean a non-decomposable y,.

3. Three-dimensional projective-symmetric spaces

For a g, (1.1) holds and R is constant. Therefore

1
Ry = Ru',k““Rik,i'*‘m (gieR,;—8u R 3)

= 0.

Hence a y; is conformally flat.
For a V, the curvature tensor has the form

Ruise = 8nsHin—EneH i+ Hns—8is Hun»
where

R
Hy= — (Ru_‘zgu)-
Hence for a y,
Ryise, = gmHu.;—gtha,x+guHm,x"gan,x
= %(ghkRii,l_gMRik,l)

Since in a y,, R is constant
Hu,: = "Ru.t'

(3.1)
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Therefore from (3.1) we have
“(ngik,:“guRu,z+gn=RM,l—guR»k.z) == %(guRu.z—gMRu,;)~
Multiplying both sides by g** and summing for ¢ and % we get
2 (Rai—Em R, ) = =Ry,

whence
Ry, =0.

Therefore from (3.1) it follows that the space is symmetric in the sense of
Cartan. We can therefore state the following theorem.

THEOREM 3. Every v, is a conformally flat symmetric space.

4. Conformally-flat ¥, (n = 4)
We now consider a y,(n = 4) and suppose that it is conformally flat.

Then
Ry, = grHa, l—ghtHiI.l+ginM,t_g(JHhk.l
(4.1) ]
= a1 (eaeRis,i—8ns Rar,i)
where
(42) H, = "g [Ra—é'(zli—l) B'a]-

Since R is constant,

1
Hii,l = "”_2 Ri!.t'

Hence from (4.1) we have

1
T a_2 (&rns Rr,i—8ax Ris,1+8ox Ras,1—8us Raw, 1)
(4.3)

1
n—1

(Ese Ry i—griRux)-

Multiplying both sides of (4.3) by g** and summing for ¢ and % we have

”
s L
whence

Ry:=0.
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Therefore from (4.1) it follows that the space is symmetric in the sense of
Cartan.

Let us now suppose that the rank of the matrix ((H,,)) is #» where H,
is given by (4.2).
Then there are uniquely determined quantities H* such that

HMH, =¢8], HMH, = 8.

Suppose that there exists a non-zero vector 4; such that
(4.4) MRy A Ry + 4 Ry = 0.
Then

A(gasH i —8ne H iyt HAy— 815 Has)
(4.5) +A4 @ Hn—gnmH et gaHne—8aHy)

+2(gnH y—gusHuyt 8y Ha—8aHay) = 0.

Multiplying both sides of (4.5) by H* H* and summing for 7, §, k, k we get
(4.6) Mg HM = Ay gy HM.
Again multiplying (4.5) by H* and summing for /4 and § we get in virtue of

(n—3)(guAr—8uh) = 0

whence
(4.7) Lalr = guhi
From (4.7) it follows that
(n—1)4; =
whence
Al = 0.

Thus there exists no non-zero vector 4, such that (4.4) holds. The y, therefore
satisfies the following conditions

i) R»uk,: =0,
and

li) ll Rh‘!k+2‘5 Rhikl+)'k Rmu # 0

for a non-zero vector 4,.

Hence it is a symmetric space of the first kind according to Hldvaty [3].
Therefore we have the following theorem.

THEOREM 4. A conformally flat y,(n = 4) is symmetric in the sense of
Cartan. If further, the rank of the matrix ((H,;)) where H, is given by (4.2),
be n then the y, is a symmetric space of the first kind.
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5. Recurrent and Ricci-recurrent ¥, (n = 4)

Let a ¢, be a recurrent space i.e. a non-flat space in which the Riemann
curvature tensor satisfies the relation

(5‘1) R?jk,m = 'zm Rihik
for a non-zero vector 4.
Then
1
W’i.ik,m = R:'.jk,m - n—1 (‘5: Ril,m_a? Rik,m)
1
= Am [R?n— — (5: R“—é? Ru)]
n—1
= ;'m W;‘jk
or
(5.2) AW, = 0.

Since 4, # 0 it follows from (5.2) that
(5.3) Wiy = 0.

As the space under consideration is not flat, (5.3) leads to a contradiction
since it would require ¥, to be a space of constant Riemannian curvature.
Hence a y, cannot be a recurrent space.

Next we suppose that a y, is a Ricci-recurrent space, i.e. a space in
which the Ricci tensor R, (3£ 0) satisfies the relation

(54) Ri!,m = lmRt’i

for a non-zero vector 2,,.
In virtue of (2) and (5.4) we get

(8.5) Ruise,m = An(Raie—Wiina)-
Multiplying both sides of (5.5) by g** and summing for 4 and % we have
Rim= 2R,
We can therefore state the following theorems:
THEOREM 5. A non-flat yp,(n = 4) cannot be a recurrent space.

THEOREM 6. A mecessary and sufficient condition that a vy, (n = 4) be a
Ricci-recurrent space specified by a non-zero vector A, is that (5.5) holds.
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Let us now suppose that a y,(# = 4) is a Ricci-recurrent space with
A; as its vector of recurrence. Then from (1.1) we have

Y Rii = ;'i Rik

Hence

(5.6) R, =54, (s+#0)
where s is a scalar factor of proportionality.
Therefore

(6.7) R = g¥R,; = sg1,4;.

It is known that in an irreducible Ricci-recurrent space the scalar curvature
is zero. Hence from (5.7) we have

sgtidA; =0
whence

giAA, =0 because s 7 0,
The vector of recurrence is therefore a null vector. Again from (5.4)

Ru,mz = 7~m R.'i, z+}*m, ! Rt‘i

= z’l)‘mRH'}'}‘m,lRii'
Therefore
(5-8) Ru,ml—Rii,zm = Rii(}‘m,l—'}'l,m)'
It has been proved by Gy. Soés [1] thatin a y,
Ru,mz“Rﬁ, m = 0.

Hence from (5.8) we have
Ri:‘(lm,l_)‘l,m) = 0.
Since R;;z£ 0 we get
A i—Ay,m = 0.

Thus we have the following theorem:

THEOREM 7. In a Ricci-recurrent v,(n = 4), the rank of the Ricci-
tensor is 1 and the vector of recurrence is a null vector and the gradient of a
scalar.

6. Existence of fields of concurrent directions in a ¥, (n > 2)

The question of the existence of fields of concurrent directions in a
Riemannian space was discussed by Shirokov [4]. He proved that if in a
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Riemannian space with metric tensor g,, there exists a field of concurrent
directions then the directions are determined by the equation

(6.1) v = 8y

Let us now suppose that in a y,(n > 2) a vector v, determines a field
of concurrent directions. Then (6.1) will hold. From (6.1) we have

(6.2) R,,-,,,v" = 0.
Since
1
(6.3) W = Ry (gx Ris—guRar)

n—1

o %
Wnt* = Rypv*—

no1 (g Ry v* —guy R v*)

(6.4) .

n—1

B Rysv™.

Differentiating both sides of (6.4) covariantly we get

(6.5) ka,z”k'*'Wtuk"fz = — gu(Ru.x”"‘*‘Ru‘"ft)-

n—1
In virtue of (2) and (6.1) it follows from (6.5) that

1
n—1

Making use of (6.3) we get from (6.6)

(6.6) Wy = —

1
gu Ry v — a1 Rigu.

1
(6.7) Ryt mguRn = - gtha.z”k-

n—1

Multiplying both sides of (6.7) by g“ and summing for ¢ and § we have
1
Ry+ T R,;=0  because R is constant.

Hence R, = 0.
Therefore from (6.6) and (6.3) we have

Ryp = 0.
We can therefore state the following theorem:

THEOREM 8.In anon-flatyp,(n > 2) there cannot exist a field of concurrent
directions.
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In conclusion, I acknowledge my grateful thanks to Dr. M. C. Chaki
who kindly suggested the problem and helped me in the preparation of this

paper.
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