
JFP 26, e23, 40 pages, 2016. c© Cambridge University Press 2016

doi:10.1017/S0956796816000101

1

Oracle-guided scheduling for controlling
granularity in implicitly parallel languages�

UMUT A. ACAR

Carnegie Mellon University, Pittsburgh, PA, USA

Inria, Paris, France

(e-mail: umut@cs.cmu.edu)

ARTHUR CHARGUÉRAUD

Inria, Université Paris-Saclay, Palaiseau, France

LRI, CNRS & Univ. Paris-Sud, Université Paris-Saclay, Orsay, France

(e-mail: arthur.chargueraud@inria.fr)

MIKE RAINEY

Inria, Paris, France

(e-mail: mike.rainey@inria.fr)

Abstract

A classic problem in parallel computing is determining whether to execute a thread in parallel

or sequentially. If small threads are executed in parallel, the overheads due to thread creation

can overwhelm the benefits of parallelism, resulting in suboptimal efficiency and performance.

If large threads are executed sequentially, processors may spin idle, resulting again in sub-

optimal efficiency and performance. This “granularity problem” is especially important in

implicitly parallel languages, where the programmer expresses all potential for parallelism,

leaving it to the system to exploit parallelism by creating threads as necessary. Although this

problem has been identified as an important problem, it is not well understood—broadly

applicable solutions remain elusive. In this paper, we propose techniques for automatically

controlling granularity in implicitly parallel programming languages to achieve parallel

efficiency and performance. To this end, we first extend a classic result, Brent’s theorem

(a.k.a. the work-time principle) to include thread-creation overheads. Using a cost semantics

for a general-purpose language in the style of lambda calculus with parallel tuples, we

then present a precise accounting of thread-creation overheads and bound their impact on

efficiency and performance. To reduce such overheads, we propose an oracle-guided semantics

by using estimates of the sizes of parallel threads. We show that, if the oracle provides

accurate estimates in constant time, then the oracle-guided semantics reduces the thread-

creation overheads for a reasonably large class of parallel computations. We describe how

to approximate the oracle-guided semantics in practice by combining static and dynamic

techniques. We require the programmer to provide the asymptotic complexity cost for each

parallel thread and use runtime profiling to determine hardware-specific constant factors.

We present an implementation of the proposed approach as an extension of the Manticore

compiler for Parallel ML. Our empirical evaluation shows that our techniques can reduce

thread-creation overheads, leading to good efficiency and performance.

� This research was partially supported by the National Science Foundation (grants CCF-1320563
and CCF-1408940), European Research Council (grant ERC-2012-StG-308246), and by Microsoft
Research.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

2 U. A. Acar et al.

1 Introduction

Explicitly threaded programming provides full control over parallelism resources by

offering primitives for creating, scheduling, and synchronizing parallel threads. As a

result, the programmer can write efficient parallel programs by performing a careful

cost-benefit analysis to determine which threads should be executed in parallel and

under what conditions. This approach, however, requires reasoning about low-level

execution details, such as the effects of scheduling, data races, or concurrent effects,

which is known to be notoriously hard. In addition, such low-level programming

can lead to over-engineering of software and harm portability. For example, the

resulting code may perform well on a particular hardware setting but not on others.

The complexities of programming with explicitly threaded languages have mo-

tivated interest in implicitly threaded or implicitly parallel languages, such as Mul-

tilisp (Halstead, 1985), NESL (Blelloch et al., 1994), Cilk (Blumofe and Leiserson,

1999), Parallel Haskell (Chakravarty et al., 2007; Peyton Jones et al., 2008), Parallel

ML (PML) in Manticore (Fluet et al., 2008; Fluet et al., 2011), and in MultiMl-

ton (Sivaramakrishnan et al., 2014). In explicit threading, all programs accept a

sequential (serial) semantics. It is the responsibility of the run-time system of the

programming language to fulfill the intended semantics by creating and scheduling

threads as needed. Implicit threading can therefore simplify writing parallel programs

significantly. For example, the programmer can express parallelism at a high level

by using parallel versions of a variety of serial data types such as sequences, arrays,

and tuples.

As an implicit parallel program executes, it exposes opportunities for parallelism.

The language run-time system exploits the potential for parallelism by creating

lightweight threads (variously called tasks, strands, fibers, etc.) as needed and by

mapping them to the processors or cores for fast execution. To achieve efficiency,

implicit programming languages rely on a scheduler for distributing threads among

the processors to perform load balancing. Many scheduling techniques and practical

schedulers have been developed, including work-stealing schedulers (e.g., Blumofe

and Leiserson (1999)), and depth-first-search schedulers (Blelloch and Greiner, 1996).

Experience with implicitly parallel programs shows that one of the most important

decisions that any implicitly parallel language must make is determining whether

to exploit an opportunity for parallelism by creating a parallel thread or to forego

the opportunity by falling back to sequential execution. On the one hand, creating

a thread for each parallelism opportunity can lead to poor efficiency, because the

cost of creating and managing parallel threads can be very high. On the other hand,

foregoing a parallelism opportunity can lead to sub-optimal performance because

of the lost opportunity for parallelization of a large chunk of work. Therefore,

solving this dilemma requires finding just the right “sweet spot”, where no more

than necessary threads are created to achieve the best performance. This granularity

problem is important because the overhead of managing parallelism matters: Since

the speedups achievable via parallel computation is bounded by the number of

processors, often a small constant factor, any increase in the overhead can impact

performance negatively.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 3

Even though the granularity problem is broadly accepted to be an important

problem, it is a poorly understood one. Theoretical analyses often ignore thread-

creation overheads, offering no significant clues about how such overheads may

affect efficiency. Practical implementations often focus on reducing thread-creation

overheads, instead of controlling granularity so that fewer threads can be created

without harming parallelism. As a result, practitioners try to solve the granularity

problem by estimating the amount of work that would be sufficiently large to justify

parallel execution. More specifically, programmers try to determine the input sizes

at which threads become too small to amortize the cost of parallel thread creation

and sequentialize such threads. Since the running time of a thread depends on the

hardware, the programmer must make the best decision they can by taking into

account the specifics of the hardware. This manual granularity control is thus bound

to yield code whose performance is specific to the hardware and therefore likely not

portable (Tzannes et al., 2014).

In this paper, we propose theoretical and practical techniques for solving the

granularity problem in implicitly parallel programming languages. First, we present

theorems that take into account thread-creation overheads and characterize their

impact on parallel run time. Our theorems show such impact to be significant

(Section 4). We then consider a cost semantics for a calculus that extends the lambda

calculus with parallel tuples (Section 5) and propose a technique for controlling

granularity based on an oracle (Section 6). We show that if the oracle can be

implemented efficiently and accurately, it can be used to improve efficiency for a

relatively large class of computations.

Based on this result, we propose a practical realization of the oracle that uses

complexity functions defined by the user to approximate accurately the work of

the computations involved (Section 7). We then describe a compilation scheme

for implementing the oracle-guided semantics based on such complexity functions

(Section 8). We present an evaluation of the proposed approach on a subset of ML

extended with parallel tuples and complexity annotations (Section 9). We conclude

with a discussion of the limitations of our implementation of the oracle based on

complexity functions (Section 11).

2 Overview

We present a high-level overview of our the techniques proposed in this paper.

Brent’s theorem (Brent, 1974), which leads to the work-time scheduling principle,

characterizes arguably the most important property of parallel programs: that they

can be scheduled to execute efficiently with multiple processors—within a factor of

two of the optimal. More precisely, Brent shows that a level-by-level schedule can

execute a parallel computation with w work and s span in no more than w/P + s

steps on P processors. This theorem generalizes to any greedy schedule, that is, any

schedule that never leaves processors idle when there is work to do. Prior research

shows that greedy schedules can be computed by online scheduling algorithms such

as the work-stealing algorithm (e.g., Blumofe and Leiserson (1999)) under modest

assumptions.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

4 U. A. Acar et al.

The work-time scheduling principle ignores an important factor: The overhead

for creating threads or parallelism, which is assumed to be zero. To understand

the impact of thread-creation overheads, we start with this fundamental theorem

and generalize it to take the overheads into account (Section 4). Specifically, we

consider the standard directed-acyclic-graph (DAG) mode for parallel computations

and show that a computation with total work � and total span �, where both

include the thread-creation overheads, can be executed in no more than �/P + �
steps. What is somewhat special about thread-creation overheads are that they are

not divisible. Nevertheless, the generalized theorem follows by a modest extension

of an existing proof.

Having established the contribution of thread-creation overheads to parallel run

time, we then move on to the problem of determining precisely the overheads of

thread creation in implicitly parallel programs. To this end, we consider a lambda

calculus with parallel tuples and present a cost-semantics for evaluating expression

of this language (Section 5). The cost semantics yield raw work/span and total

work/span of each evaluated expression. Using this cost semantics, we show that

thread-creation overheads can be significant: A multiplicative factor times the raw

work. When applied to the generalized Brent’s theorem, this result implies that

such multiplicative increases in work affect the parallel run-time directly. To reduce

thread-creation overheads, we propose an alternative oracle-guided semantics that

captures a known principle for avoiding the thread-creation overheads: For a thread,

create a parallel thread and evaluate it in parallel only if the thread is sufficiently

large, i.e., greater than some constant κ. We show that the oracle semantics can

decrease the overheads of thread-creation by any (desired) constant factor κ, but

only at the cost of increasing the total span by a similar factor. This result suggests

that in practice, some care will be needed to select κ, because otherwise it can reduce

an important quantity called parallel slackness (Valiant, 1990).

The bounds with the oracle-guided semantics suggest that we can reduce the

thread-creation overheads significantly, if we can realize the semantics in practice.

Such a realization is impossible, unfortunately, because it requires the ability to

determine a priori the running time of a thread and do so without incurring other

overheads. We show, however, that a realistic oracle that can give constant-factor

approximations to the thread running times can still result in similar reductions in

the overheads for a reasonably broad class of computations (Section 6.2). We also

show that, unless care is taken, the realistic oracle can actually further increase the

overheads, due to the direct cost of evaluating the oracle. This outcome, i.e., that

attempts at controlling the granularity can actually backfire and slow down the

program further, is an interesting outcome of our analysis. For a broad class of

computations, including many recursive, divide-and-conquer computations, we show

that this worst case can be avoided.

While the oracle-guided semantics is effective in controlling the cost of thread

creation without detrimentally harming parallelism, it is technically impossible to

realize in practice because it requires predicting the work (sequential run-time) of

computations. As we describe in Section 7, however, the work to be performed by

a given thread can be approximated by using a combination of static and dynamic

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 5

information. Specifically, we describe an approximation technique that relies on

an estimator that uses asymptotic cost functions (asymptotic complex bounds) and

judicious use of run-time profiling techniques to estimate actual run-times accurately

and efficiently. This approach combines data from the asymptotic complexity bounds

and the profiling techniques to approximate the work to be performed by a given

thread. In this work, we only consider simple recursive functions for which the

execution time is proportional to the value obtained by evaluating the asymptotic

complexity expression. We refer to Section 11 for discussion of more general patterns.

We present a prototype implementation of the proposed approach (Section 8)

by extending the ML to support parallel tuples, and complexity functions, and

translating programs written in this extended language to the PML language (Fluet

et al., 2011). Although our implementation requires the programmer to enter the

complexity information, these could also be inferred in some cases cases via static

analysis (e.g., Jost et al. (2010) and references thereof). We extend the Manticore

compiler for PML to support oracle-guided scheduling and use it to compile

generated PML programs. Our experiments (Section 9) show that our oracle

implementation can reduce the overheads of a single processor parallel execution to

3% and 13% of the sequential time. When using 16 processors, we achieve 7- to

15-fold speedups on our benchmark machine.

3 Terminology

In this paper, we consider implicitly parallel programs, where a program executes

by employing two kinds of threads: system-level threads and user-level threads.

An execution creates one system-level thread per processor and usually pins the

system-level thread to that processor. It then dynamically creates lighter weight,

user-level threads, and maps them to the system-level threads. A key property of

implicitly parallel programs is that the number of user-level threads created during

an execution can be very large relative to the number of system-level threads. For

example, an execution may create millions of user-level threads mapped to 10 system-

level threads, which are then mapped to 10 processors or cores by the system. For

the purpose of succinctness, throughout the paper, we refer to “user-level threads”

simply as “threads” and to “system-level threads” as “processes”.1

4 Generalizing Brent’s theorem

We represent a parallel computation with a DAG, called computation DAG. Vertices

in the DAG represent atomic computations, or operations. For simplicity, we refer

to each vertex as an operation. Edges between operations represent precedence

relations, in the sense that an edge from u to v indicates that the execution of u

must be completed before the execution of v can start. Every computation DAG

includes a source operation and a sink operation, representing the starting and the

1 User-level threads are sometimes called “strands”; unfortunately, the same term is sometimes used to
refer to hardware threads.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

6 U. A. Acar et al.

Fig. 1. An example computation DAG.

end points of the computation, respectively. All operations of a computation DAG

are reachable from the source, and the sink is reachable from all operations. An

example computation DAG appears in Figure 1.

Traditionally, every operation in the DAG is considered to take a single unit of

time and given a weight of 1. In this setting, we can define the standard notion

of work and span, which we here call raw work and raw span. The raw work of a

computation graph is equal to the total number of operations that it contains. The

raw span of the computation DAG is equal to the total number of operations along

the longest path. Brent proved the following bound, which we recall since our aim

is to generalize it.

Theorem 4.1 (Brent’s theorem)

Let G be a computation DAG with w raw work and s raw span. A level-by-level or

depth-wise schedule of G requires O(w
P

+ s) time on P processors.

Proof

Consider scheduling the operations level-by-level, that is, starting with operations at

depth 1, then executing operations at depth 2, and so on, ending with operations

at depth s. Let wi denote the number of operations at depth i in the DAG. These

operations can be scheduled on P processors in
⌈
wi

P

⌉
rounds, each lasting exactly

one unit of time. Summing up over all the possible depths, we deduce that the total

execution time is bounded by

s∑
i=1

⌈wi

P

⌉
�

s∑
i=1

(wi

P
+ 1

)
�

∑s
i=1 wi

P
+ s �

w

p
+ s.

�

Observe that the optimal execution time cannot be less than w
P
, which corresponds

to having all processors busy at all time, and that it cannot be less than s, which

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 7

corresponds to the length of a critical path. Therefore, Brent’s bound, expressed as
w
p

+ s, is never more than a factor 2 away from the optimal.

Brent’s theorem does not take into account the overheads associated with thread

creation. Our goal is to refine the model and generalize Brent’s theorem to take

thread-creation costs into account. To that end, we assign to each operation with

out-degree two or greater au weight of 1 + τ instead of just 1. We then define the

total work as the sum of the weights of all the operations in this revised computation

DAG. Similarly, we define the total span as the maximum weight of a path from the

source to the sink in the revised DAG.

Theorem 4.2 generalizes Brent’s theorem for weighted DAGs and arbitrary

greedy schedules (rather that level-by-level schedules). The proof is a relatively

straightforward generalization of that of Arora et al. (1998).

Theorem 4.2 (Greedy-scheduling of weighted DAGs)

Let G be a computation DAG with � total work and � total span. Any greedy P

processors schedule of G takes O(�
P

+ �) steps.

Proof

Consider any greedy execution of the DAG G. At each execution step, each processor

places a token in the work bucket if it is busy at this step, otherwise it places a token

in the idle bucket. The work bucket contains exactly � tokens at the end of the

execution. Let I denote the number of tokens contained in the idle bucket at the

end of the execution, and let T denote the total number of steps in the execution.

Because a total TP tokens are created during the T execution steps, TP = � + I .

In order to establish the result T � �
P

+�, it thus suffices to establish the inequality

I � P �.

Consider a given time step. If all processors execute an operation at that step,

then the idle bucket receives zero tokens. Otherwise, a number of processors are

idle. In this case, the idle bucket receives between one and P − 1 tokens. If one or

more processors are idle, then the idle processors cannot find a ready operation to

execute, because otherwise this would not be a greedy schedule. This means that at

this step, all the ready operations (operations whose ancestor have been executed)

are executed. Therefore, at such a time step, the span of the sub-DAG induced by

the operations that are not yet executed decreases by one. Therefore, there are at

most � such steps and thus (P − 1)� tokens in the idle bucket. �

5 Source language and cost semantics

To give an accurate account of cost of thread creation, and to specify later our

compilation strategy, we consider a source language in the style of λ-calculus

and present a dynamic cost semantics for it. The semantics and the costs are

parameterized by τ and φ that represent the cost of creating a parallel thread and

the cost of consulting an external oracle.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

8 U. A. Acar et al.

Fig. 2. Abstract syntax of the source language.

5.1 Syntax

The source language includes recursive functions, pairs, sum types, and parallel

tuples. Parallel tuples enable expressing computations or branches that can be

performed in parallel, similar to the fork-join or nested data parallel computations.

More precisely, in
(
|e1, e2|

)
, we refer to e1 and e2 as (parallel) branches. We note

that although we only consider parallel tuples of arity two, our results generalize to

fixed (constant) arity trivially.

To streamline the presentation, we assume programs to be in A-normal form, with

the exception of pairs and parallel pairs, which we treat symmetrically because our

compilation strategy involves translating parallel pairs to sequential pairs. Figure 2

illustrates the abstract syntax of the source language. We note that, even though the

presentation is only concerned with a purely functional language, it is easy to add

local mutable state (i.e., mutable memory cells that are not subject to concurrent

accesses); in this case, however, they contribute no additional insight and thus are

omitted for clarity.

5.2 Dynamic cost semantics

We define a dynamic semantics where parallel tuples are evaluated selectively either

in parallel or sequentially, as determined by their relative size compared with some

constant κ, called the cut-off value and such that κ � 1. To model this behavior, we

present an evaluation semantics that is parameterized by an identifier that determines

the mode of execution, i.e., sequential or not. For the purpose of comparison, we also

define a (fully) parallel semantics where components of a parallel tuple are always

evaluated in parallel regardless of their size. The mode of an evaluation is sequential

(written seq), parallel (written par), or oracle (written orc). We let α range over

modes:

α ::= seq | par | orc.

In addition to evaluating expression, the dynamic semantics also returns cost

measures including raw work and raw span denoted by w and s (and variants), and

total work and total span, denoted by � and � (and variants). Dynamic semantics,

whose inductive definition appears in Figure 3, is presented in the style of a natural

(big-step) semantics and consists of evaluation judgments of the form

e ⇓α v, (w, s), (�,�).

This judgment states that evaluating expression e in mode α yields value v resulting

in raw work of w and raw span of s and total work of � and total span of �.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 9

Fig. 3. Dynamic cost semantics.

Figure 3 shows the complete inductive definition of the dynamic cost semantics

judgment e ⇓α v, (w, s), (�,�). When evaluating any expression that is not a parallel

tuple, we calculate the (raw or total) work and the (raw or total) span by summing

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

10 U. A. Acar et al.

up those of the premises (sub-expressions) and adding one unit to include the cost

of the judgment. For all expressions, including parallel tuples, each evaluation step

contributes 1 to the raw work or raw span. When calculating total work and total

span, we take into account the cost of creating a parallel thread τ and the cost of

making an oracle decision φ.

Evaluation of parallel tuples vary depending on the mode.

• Sequential mode. Parallel tuples are treated exactly like sequential tuples:

Evaluating a parallel tuple simply contributes 1 to the raw and the total work

(span), which are computed as the sum of the work (span) of the two branches

plus 1. In the sequential mode, raw and total work (span) are the same.

• Parallel mode. The evaluation of parallel tuples induces an additional constant

cost τ. The span is computed as the maximum of the spans of the two branches

of the parallel tuple plus 1, and work is computed as the sum of the work of

the two branches plus τ.

• Oracle mode. The scheduling of a parallel tuple depends on the amount of raw

work involved in the two branches. If the raw work of each branch is more

than κ, then the tuple is evaluated in parallel in the oracle mode. Otherwise,

the raw work of at least one branch is less than κ, and the tuple is evaluated

sequentially. In this case, the evaluation mode of each branch depends on the

work of the branch. If a branch contains more than κ units of raw work, then

it is evaluated in oracle mode, otherwise it is evaluated in sequential mode.

This switch to sequential mode on small branches ensures that the oracle is

not called too frequently during the evaluation of a program.

If the parallel tuple is evaluated sequentially, then the raw/total work and

span are both calculated as the sum of the span of the branches plus one. If

the parallel tuple is evaluated in parallel, then an extra τ is included in the

total work and span and the span is computed as the maximum of the span

of the two branches.

Theorem 5.1 makes it possible to apply directly the greedy-scheduling theorem to

the cost semantics. The basic idea of the proof is to show a correspondence between

the cost semantics and DAGs.

Theorem 5.1 (Greedy-scheduling for the cost semantics)

Assume e ⇓orc v, (w, s), (�,�) to hold for some v, w, and s. Any greedy scheduler

executes the expression e in no more than �
P

+� computations steps on P processors.

Proof

In order to invoke Theorem 4.2, which applies to computation DAGs, we build

the computation DAG associated with the execution of the expression e, including

vertices that represent the cost of scheduling. To that end, we describe a recursive

algorithm for turning an expression e with total work � and total span � into the

corresponding computation DAG, in which the sum of the weights of the vertices

is equal to �, and the maximal weight of a path is �. The algorithm follows the

structure of the derivation that e has total work � and total span �.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 11

• If the last rule has zero premises, then e is an atomic expression and

� = � = 1. We build the corresponding DAG as a single vertex of unit

weight.

• If the last rule has one premise, then � takes the form �1 + 1 and � takes

the form �1 + 1. Let G1 be the DAG corresponding to the sub-expression

described in the premise. We build G by extending G1 with one unit-weight

vertex at the bottom, that is, by sequentially composing G1 with a DAG made

of a single vertex.

• Otherwise, the last rule has two premises. First, consider the case where e is a

let-expression. � takes the form �1+�2+1 and � takes the form �1+�2+1.

Let G1 and G2 be the DAGs corresponding to the two sub-expressions. We

build G by sequentially composing G1 with a single unit-weight vertex and

then with G2.

• Consider now the case of a parallel tuple that is sequentialized. � takes the

form �1 + �2 + 1 +φ and � takes the form �1 + �2 + 1 +φ. Let G1 and G2

be the DAGs corresponding to the two branches. We build G by sequentially

composing a vertex of weight 1+φ with the sequential composition of G1 and

G2.

• Finally, consider the case of a parallel tuple that is parallelized. � takes the

form �1 + �2 + 1 + τ + φ and � takes the form max (�1,�2) + 1 + τ + φ.

Let G1 and G2 be the DAGs corresponding to the two branches. We build

G by sequentially composing a vertex of weight 1 + τ + φ with the parallel

composition of G1 and G2.

It is straightforward to check that, in each case, � and � match the sum of the

weights of the vertices and the total span of the DAG being produced. �

6 Work, span, and execution time analysis

We analyze the impact of thread-creation overheads on parallel execution time and

show how these costs can be reduced dramatically by using our oracle semantics. For

our analysis, we first consider an ideal oracle that always makes perfectly accurate

predictions (about the raw work of expressions) without any overhead (i.e., φ = 0).

Such an ideal oracle is unrealistic, because it is practically impossible to determine

perfectly accurately the raw work of computations. We therefore consider a realistic

oracle that approximates the raw work of computations by performing constant

work. Our main result is a theorem that shows that the realistic oracle can reduce

the thread-creation overheads to any desired constant fraction of the raw work with

some increase in span, which we show to be small for a reasonably broad class of

computations.

6.1 Ideal oracle

Theorem 6.1 quantifies the relationships between raw work/raw span and total

work/total span for the three possible modes.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

12 U. A. Acar et al.

Theorem 6.1 (Work and span)

Consider an expression e such that e ⇓α v, (w, s), (�,�). Assume φ = 0. The following

tight bounds can be obtained for total work and total span, on a machine with P

processors where the cost of creating parallel threads is τ.

α Bound on total work Bound on total span

seq � = w � = s = w

par � � (1 + τ
2
)w � � (1 + τ) s

orc � � (1 + τ
κ+1

)w � � (1 + max (τ, κ)) s

Proof

Results for the sequential mode is straightforward by inspection of the semantics

of the source language (Figure 3). The other results can be obtained by specializing

the general bounds that we present later in this section (Theorems 6.2 and 6.3). In

what follows, we give examples that attain the bounds for the parallel and the oracle

modes.

• For the work in parallel mode, consider an expression consisting only of parallel

tuples with n leaves, and thus n − 1 “internal nodes”. The raw work w is equal to

n+ (n− 1) while the total work � is equal to n+ (n− 1)(1 + τ). The ratio �/w can

be rewritten as 1 + (n−1)τ
2n−1

, which tends to 1 + τ
2

as n grows.

• For the span in parallel mode, we can use the same example. Each parallel tuple

accounts for 1 in the raw span but for 1 + τ in the total span. So, the total span can

be as much as 1 + τ times greater than the raw span.

• For the work in oracle mode, consider an expression with n nested parallel

tuples, where tuples are always nested in the right branch of their parent tuple.

The tuples are built on top of expressions that involve κ units of work. In the

oracle semantics, all the tuples are executed in parallel. The raw work w is equal to

n + (n + 1)κ, and the total work � is equal to n(1 + τ) + (n + 1)κ. The ratio �/w

is equal to 1 + nτ
n(κ+1)+κ

, which tends to 1 + τ
κ+1

when n gets large.

• For the span in oracle mode, in the case τ � κ, we use the same example as for

the work. The raw span is n + 1 and the total span is n(1 + τ) + κ. The ratio �/s is

equal to 1 + nτ+κ−1
n+1

, which approaches 1 + τ as n grows.

• For the span in oracle mode, in the case κ � τ, we change the example slightly

so that now the tuples are built on leaves that involve just less than κ units of work.

In the oracle semantics, all the tuples thus get executed sequentially. In this case, the

raw span is n+κ and the total span is equal to the total work, which is n+(n+1)κ.

The ratio �/s can be expressed as 1+ nκ
n+κ

, which approaches 1+κ as n grows. �

This theorem leads to some important conclusions. First, the theorem shows that

thread-creation (scheduling) costs matter a great deal. In a parallel evaluation, the

total work and total span can be as much as τ times larger than the raw span

and raw work. This essentially implies that a parallel program can be significantly

slower than its sequential counterpart. If τ is large compared to the number of

processors, then even in the ideal setting, where the number of parallel processors

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 13

is small relative to τ, we may observe no speedups. In fact, it is not uncommon to

hear anecdotal evidence of this kind of slowdown in modern computer systems.

Second, the theorem shows that evaluation of a program with an ideal oracle

can require as much as κ
2

less work than in the parallel mode. This comes at

a cost of increasing the span by a factor of up to κ
τ
. Increasing the span of a

computation can hurt parallel execution time because many parallel schedulers

rely on parallel slackness, i.e., the availability of large degree of parallelism to

achieve optimal speedups, or w
P

� s. Unless done carefully, increasing the span can

dramatically reduce parallel slackness. In the common case, however, where there is

large amounts of parallel slackness, we can safely increase span by a factor of κ
τ

to

reduce the thread-creation overheads. Concretely, if parallel slackness is high, then,

in the oracle mode, we can select κ such that parallel slackness is preserved—total

span remains small compared to w
P
, because κs remains relatively small compared

to w
P
—and the total work is reduced approximately by a factor of κ

2
.

6.2 Realistic oracles

The analysis that we present above makes two unrealistic assumptions about oracles:

(1) that they can accurately predict the raw work for a thread, and (2) that the oracle

can make predictions in zero time. Realizing a very accurate oracle in practice is

difficult, because it requires determining a priori the execution time of a thread. We

therefore generalize the analysis by considering an approximate or realistic oracle

that can make errors up to a multiplicative factor μ when estimating raw work. For

example, an oracle can approximate raw work up to a constant factor of μ = 3, i.e.,

a thread with raw work w would be estimated to perform raw work between w
3

and

3w. Additionally, we allow the oracle to take some fixed time, written φ, to provide

its answer.

We show that even with a realistic oracle, we can reduce thread-creation overheads.

We start with bounding the span; the result implies that the total span is no larger

than μκ times the raw span when κ is large compared to τ and φ.

Theorem 6.2 (Span with realistic oracle)

e ⇓orc v, (w, s), (�,�) ⇒ � � (1 + max (τ, μκ) + φ) s

Proof

Let ρ denote 1 + max (τ, μκ) + φ; we want to prove that � � ρs. The proof is by

induction on the derivation e ⇓orc v, (w, s), (�,�).

• For a rule with zero premise, we have � = s = 1. Because ρ � 1, it follows

that � � ρs.

• For a rule with one premise, we know by induction hypothesis that � � ρs.

Using again the fact that ρ � 1, we can deduce the inequality �+1 � ρ(s+1).

• For a rule with two premises that does not correspond to a parallel tuple, we

can similarly establish the conclusion �1 + �2 + 1 � ρ(s1 + s2 + 1) using the

induction hypotheses �1 � ρs1 and �2 � ρs2.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

14 U. A. Acar et al.

• Now, consider the case of a parallel tuple. First, assume that the two branches

of this tuple are predicted to be large. In this case, the tuple is executed in

parallel and the branches are executed in oracle mode. We exploit the induction

hypotheses �1 � ρs1 and �2 � ρs2 to conclude as follows:

� = max (�1,�2) + 1 + τ + φ

� max (ρs1, ρs2) + 1 + max (τ, μκ) + φ

� max (ρs1, ρs2) + ρ

� ρ (max (s1, s2) + 1)

� ρs

• Consider now the case where both branches are predicted to be small. In

this case, the tuple is executed sequentially. Because the oracle predicts the

branches to be smaller than κ, they must be actually smaller than μκ. So, we

have w1 � μκ and w2 � μκ. Moreover, both branches are executed according

to the sequential mode, so we have �1 = w1 and �2 = w2. It follows that

�1 � μκ and �2 � μκ. Below, we also exploit the fact that max (s1, s2) � 1,

which comes from the fact that raw span is at least one unit. We conclude as

follows:

� = �1 + �2 + 1 + φ

� μκ + μκ + 1 + φ

� (1 + μκ + φ) ∗ 2

� (1 + max (τ, μκ) + φ) · (max (s1, s2) + 1)

� ρs

• It remains to consider the case where one branch is predicted to be smaller

than the cut-off while the other branch is predicted to be larger than the

cutoff. In this case again, both branches are executed sequentially. Without

loss of generality, assume that the second branch is predicted to be small. In

this case, we have w2 � μκ. This second branch is thus executed according

to the sequential mode, so we have �2 = s2 = w2. It follows that �2 � μκ.

For the first branch, which is executed according to the oracle mode, we can

exploit the induction hypothesis �1 � ρs1. We conclude as follows:

� = �1 + �2 + 1 + φ

� ρs1 + μκ + 1 + φ

� ρs1 + (1 + max (τ, μκ) + φ)

� ρ (s1 + 1)

� ρ (max (s1, s2) + 1)

� ρs �

This ends our analysis of the span. Now, let us focus on the work. The fact that

every call to the oracle can induce a cost φ can lead the work to be multiplied by a

factor in proportion with φ. For example, consider a program made of a complete

tree made of 2n leaves, n parallel tuples on the last layer of the tree, and n − 1

sequential tuples in the upper layers of the tree. This program has raw work equal

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 15

to (n − 1) + n + 2n, and total work equal to (n − 1) + nφ + 2n. Thus, the increase

in work �/w is equal to (3+φ)n−1
4n−1

, which is close to φ
4

when n and φ are not small.

This example shows that a program executed according to the oracle semantics can

slow down by as much as a factor φ
4

compared with a purely sequential execution.

The problem with the above example is that the oracle is called infrequently—only

at the leaves of the computation—preventing us from amortizing the cost of the

oracle toward larger pieces of computations. Fortunately, most programs do not

exhibit this pathological behavior, because parallel tuples are often performed close

to the root of the computation, allowing us to detect smaller pieces of work early.

One way to prevent the oracle from being called on smaller pieces of work is

to make sure that it is called at regular intervals. For proving a strong bound on

the work, we will simply assume that the oracle is not called on small threads

by restricting our attention to balanced programs. To this end, we define balanced

programs as programs that call the oracle only on expressions that are no smaller

than some constant γ off from the value κ
μ
, for some γ � 1. Note that we use κ

μ
as a

target and not κ so as to accommodate possible over-estimations in the estimations

of raw work. The formal definition follows:

Definition 6.1 (Balanced programs)

For γ � 1, a program or expression e is γ-balanced if evaluating e in the oracle

mode invokes the oracle only for sub-expressions whose raw work is no less

than κ
μγ

.

Note that if a program is γ-balanced and if γ < γ′, then this program is also

γ′-balanced. We will later give a sufficient condition for proving that particular

programs are balanced (Section 6.4). For balanced programs, we are able to bound

the total work with respect to the raw work.

Theorem 6.3 (Work with a realistic oracle)

Let e be a γ-balanced program.

e ⇓orc v, (w, s), (�,�) ⇒ � �

(
1 +

μ(τ + γφ)

κ + 1

)
w

Proof

We establish the following slightly tighter inequality (tighter because γ � 1 and

μ � 1).

� �

(
1 +

τ

κ/μ + 1
+

φ

κ/(μγ) + 1

)
w

Define κ′ as a shorthand for κ/μ and κ′′ as a shorthand for κ/(μγ). Note that, because

γ � 1, we have κ′′ � κ′. Let x+ be defined as the value x when x is non-negative

and as zero otherwise. We establish the following inequality by induction:

� � w + τ

⌊
(w−κ′)

+

κ′+1

⌋
+ φ

⌊
(w−κ′′)

+

κ′′+1

⌋

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

16 U. A. Acar et al.

This is indeed a strengthened result because we have

τ

⌊
(w−κ′)

+

κ′+1

⌋
� τ w

κ′+1
� τ

κ/μ+1
w

and φ

⌊
(w−κ′′)

+

κ′′+1

⌋
� φ w

κ′′+1
� φ

κ/(μγ) + 1
w.

The proof is conducted by induction on the derivation of the reduction hypothesis.

• For a rule with zero premises, which describe an atomic operation, we have

� = w = 1, so the conclusion is satisfied.

• For a rule with a single premise, the induction hypothesis is

� � w + τ

⌊
(w−κ′)

+

κ′+1

⌋
+ φ

⌊
(w−κ′′)

+

κ′′+1

⌋
.

So, we can easily derive the conclusion:

� + 1 � (w + 1) + τ

⌊
((w+1)−κ′)

+

κ′+1

⌋
+ φ

⌊
((w+1)−κ′′)

+

κ′′+1

⌋
.

• For a rule with two premises, we exploit the mathematical inequality
⌊
n
q

⌋
+⌊

m
q

⌋
�

⌊
n+m
q

⌋
. We have

� = �1 + �2 + 1

� w1 + τ

⌊
(w1−κ′)

+

κ′+1

⌋
+ φ

⌊
(w1−κ′′)

+

κ′′+1

⌋

+ w2 + τ

⌊
(w2−κ′)

+

κ′+1

⌋
+ φ

⌊
(w2−κ′′)

+

κ′′+1

⌋
+ 1

� w + τ

⌊
(w1−κ′)

+
+(w2−κ′)

+

κ′+1

⌋

+ φ

⌊
(w1−κ′′)

+
+(w2−κ′′)

+

κ′′+1

⌋
.

To conclude, we need to establish the following two mathematical inequalities.(
w1 − κ′)+

+
(
w2 − κ′)+

�
(
(w1 + w2 + 1) − κ′)+

,(
w1 − κ′′)+

+
(
w2 − κ′′)+

�
(
(w1 + w2 + 1) − κ′′)+

.

The two equalities can be proved in a similar way. Let us establish the first

one. There are four cases to consider. First, if both w1 and w2 are less than

κ′, then the right-hand side is zero, so we are done. Second, if both w1 and

w2 are greater than κ′, then all the expressions are non-negative, and we are

left to check the inequality w1 − κ′ + w2 − κ′ � w1 + w2 + 1 − κ′. Third, if

w1 is greater than κ′ and w2 is smaller than κ′, then the inequality becomes(
w1 − κ′)+

�
(
(w1 − κ′) + (w2 + 1)

)+
, which is clearly true. The case w1 � κ′

and w2 < κ′ is symmetrical. This concludes the proof.

• Consider now the case of a parallel tuple where both branches are predicted

to involve more than κ units of work. This implies w1 � κ′ and w2 � κ′. In

this case, a parallel thread is created. Note that, because κ′′ � κ′, we also have

w1 � κ′′ and w2 � κ′′. So, all the values involved in the following computations

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 17

are non-negative. Using the induction hypotheses, we have

� = �1 + �2 + 1 + τ + φ

� w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + τ

⌊
w2−κ′

κ′+1

⌋
+ φ

⌊
w2−κ′′

κ′′+1

⌋
+ 1 + τ + φ

� (w1 + w2 + 1) + τ(
⌊
w1−κ′

κ′+1

⌋
+

⌊
w2−κ′

κ′+1

⌋
+ 1)

+ φ(
⌊
w1−κ′′

κ′′+1

⌋
+

⌊
w2−κ′′

κ′′+1

⌋
+ 1)

� w + τ
⌊

(w1−κ′)+(w2−κ′)+(κ′+1)
κ′+1

⌋
+ φ

⌊
(w1−κ′′)+(w2−κ′′)+(κ′′+1)

κ′′+1

⌋
� w + τ

⌊
(w1+w2+1)−κ′

κ′+1

⌋
+ φ

⌊
(w1+w2+1)−κ′′

κ′′+1

⌋
� w + τ

⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
.

• Assume now that the two branches are predicted to be less than the cut-

off. This implies w1 � κ′ and w2 � κ′. Both these threads are executed

sequentially, so �1 = w1 and �2 = w2. Since the program is γ-balanced, we

have w1 � κ′′ and w2 � κ′′. Those inequalities ensure that we are able to pay

for the cost of calling the oracle, that is, the cost φ. Indeed, since we have

w1 + w2 + 1 − κ′′ � κ′′ + 1, we know that
⌊
w1+w2+1−κ′′

κ′′+1

⌋
�1. Therefore,

� = �1 + �2 + 1 + φ

� w1 + w2 + 1 + φ

� (w1 + w2 + 1) + φ
⌊
w1+w2+1−κ′′

κ′′+1

⌋

� w + τ

⌊
(w−κ′)

+

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
.

• It remains to consider the case where one branch is predicted to be bigger

than the cut-off while the other is predicted to be smaller than the cut-off.

For example, assume w1 � κ′ and w2 � κ′. The parallel tuple is thus executed

as a sequential tuple. The first thread is executed in oracle mode, whereas the

second thread is executed in the sequential mode. For the first thread, we can

invoke the induction hypothesis �1�w1+τ
⌊
w1−κ′
κ′+1

⌋
+φ

⌊
w1−κ′′
κ′′+1

⌋
. For the second thread,

which is executed sequentially, we have �2 = w2. Moreover, since the oracle

is invoked to predict the size of this second thread, we know by the hypothesis

of γ-balance that w2 � κ/(μγ) = κ′′. Hence, we have � w2+1

κ′′+1 	�1. We conclude

� = �1 + �2 + 1 + φ

� w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + 1 + φ

� w1 + τ
⌊
w1−κ′

κ′+1

⌋
+ φ

⌊
w1−κ′′

κ′′+1

⌋
+ w2 + 1 + φ

⌊
w2+1
κ′+1

⌋
� w + τ

⌊
w1+w2+1−κ′

κ′+1

⌋
+ φ

⌊
w1+w2+1−κ′′

κ′′+1

⌋

� w + τ
⌊
w−κ′

κ′+1

⌋
+ φ

⌊
w−κ′′

κ′′+1

⌋
.

�

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

18 U. A. Acar et al.

We are now ready to combine the version of Brent’s theorem adapted to our cost

semantics with the bounds that we have established for the total work and span in

γ-balanced parallel programs executed under the oracle semantics.

Theorem 6.4 (Execution time with a realistic oracle)

Assume an oracle that costs φ and makes an error by a factor not exceeding μ.

Assume κ > τ, which is always the case in practice. The execution time of a parallel

γ-balanced program on a machine with P processors under the oracle semantics

with a greedy scheduler does not exceed the value:(
1 +

μ(τ + γφ)

κ

)
w

P
+ (κμ + φ + 1) s.

Proof

The bound follows by our generalized version of Brent’s theorem (Theorem 5.1),

and by the bounds established in Theorems 6.3 and 6.2. For simplicity, we replace

the denominator κ + 1 with κ. This change does not loosen the bound significantly

because κ is usually large compared to the unit cost. Also for simplicity, we have

replaced the term max (τ, μκ) with μκ, exploiting the assumption κ > τ and the fact

that μ � 1. �

6.3 Choice of the cut-off

Theorem 6.4 shows that the running time of a parallel program can be controlled

by changing the constant κ. The formula reveals an interesting trade-off: We can

reduce task-creation overheads but this comes at the cost of increasing the span.

To see this connection better, consider the bound that appears in the statement

of Theorem 6.4 and notice that as the value of κ increases, the work (first) term

decreases but the span (second) term increases. The parallel run time thus decreases

as we increase κ up to some inflection point and then starts increasing. We compute

the optimal value for κ by solving for the root of the derivative. We obtain

κ∗ =
√
τ + γφ ·

√
w

Ps
.

Thus, with prior knowledge of the raw work and raw span of a computation, we

can pick κ to ensure efficiency of parallel programs.

Such knowledge, however, is often unavailable. As we now show, we can improve

efficiency of parallel programs by selecting a fixed κ that guarantees that the task

creation overheads can be bounded by any constant fraction of the raw work,

without increasing the span of the computation significantly.

Theorem 6.5 (Run time with fixed κ)

Consider an oracle with φ cost and μ error. For any γ � 1 and for any constant

r such that 0 < r < 1, there exists a constant κ and a constant c such that the

evaluation with the oracle semantics of a γ-balanced program reduces task creation

overheads to a fraction r of the raw work, while in the same time increasing the

total span by no more than a factor c
r
. With a greedy scheduler, the total parallel

run time on P processors of such a program thus does not exceed (1 + r)w
P

+ c
r
s.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 19

Proof

Consider a particular γ-balanced program with raw work w and raw span s, and

consider its evaluation under the oracle semantics. By Theorem 6.3, we know that

total work does not exceed (1+ μ(τ+γφ)
κ

)w. To achieve the desired bound on execution

time, we take κ = μ(τ+γφ)
r

. Plugging this value of κ into the formula yields (1 + r)w

for total work, showing that task creation overheads are reduced to a fraction r of

the raw work.

Furthermore, by Theorem 6.2, we know that the total span is bounded by

(max (τ, μκ) + φ + 1) s. Plugging in the same value for κ yields the following bound

on total span:

� �

(
max

(
τ,
μ2(τ + γφ)

r

)
+ φ + 1

)
s.

Using μ � 1 and r < 1, we can derive the inequality

� �

(
μ2(τ + γφ)

r
+

φ + 1

r

)
s.

Choosing c = μ2(τ + γφ) + φ + 1 therefore ensures that the total span does not

exceed the desired bound c
r
s. The run-time bound follows by an application of our

generalized version of Brent’s theorem (Theorem 5.1). �

This final theorem enables us to reduce task creation overheads to any desired

constant fraction of the raw work by choosing a κ that is independent of the specific

inputs. This comes at the cost of increasing the span, but only by a constant factor

of c
r
. In the common case, when the work is asymptotically greater than span, e.g.,

Θ(n) versus O(log n), the resulting run-time guarantees that the increase in span

remain small: specifically, the span term itself is a fraction of the work term for all

but a constant number of small inputs.

6.4 Balanced programs

Our bounds with the realistic oracle hold only for what we called γ-balanced

programs, where the oracle is not called on small threads. This assumption can be

satisfied by calling the oracle “regularly”. It seems likely that this assumption would

hold for many programs without requiring any changes to the program code. In this

section, we show that recursive, divide-and-conquer programs are γ-balanced.

To that end, we introduce the notion of γ-regularity. Intuitively, a program is

γ-regular if, between any two calls to the oracle involved in the execution of this

program, the amount of work does not reduce by more than a factor γ. We will

then establish that any γ-regular program is a γ-balanced program. Before giving

the formal definition of γ-regularity, we need to formally define what it means for a

parallel tuple to be dominated by another parallel tuple.

Definition 6.2 (Domination of a parallel branch)

A branch e of a parallel tuple is said to be dominated by the branch ei of another

parallel tuple
(
|e1, e2|

)
if the expression e is involved in the execution of the

branch ei.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

20 U. A. Acar et al.

Definition 6.3 (Regularity of a parallel program)

A program is said to be γ-regular if, for any parallel branch involving, say, w units

of raw work, either w is greater than κ/(μγ) or this branch is dominated by another

parallel branch that involves less than γw units of work.

Remark: The condition “w is greater than κ/(μγ)” is typically used to handle the

outermost parallel tuples, which are not dominated by any other tuple.

Note that the regularity of a program is always greater than 2. Indeed, if one of

the branch of a parallel tuple is more than half of the size of the entire tuple, then

the other branch must be smaller than half of that size. On the one hand, algorithms

that divide their work in equal parts are γ-regularity with γ very close to 2. On the

other hand, ill-balanced programs can have a very high degree of regularity. Observe

that every program is ∞-regular.

For example, consider a program that traverses a complete binary tree in linear

time. A call on a tree of size n has raw work nc, for some constant c. If the tree is

not a leaf, its size n has to be at least 3. The next recursive call involves raw work⌊
n−1
2

⌋
c, The ratio between those two values is equal n/

⌊
n−1
2

⌋
. This value is always

less than 3 when n � 3. So, the traversal of a complete binary tree is a 3-regular

algorithm.

The following lemma explains how the regularity assumption can be exploited to

ensure that the oracle is never invoked on threads of size less than κ/(μγ). This

suggests that, for the purpose of amortizing well the costs of the oracle, a smaller

regularity is better.

Lemma 6.1 (From regularity to balanced)

If a program is γ-regular, then it is γ-balanced.

Proof

We have to show that, during the execution of a γ-regular program according to

oracle semantics, the oracle is never invoked on sub-expressions involving less than

κ/(μγ) raw work. Consider a particular sub-expression e involving w units of raw

work, and assume that the oracle is invoked on this sub-expression. Because the

oracle is being invoked, e must correspond to the branch of a parallel tuple. By the

regularity assumption, either w is no less than κ/(μγ), in which case the conclusion

holds immediately, or the branch e is dominated by a branch ei that involves that

involves w′ units of work, with w′ � γw. For the latter case, we need to establish

w � κ/(μγ). To that end, it suffices to prove that w′ � κ/μ, which amounts to

showing that the amount of raw work associated with the dominating branch ei
contains at least κ/μ raw work.

We conclude the proof by establishing the inequality w′ � κ/μ. Because the oracle

is being invoked on the sub-expression e, it means that e is being evaluated in the

mode orc. Therefore, the call to the oracle on the dominating branch ei must have

predicted ei to contain more than κ raw work. (Otherwise, ei and its sub-expression

e would have both been executed in the sequential mode.) Given that the oracle

makes error by no more than a factor μ, if ei is predicted to contain more than

κ units of raw work, then ei must contain at least κ/μ units of raw work. So,

w′ � κ/μ. �

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 21

Fig. 4. The interface for the estimator data structure.

7 Approximating the oracle-guided semantics

In the previous section, we have established that, if we have access to an oracle

that can estimate actual raw work, i.e., sequential run-time, of an expression

within a factor of no more than μ and at a cost of no more than a constant

φ, then we can effectively control the thread-creation overheads and thus enable

efficient parallel execution. In this section, we describe how to approximate such an

oracle by combining certain information from the programmer along with run-time

measurements. We first describe our approximation algorithm and then, in Section 8,

show how some of the information needed by the algorithm can be derived via a

program transformation.

The basic idea behind our approximation algorithm is to use some crucial

information provided by the programmer to estimate the actual raw work of a

computation. More precisely, we require the user to provide a cost function for each

function in the program. When applied to an argument v, a cost function of f

returns an abstract cost of the raw-work of application of f to v. A crucial property

of the abstract costs is that they should be abstract enough that the programmer

can write the cost functions without necessarily knowing the details of the hardware

where the programs will be executed on. Yet, abstract costs should provide sufficient

information to estimate the actual run times.

Asymptotic complexity specifications serve as a natural cost function by satisfying

both of these properties. Since they eliminate hardware specific constants, they can

be specified easily. Using complexity functions, we can approximate the actual run

time of sequentially executed functions by simply determining the constants hidden

by the asymptotic complexity notation. Such an approximation can be performed,

e.g., by using the least squares method or similar techniques for data fitting from

known samples. To perform this approximation, we use an estimator data structure,

that, given abstract cost samples for a function, can estimate the raw work for that

function on a given argument.

Figure 4 shows the interface for the estimator. To perform accurate estimates, the

estimator utilizes profiling data obtained from actual execution times. The sampling

operation report(t, c, d) adds a cost c and an execution time d to the set of

samples in an estimator t. An estimate of the actual execution time is obtained by

calling predict. Given an estimator t and cost c, the call predict(t, c) returns

a predicted execution time.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

22 U. A. Acar et al.

Since the abstract cost simply a measure of the asymptotic work of a function,

all that remains for the estimator data structure is to calculate at run-time the

actual constant factors for the hardware, where execution takes place. In our

implementation, we represent a value of type cost as an integer that represents the

application of the complexity function applied to the input size. We approximate

the actual run time by calculating a single constant, assuming that the constants in

all terms of the asymptotic complexity are the same. Although assuming a single

constant can decrease the precision of the approximations, we believe that it suffices

because we only have to compute lower bounds for our functions; i.e., we only need

to determine whether they are “big enough” for parallel execution. We note that,

for our theoretical bounds to apply, complexity expressions should require constant

time to evaluate, which is usually the case because, in the common case, the cost

functions are relatively simple functions.

To ensure lightweight execution, our implementation simply computes the constant

factor for each reported cost, and averages such constants over a period of time,

which it then uses for prediction. The constants calculated for each reported cost

may evolve over time. For example, if the current program is sharing the machine

with another program, a series of memory reads by the other program may slow

down the current program. For this reason, we do not just compute the average

across the entire history, but instead maintain a moving average, that is, an average

of the values gathered across a certain number of runs.

Computing averages is not entirely straightforward. On the one hand, storing the

average in a memory cell that is shared by all processors is not satisfying, because it

would involve some synchronization problems. On the other hand, using a different

memory cell for every processor is not satisfying either, because it leads to slower

updates of the constants when they change. In particular, in the beginning of the

execution of a program, it is important that all processors quickly share a relatively

good estimate of the constant factors.

For these reasons, we have opted for an approach that uses not only a shared

memory cell but also one data structure local to every processor. The shared memory

cell associated with each estimator contains the estimated value for the constant that

is read by all the processors when they need to predict execution times. The local

data structures are used to accumulate statistics on the value of the constant. Those

statistics are reported on a regular basis to the shared memory cell, by computing a

weighted mean between the value previously stored in the shared memory cell and

the value obtained out of the local data structure. We treat initializations somewhat

specially: For the first few measures, a processor always begins by reporting its

current average to the shared memory cell. This policy ensures a fast propagation of

the information gathered from the first runs, so as to quickly improve the accuracy

of the predictions.

In the rest of this section, we present a more detailed description of our

implementation of estimators. An estimator is represented as (1) a shared floating-

point value storing the global estimated value, (2) an integer value storing, in the

early phases, the number of times that the shared value has been updated, and (3) a

processor-indexed array of pairs, each made of an integer and a floating-point value,

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 23

for storing the number of measures, and the sum of the constant factors measured.

We define the local average value associated with a given processor as the ratio

between the sum of the measured constants and the number of those measures.

The function create allocates a fresh estimator. It sets all fields to zero, except

the global constant which is set to a very pessimistic constant, e.g., 1 microsecond.

As a result, in the first few calls, the estimator largely over-approximates the work,

leading only very small pieces of computation to be executed sequentially.

The function predict simply computes the product of the global estimated value

of the constant with the integer cost produced by the user-provided asymptotic cost

function.

The function report refines the estimation of the constant factor. First, it updates

the pair of values associated with the processor that performed the measure, by

incrementing the number of measures and adding to the sum field the ratio between

the execution time and the complexity value being reported. Second, it decides

whether the local average value of the constant should be reported to the global

value. It does so if either (a) the number of measures exceeds c ∗ P , for some real

constant c, or if (b) the number of times that the shared value has been updated

is less than a fixed bound. The latter condition helps for fast propagation of the

constant in the early phases.

When the function report decides to report its local average value to the global

value, it writes into the shared value field a weighted average of the local average

value and of the previous global value. For safety (that is, to avoid potentially

sequentializing too large pieces of computations), we limit a single change to the

global value to be of at most one order of magnitude (e.g., a factor 10). Besides,

as an optimization, we skip the write operation if we notice that the new value is

not significantly different from the old (e.g., when the value would change by less

than 20%). After updating the shared value, the function resets to zero the pair

of values associated with the current processor, in order to begin a new round of

measurements. Moreover, in case the update of the shared value has been triggered

by the condition (b) described above, the function also increments the shared field

that stores the number of updates to the global value.

Note that the write operation that updates the shared value may sometimes get

discarded as a result of a data race between processors. Such races, however, are

benign.

When implementing the oracle, we faced three technical difficulties. First, we

had to pay attention to the fact that the memory cells allocated for the different

processors are not allocated next to each other. Otherwise, those cells would fall

in the same cache line, in which case writing in one of these cells would make the

other cells be removed from caches, making subsequent reads more costly. Second,

we observed that the time measures typically yield a few outliers. Those are typically

due to the activity of the garbage collector or of another program being scheduled

by the operating system on the same processor. Fortunately, we have found detecting

these outliers to be relatively easy because the measured times are at least one or

two orders of magnitude greater than the cut-off value. Third, the default system

function that reports the time is only accurate by 1 microsecond. This is good enough

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

24 U. A. Acar et al.

when the cut-off is greater than 10 microseconds. However, if one were to aim for a

smaller cut-off, which could be useful for programs exhibiting only a limited amount

of parallelism, then more accurate techniques would be required, for example, using

the specific processor instructions for counting the number of processor cycles.

8 Implementation via source-to-source translation

We describe how to compile parallel codes with complexity annotations into codes

that implement our oracle-guided semantics. Our compilation technique performs a

source-to-source translation and relies on the technique described in Section 7. The

idea is to compile every piece of code in two versions: one for the sequential semantics

(seq mode), where all parallel pairs are simply erased to sequential pairs, and one

for the oracle-guided semantics (orc mode), where parallel pairs are instrumented in

such a way as to perform predictions and possibly measures, and to decide whether

to execute the branches sequentially or in parallel.

For simplicity, we assume that constituents of parallel tuples are function ap-

plications, i.e., they are of the form
(
|f1 v1, f2 v2|

)
. Note that this assumption does

not cause loss of expressiveness, because a term e can always be replaced by a

trivial application of a “thunk”, a function that ignores its argument (typically

of type “unit”) and evaluates e to a dummy argument. Throughout, we write

“fun f.x.eb [ec]” to denote a function “fun f.x.eb” for which the cost function for

the body eb is described by the expression ec. This expression ec, which may refer to

the argument x, should be an expression whose evaluation always terminates and

produces a cost of type cost.

To associate an estimator with each function, in a simple pass over the source

code, we allocate and initialize an estimator for each syntactic function definition.

For example, if the source code contains a function of the form “fun f.x.eb [ec]”, then

our compiler allocates an estimator specific to that function definition. Specifically, if

the variable r refers to the allocated estimator, then the translated function, written

“fun f.x.eb [ec|r]”, is annotated with r.

The second pass of our compilation scheme uses the allocated estimators to ap-

proximate the actual raw work of function applications and relies on an MakeBranch

function to determine whether an application should be run in the oracle or in the

sequential mode. Figure 5 defines more precisely the second pass. We write �v� for

the translation of a value v, and we write �e�α for the translation of the expression e

according to the semantics α, which can be either seq or orc. When specifying the

translation, we use triples, quadruples, projections, sequence, if-then-else statements,

and unit value; these constructions can all be easily defined in our core programming

language.

Translation of values other than functions does not depend on the mode and is rel-

atively straightforward. We translate functions, which are of the form

“fun f.x.eb [ec|r]”, into a quadruple consisting of the estimator r, a sequential

cost function, the sequential version of the function, and the oracle versions of

the function. Translation of a function application depends on the mode. In the

sequential mode, the sequential version of the function is selected (by projecting the

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 25

Fig. 5. Translation for oracle scheduling.

third component of the function) and used in the application. Similarly, in the oracle

mode, the oracle version of the function is selected and used in the application. To

translate a tuple, we recursively translate the sub-expression, while preserving the

mode. Similarly, translation of the let, projections, and case constructs are entirely

structural.

In the sequential mode, a parallel tuple is turned into a simple tuple. In the oracle

mode, the translation applies the oracle-based scheduling policy with the aid of

the meta-function MakeBranch. This meta-function, shown in Figure 6, describes

the template of the code generated for preparing the execution of a parallel tuple.

MakeBranch expects a (translated) function f and its (translated) argument v, and

it returns a boolean b indicating whether the application of f to v is expected to

take more or less time than the cut-off κ, and a thunk t to execute this application.

On the one hand, if the application is predicted to take more time than the cut-off

(in which case b is true), then the thunk t corresponds to the application of the

oracle-semantics version of the function f. On the other hand, if the application

is predicted to take less time than the cut-off (in which case b is false), then the

thunk t corresponds to the application of the sequential-semantics version of the

function f. Moreover, in the latter case, the time taken to execute the application

sequentially is measured. This time measure is reported to the estimator by the

auxiliary meta-function MeasuredRun (Figure 6), so as to enable its approximations.

Observe that the translation introduces many quadruples and applications of

projection functions. However, in practice, the quadruples typically get inlined

so most of the projections can be computed at compile time. Observe also that

the compilation scheme involves some code duplication, because every function is

translated once for the sequential mode and once for the oracle mode. In theory,

the code could grow exponentially when the code involves functions defined inside

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

26 U. A. Acar et al.

Fig. 6. Auxiliary meta-functions used for compilation.

the body of other functions. In practice, the code the growth is limited because

functions are rarely deeply nested. If code duplication was a problem, then we can

use flattening to eliminate deep nesting of local functions, or pass the mode α as an

extra argument to functions.

9 Empirical evaluation

In this section, we evaluate the effectiveness of our implementation through several

experiments. We consider results from a range of benchmarks run on a machine

with 16 processors. The results show that, in each case, our oracle implementation

improves on the plain work-stealing implementation. Furthermore, the results show

that the oracle implementation scales well with up to 16 processors.

9.1 Implementation in Manticore

In this section, we describe the implementation of our scheduling technique in an

actual language and system. In our approach, source programs are written in our

own dialect of the Caml language (Leroy et al., 2005), which is a strict functional

language. Our Caml dialect corresponds to the core Caml language extended with

syntax for parallel pairs and complexity annotations.

We use the Caml type checker to obtain a typed syntax tree, on which we perform

the oracle-scheduling translation defined in Figure 5. We then produce code in the

syntax of PML (Fluet et al., 2011), a parallel language close to Standard ML.

The translation from Caml to PML is straightforward because the two languages

are relatively similar. We compile our source programs to x86-64 binaries using

Manticore, which is the optimizing PML compiler.

The original theorem of Brent as well as our generalization both assume a

greedy-scheduler that can find available work (threads to execute) immediately with

no overhead. This assumption is unrealistic of course in a literal sense, but work-

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 27

stealing schedulers are able to control the overheads for balancing work remarkably

well, both in theory (Blumofe and Leiserson, 1999; Arora et al., 2001; Acar et al.,

2013) and in practice (Frigo et al., 1998). On the one hand, overheads related to

queueing threads are tiny, and, on the other hand, the delay due to steals is tamed

by the fact that steals are relatively rare. Work stealing has also been shown to have

good locality behavior, which further improves its effectiveness (Acar et al., 2002).

In Manticore’s work-stealing scheduler, all system processors are assigned to

collaborate on the computation. Each processor owns a deque (doubly ended queue)

of threads represented as thunks. Processors treat their own deques like call stacks.

When a processor starts to evaluate a parallel-pair expression, it creates a thread

for the second sub-expression of the pair and pushes the thread onto the bottom of

the deque. Processors that have no work left try to steal threads from others. More

precisely, they repeatedly select a random processor and try to pop a thread from

this processor’s deque.

Manticore’s implementation of work stealing (Rainey, 2010) adopts a code-

specialization scheme, called clone translation, taken from Cilk-5’s implementa-

tion (Frigo et al., 1998).2 With clone translation, each parallel-pair expression is

compiled into two versions: the fast clone and the slow clone. The purpose of a fast

clone is to optimize the code that corresponds to evaluating on the local processor,

whereas the slow clone is used when the second branch of a parallel-pair is migrated

to another processor. A common aspect between clone translation and our oracle

translation (Figure 5) is that both generate specialized code for the sequential case.

But the clone translation differs in that there is no point at which parallelism is

cut-off entirely, as the fast clone may spawn threads.

The scheduling cost involved in the fast clone is a (small) constant, because it

involves just a few local operations, but the scheduling cost of the slow clone is

variable, because it involves inter-processor communication. It is well established,

both through analysis and experimentation, that (with high probability) no more

than O(P �) steals occur during the evaluation (Arora et al., 2001). So, for programs

that exhibit parallel slackness (� � P �), we do not need to take into account the

cost of slow clones because there are relatively few of them. We focus only on the

cost of creating fast clones, which correspond to the cost τ. A fast clone needs to

package a thread, push it onto the deque and later pop it from the deque. So, a fast

clone is not quite as fast as the corresponding sequential code. The exact slowdown

depend on the implementation, but in our case we have observed that a fast clone

is three to five times slower than a simple function call.

9.2 Test machine

Our test machine has four quad-core AMD Opteron 8380 processors running at 2.5

GHz. Each core has 64 Kb each of L1 instruction and data cache, and a 512 Kb L2

cache. Each processor has a 6 Mb L3 cache that is shared with the four cores of the

2 In the Cilk-5 implementation, it is called clone compilation.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

28 U. A. Acar et al.

processor. The system has 32 Gb of RAM and runs Debian Linux (kernel version

2.6.31.6-amd64).

9.3 Measuring scheduling costs

We report estimates of the thread-creation overheads for each of our test machine.

To estimate, we use a synthetic benchmark expression e whose evaluation sums

integers between 0 and 30 million using a parallel divide-and-conquer computation.

We chose this particular expression because most of its evaluation time is spent

evaluating parallel pairs.

First, we measure ws: the time required for executing a sequentialized version

of the program (a copy of the program where parallel tuples are systematically

replaced with sequential tuples). This measure serves as the baseline. Second, we

measure ww: the time required for executing the program using work stealing, on a

single processor. This measure is used to evaluate τ. Third, we measure wo: the time

required for executing a version of the program with parallel tuples replaced with

ordinary tuples but where we still call the oracle. This measure is used to evaluate φ.

We then define the work-stealing overhead cw = ww

ws
. We estimate the cost τ of

creating a parallel thread in work stealing by computing ww−ws

n
, where n is the number

of parallel pairs evaluated in the program. We also estimate the cost φ of invoking

the oracle by computing wo−ws

m
, where m is the number of times the oracle is invoked.

Our measures are as follows: cw = 4.86 and τ = 0.09 microseconds and φ =

0.18 microseconds. The first value indicates that work stealing alone can induce a

slowdown by a factor of 4 or 5, for programs that create a huge number of parallel

tuples. The value of τ, close to one-tenth of a microsecond, indicates, that the cost

of creating parallel threads is roughly between 200 and 300 processor cycles (since

our benchmark machine runs at 2.5 GHz). This cost is quite significant in front of

basic operations that execute in just a few cycles.

The oracle cost φ is even larger than τ—about twice larger. The fact that the

oracle is associated with significant costs is not surprising: Recall that the estimations

and measures associated with our implementation of the oracle involve functions

calls and memory operations. However, also keep in mind that our investment in

performing oracle predictions is supposed to pay off as soon as we are able to

sequentialize large pieces of computation. Indeed, as we have established, the cost

of the oracle can be expected to be well amortized and to only account for a tiny

fraction of the total execution time.

In our experiments, we used the cut-off value κ = 26 microseconds. We use

Theorem 6.4 to estimate an upper-bound on the overheads associated with thread

creation and oracle predictions. To that end, we first need to evaluate μ and γ.

We can estimate μ, the bound on the relative error associated with the predictions,

by performing runs where we logged both our predictions and our measures.

We observed that, apart from a few outliers (i.e. exceptionally large measures for

sequentialized threads), our oracle is always accurate within a factor 2. So, we

assume μ = 2. Besides, our benchmark programs are fairly regular: We can assume

γ = 3 for all of them.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 29

Now, Theorem 6.4 tells us that, for programs exhibiting sufficient parallelism, the

overheads are essentially bounded by μ(τ+γφ)
κ

. In our setting, this ratio evaluates to just

below 5%—we actually set the value of κ to meet this target. In practice, since the er-

rors associated with our time predictions tend to balance out, the μ term that appears

in front of the bound does not impact us as much as it could in theory. Likewise,

the irregularity factor φ does not actually reach 3 for every parallel tuple executed.

For these reasons, we believe that, in practice, overheads usually do not exceed 3%.

9.4 Benchmarks

We used five benchmarks in our empirical evaluation. Each benchmark program

was originally written by other researchers and ported to our dialect of Caml.

The Quicksort benchmark sorts a sequence of 2 million integers. Our program

is adapted from a functional, tree-based algorithm (Blelloch and Greiner, 1995).

The algorithm runs with O(n log n) raw work and O(log2 n) raw depth, where n is

the length of the sequence. Sequences of integers are represented as binary trees in

which sequence elements are stored at leaf nodes and each internal node caches the

number of leaves contained in its subtree.

The Quickhull benchmark calculates the convex hull of a sequence of 3 million

points contained in 2-d space. The algorithm runs with O(n log n) raw work and

O(log2 n) raw depth, where n is the length of the sequence. The representation of

points is similar to that of Quicksort, except that leaves store 2-d points instead of

integers.

The Barnes–Hut benchmark is an n-body simulation that calculates the grav-

itational forces between n particles as they move through 2-d space (Barnes

and Hut, 1986). The Barnes–Hut computation consists of two phases. In the

first, the simulation volume is divided into square cells via a quadtree, so that

only particles from nearby cells need to be handled individually and particles

from distant cells can be grouped together and treated as large particles. The

second phase calculates gravitational forces using the quadtree to accelerate the

computation. The algorithm runs with O(n log n) raw work and O(log n) raw depth.

Our benchmark runs 10 iterations over 100,000 particles generated from a random

Plummer distribution (Plummer, 1911). The program is adapted from a Data-Parallel

Haskell program (Peyton Jones, 2008). The representation we use for sequences of

particles is similar to that of Quicksort.

The SMVM benchmark multiplies an m×n matrix with an n×1 dense vector. Our

sparse matrix is stored in the compressed sparse-row format. The program contains

parallelism both between dot products and within individual dot products. We use

a sparse matrix of dimension m = 500,000 and n = 448,000, containing 50,400,000

non-zero values.

The DMM benchmark multiplies two dense, square n × n matrices using the

recursive divide-and-conquer algorithm of Frens and Wise (1997). We have recursion

go down to scalar elements. The algorithm runs with O(n3) raw work and O(log n)

raw depth. We selected n = 512.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

30 U. A. Acar et al.

Fig. 7. Comparison of the speedup on 16 processors. Higher bars are better.

Fig. 8. Comparison of execution times (normalized) on a single processor. Lower bars are

better.

9.5 Performance

For every benchmark, we measure several values. Tseq denotes the time to execute the

sequential version of the program. We obtain the sequential version of the program

by replacing each parallel tuple with an ordinary tuple and erasing complexity

functions, so that the sequential version includes none of the thread-creation

overheads. TP
par denotes the execution time with work stealing on P processors.

TP
orc denotes the execution time of our oracle-based work stealing on P processors.

The most important results of our experiments come from comparing plain work

stealing and our oracle-based work stealing side by side. Figure 7 shows the speedup

on 16 processors for each of our benchmarks, that is, the values T 16
par/Tseq and

T 16
orc/Tseq. The speedups show that, on 16 cores, our oracle implementation is

always between 4% and 76% faster than work stealing.

The fact that some benchmarks benefit more from our oracle implementation than

others is explained by Figure 8. This plot shows execution time for one processor,

normalized with respect to the sequential execution times. In other words, the values

plotted are 1, T 1
orc/Tseq, and T 1

par/Tseq. The values T 1
orc/Tseq range from 1.03 to 1.13

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 31

Fig. 9. Comparison between work stealing and oracle.

(with an average of 1.07), indicating that the thread-creation overheads in the oracle

implementation do not exceed 13% of the raw work in any benchmark. The cases

where we observe large improvements in speedup are the same cases where there is a

large difference between sequential execution time and plain work-stealing execution

time. When the difference is large, there is much room for our implementation to

improve on work stealing, whereas when the difference is small we can only improve

the execution time by a limited factor.

Figure 9 shows speedup curves for each of our experiments, that is, values of

TP
par/Tseq and TP

orc/Tseq against the number of processors P . The curves show that

our oracle implementation generally scales well up to 16 processors. There is one

exception, which is the quickhull benchmark. For this benchmark, the curve tails off

after reaching 12 processors. We believe that this tailing is either due to a lack of

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

32 U. A. Acar et al.

parallelism in the program or to a bottleneck on memory accesses. Notice, however,

that our scheduler does not fall below plain work stealing.

10 Related work

10.1 Cutting-off excess parallelism

This study is not the first to propose using cost prediction to determine when to cut-

off parallelism. One approach, developed in early work in functional programming,

uses list size to determine cut-offs (Huelsbergen et al., 1994). Using list size alone

is limited, because the technique assumes linear work complexity for every parallel

operation.

Another way to handle cost prediction is to use the depth and height of the

recursion tree (Weening, 1989; Pehoushek and Weening, 1990). But depth and

height are not, in general, the most direct means to predict the execution time of

sub-computations. In our oracle scheduling, we ask for either the programmer or

compiler to provide for each function a cost function that expresses the asymptotic

cost of applying the function.

Lopez et al. take this approach as well, but in the context of logic program-

ming (Lopez et al., 1996). On the surface, their technique is similar to our oracle

scheduling, except that their cost estimators do not utilize profiling to estimate

constant factors. An approach without constant-factor estimation is overly simplistic

for modern processors, because it relies on complexity function predicting execution

time exactly. On modern processors, execution time depends heavily on factors such

as caching, pipelining, etc. and it is not feasible in general to predict execution time

from a complexity function alone.

10.2 Reducing thread-creation cost

One approach to the granularity problem is to focus on reducing the cost of creating

a thread, rather than limiting the number of threads created. This approach is taken

by implementations of work stealing with lazy thread creation (Mohr et al., 1990;

Feeley, 1992; Feeley, 1993; Frigo et al., 1998; Hiraishi et al., 2009; Rainey, 2010;

Sanchez et al., 2010; Tzannes et al., 2014). In lazy thread creation, the work stealing

scheduler is implemented so as to avoid, in the common case, the major scheduling

costs, in particular, those of inter-processor communication. But, in even the most

efficient lazy thread creation, there is still a non-negligable scheduling cost for each

implicit thread.

Lazy Binary Splitting is an improvement to lazy thread creation that applies to

parallel loops (Tzannes et al., 2014). The crucial optimization comes from extending

the representation of a thread so that multiple loop iterations can be packed into

a single thread. This representation enables the scheduler to both avoid creating

closures and executing deque operations for most iterations. A limitation of Lazy

Binary Splitting is that it addresses only parallel loops whose iteration space is

over integers. Lazy Tree Splitting generalizes Lazy Binary Splitting to handle

parallel aggregate operations that produce and consume trees, such as map and

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 33

reduce (Bergstrom et al., 2010). Lazy Tree Splitting is limited, however, by the fact

that it requires a special cursor data structure to be defined for each tree data

structure.

10.3 Amortizing per-thread costs

Aharoni et al. study the granularity problem in the setting of distributed comput-

ing (Aharoni et al., 1992), where the crucial issue is how to minimize the cost of

inter-processor communication. In their setting, the granularity problem is modeled

as a staging problem, in which there are two stages. The first stage consists of a set

of processor-local thread pools and the second stage consists of a global thread pool.

Moving a thread to the global thread pool requires inter-processor communication.

The crucial decision is how often each processor should promote threads from its

local thread pool to the global thread pool. We consider a different model of staging

in which there is one stage for parallel evaluation and one for sequential evaluation.

The approach proposed by Aharoni et al. is based on an online algorithm called

CG. In this approach, it is assumed that the cost of moving a thread to the global

thread pool is an integer constant, called g. The basic idea is to use amortization

to reduce the scheduling total cost of moving threads to the global thread pool. In

particular, for each thread that is moved to the global thread pool, CG ensures that

there are at least g + 1 threads added to the local thread pool. Narlikar describes a

similar approach based on an algorithm called DFDeques (Narlikar, 1999). Just as

with work stealing, even though the scheduler can avoid the communication costs

in the common case, the scheduler still has to pay a non-negligible cost for each

implicit thread.

10.4 Flattening and fusion

Flattening is a well-known program transformation for nested parallel languages

(Blelloch and Sabot, 1990). Implementations of flattening include NESL (Blelloch

et al., 1994) and Data Parallel Haskell (Peyton Jones, 2008). Flattening transforms

the program into a form that maps well onto SIMD architectures. Flattened

programs are typically much simpler to schedule at run time than nested programs,

because much of the schedule is predetermined by the flattening (Spoonhower, 2009).

Controlling the granularity of such programs is correspondingly much simpler than

in general. A limitation of existing flattening is that certain classes of programs

generated by the translation suffer from space inefficiency (Blelloch and Greiner,

1996), as a consequence of the transformation making changes to data structures

defined in the program. Our transformation involves no such changes.

The NESL (Blelloch et al., 1994) and Data Parallel Haskell (Peyton Jones,

2008) compilers implement fusion transformation in order to increase granularity.

Fusion transforms the program to eliminate redundant synchronization points and

intermediate arrays. Although fusion reduces scheduling costs by combining adjacent

parallel loops, it is not relevant to controlling granularity within loops. As such,

fusion is orthogonal to our oracle based approach.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

34 U. A. Acar et al.

10.5 Scheduling and locality

In our approach, we make scheduling decisions based on a property of the intrinsic

semantics of pieces of computation: the work of parallel threads. In other related

work on scheduling for data locality (Acar et al., 2002; Blelloch and Gibbons,

2004), recent work showed that basing scheduling decisions on the space usage

of parallel threads, a different property of intrinsic semantics, can be helpful in

improving locality. For example, a class of “space-bounded schedulers” (Chowdhury

et al., 2010; Cole and Ramachandran, 2010; Blelloch et al., 2011) are shown to be

well suited for improved locality on deep memory hierarchies. Since space usage of

a parallel thread can be bounded by its work, our techniques may be helpful in

scheduling for improved data locality.

10.6 Cost semantics

To give an accurate accounting of thread-creation of overheads in implicitly parallel

languages, we use a cost semantics, where evaluation steps (derivation rules) are

decorated with work and span information or “costs”. This information can then

be used directly to bound running time on parallel computers by using standard

scheduling theorems that realize Brent’s bound. Many previous approaches also use

the same technique to study work-span properties, some of which also make precise

the relationship between cost semantics and the standard DAG models (Blelloch

and Greiner, 1995; Blelloch and Greiner, 1996; Spoonhower et al., 2007). The idea

of instrumenting evaluations to generate cost information goes back to the early

90s (Rosendahl, 1989; Sands, 1990).

10.7 Inferring complexity bounds

Our implementation of oracle scheduling requires the programmer to enter com-

plexity bounds for all parallel tasks. In some cases, these bounds can be inferred

by various static analyses, for example, using type-based and other static analyses

(e.g., Crary and Weirich (2000), Jost et al. (2010)), symbolic techniques (e.g., Gold-

smith et al. (2007), Gulwani et al. (2009)). Our approach can benefit from these

approaches by reducing the programmer burden, making it ultimately easier to use

the proposed techniques in practice.

10.8 Further validation

Since the publication of the conference version of this paper (Acar et al., 2011), we

have conducted additional research that further validates the proposed techniques,

extends their applicability, and explores extensions to other problem domains outside

of the fork-join idiom considered here. In addition to the ML library described in

this paper, we implemented our techniques as an optimized, lower level library for

the C++ language (Acar et al., 2015a), which uses a highly optimized work-stealing

scheduler to achieve efficiency (Acar et al., 2013). This library offers techniques for

writing parallel programs in the full generality of the C++ language and is now a

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 35

reasonably mature software system. We used the library in undergraduate teaching

at Carnegie Mellon University (Acar and Blelloch, 2015a, 2015b) and elsewhere in

intensive courses on parallelism. Our experience in developing this library and the

feedback from over 500 students taught thus far suggest that the techniques proposed

in this paper can be implemented and used in practice.More recently, we have also

started researching the granularity problem in more unstructured parallel-computing

problems, including for example, graphs, and presented an algorithm for unordered

parallel depth-first-search that achieves its efficiency by carefully controlling gran-

ularity (Acar et al., 2015b). We are currently working on extending the automatic

granularity-control techniques presented here to such unstructured problems.

11 Challenges for programming with complexity functions

The oracle-guided semantics that we presented is relatively general purpose and

broadly applicable. Our implementation of this semantics based on the approxi-

mation algorithm (Section 7) and the translation (Section 8), however, make the

following two assumptions.

• Each complexity function in the given parallel program is accurate and efficient.

• Our approximation algorithm can always approximate constant factors effec-

tively.

Although these two requirements are easily met for large classes of programs, there

are challenging cases. In what follows, we describe several such challenging cases

that we have encountered.

11.1 Complexity functions requiring auxiliary data structures

There are programs for which providing a constant-time function that computes

the complexity of a computation requires the pre-computation of an auxiliary data

structure. We ran into such an example when implementing the sparse-matrix by

dense vector multiplication benchmark program. Essentially, we needed to pre-

compute a prefix sum array over the input data in order to determine the number

of non-zero values covered by a range of consecutive rows in the sparse matrix.

Fortunately, the cost of this pre-computation turned out to be relatively small in front

of the rest of the computations, so the overhead associated with the introduction of

the complexity function was limited. For additional details on this example, we refer

to the evaluation section of an earlier description of our work (Acar et al., 2011).

11.2 Complexity functions for higher order functions

Another challenge is that of providing complexity functions for higher order func-

tions. Consider for example a “map” function that can be used to apply a given func-

tion f to all the leaves of a binary tree. Clearly, the asymptotic complexity of a call

of the map function to a function f and a tree depends not just on the tree but also

on the evaluation of the asymptotic complexity function f on the various leaves of

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

36 U. A. Acar et al.

the tree. It is far from obvious how to handle the general case properly. Nevertheless,

there are at least two large classes of f functions for which we are able to implement

a useful asymptotic complexity function for predicting the cost of calls to map.

The first class includes constant-time functions. If we map a constant function

to all the leaves of a binary tree, then the asymptotic cost is proportional to the

number of leaves in the tree. Therefore, to evaluate the cost of the map function on

any subtree, it suffices to pre-compute and store, for each node from the tree, the size

of the subtree rooted at this node. Of course, caching additional values in the data

structures and maintaining those values upon changes induce additional overheads,

but it seems hard to control granularity without any form of additional information.

This approach generalizes to the application of map to functions that do not

necessarily take constant time but take a time that depends on the weight of the

leaf it is applied to, for some definition of weight. For example, consider a binary

tree that stores lists of integers in its leaves, and assume that we map to this tree a

function that increments all the integers stored in the leaves. In this case, we define

the weight of a leaf as the length of the list it stores, and define the weight of a

subtree as the sum of the weight of its leaves. If we pre-compute the weight of every

node in the tree, then we are able to provide a useful asymptotic cost function.

The implementation of the complexity function is not the only challenge associated

with higher order functions: evaluation of the constant factors is another. For

example, the constant factors of the map function depend both on the constant

factors of the function f passed to it and on constant factors inherent to the

traversal of tree data structures. One possible solution is to allocate one different

estimator for every instantiation of the map function. However, doing so results in

imperfect sharing of constant factors, possibly leading to longer convergence phases.

In summary, higher order functions are associated with a number of open challenges.

11.3 Mismatch between average and worst-case complexity

Our ability to implement the oracle relies on the assumption that we are able to

predict asymptotically the amount of work involved in a computation. However,

there are cases where the amount of computation to be performed depends on the

data itself, and not just on the size of the data.

For example, consider string comparison. On many pairs of input, the comparison

terminates quickly because of a mismatch occurring in the first few characters of

the two strings. However, the worst-case execution time is O(n). If we naively use

O(n) as the complexity function, but the execution is most frequently O(1), we will

conclude that the constant factors are tiny. At this point, if we receive a pair of two

identical strings, we will incorrectly predict the comparison to run fast, and as a

result we will fully sequentialize the linear-time comparison of the two strings, even

though it could have been performed faster in parallel.

Another example is that of (non-randomized) quick sort. The expected complexity

is O(n log n), but in the worst case, it can run in O(n2). We are tempted to use

O(n log n) for making predictions. What happens if we do so but then run on an input

that triggers a quadratic behavior? We will likely sequentialize sub-computations

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 37

of much larger size than we ideally aim for. However, it turns out that the inputs

that triggers quadratic behavior are also those for which the quick sort algorithm

does not exhibit any parallelism. In other words, we could not have sorted the items

faster using quick sort by controlling granularity differently.

11.4 Initial estimation of the constant factors

The approach described in this paper has another limitation related to the way that

we currently handle the initial convergence phase for the estimation of the constant

factors. This limitation may affect code whose structure is more complex than simple

recursive divide-and-conquer functions.

To understand the limitation, recall that, when a program begins, we do not have

any estimation for its constant factors, and that we initially consider a pessimistic

(i.e., large) value for the constants. By doing so, we typically begin by sequentializing

only tiny pieces of work; later, when a constant factor is measured to be actually

smaller than its initial pessimistic value, we are then able to sequentialize larger pieces

of work. This scheme suffices in the case of simple recursive functions, because the

constant factors that are measured one level of recursion can be exploited to make

predictions at a higher level of recursion.

Consider, however, the case of two nested loops, both implemented as basic divide-

and-conquer recursive functions. The constant-factor estimation for the inner loop

will converge properly. However, the constant-factor estimation for the outer loop

may never get updated because a measured run is not necessarily triggered. Even

when the full execution of the inner loop is systematically sequentialized, consecutive

iterations of the outer loop never get sequentialized, because the estimator of the

outer loop, which does not share information with the estimator of the inner loop,

continues to use the initial pessimistic constant estimation.

Intuitively, our approximation algorithm is facing a bootstrapping problem here:

On the one hand, for sequentializing pieces of work, we need some reasonably

accurate estimate of the constant factors; on the other hand, we may only obtain

these estimations through sequentialized computations. We leave to future work

the design of better approximation algorithms and runtime techniques for either

propagating more information or for estimating upper bounds to the constant

factors, so as to be able to escape this bootstrapping issue.

12 Conclusion

In this paper, we present an analysis of the impact of thread-creation costs on the

performance of implicitly parallel programs and provide a solution for controlling

these costs based on an oracle. We formulate our solutions in the context of a nested-

parallel functional language and prove that it successfully controls thread-creation

costs by using an amortization technique, known also as granularity control. We

then present an approximation algorithm for realizing our oracle-guided semantics

with the help of asymptotic complexity functions provided by the programmer.

We implement our techniques and perform an experimental evaluation, which

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

38 U. A. Acar et al.

shows that the approach is effective in controlling the thread-creation costs without

detrimentally affecting the performance in the benchmarks considered. While this

paper makes important progress towards solving the granularity-control problem,

it also shows that there is more work to be done. For example, we have seen

theoretically that our approximation algorithm only works for certain kinds of

computations. While we have also validated the techniques proposed in this paper

in other research projects and in teaching (Section 10.8), our implementations

and experiments are still relatively new and would benefit from a more thorough

evaluation that considers larger and more varied benchmarks.

References

Acar, U. A., & Blelloch, G. (2015a). 15210: Algorithms: Parallel and sequential. Accessed

August 2016. Available at: http://www.cs.cmu.edu/∼15210/.

Acar, U. A., & Blelloch, G. (2015b). Algorithm design: Parallel and sequential. Accessed

August 2016. Available at: http:www.parallel-algorithms-book.com.

Acar, U. A., Blelloch, G. E. & Blumofe, R. D. (2002). The data locality of work stealing.

Theory Comput. Syst. 35(3), 321–347.

Acar, U. A., Charguéraud, A., & Rainey, M. (2011). Oracle scheduling: Controlling granularity

in implicitly parallel languages. In Proceedings of ACM SIGPLAN conference on object-

oriented programming, systems, languages, and applications (OOPSLA), pp. 499–518.

Acar, U. A., Charguéraud, A. & Rainey, M. (2013). Scheduling parallel programs by work

stealing with private deques. In PPoPP ’13.

Acar, U. A., Chargueraud, A., & Rainey, M. (2015a). An introduction to parallel computing

in c++. Available at: http://www.cs.cmu.edu/15210/pasl.html.

Acar, U. A., Chargueraud, A., & Rainey, M. (2015b). A work-efficient algorithm for parallel

unordered depth-first search. In Proceedings of Acm/ieee conference on high performance

computing (sc). New York, NY, USA: ACM.

Aharoni, G., Feitelson, D. G. & Barak, A. (1992). A run-time algorithm for managing the

granularity of parallel functional programs. J. Funct. Program. 2, 387–405.

Arora, N. S., Blumofe, R. D., & Plaxton, C. G. (1998). Thread scheduling for multiprogrammed

multiprocessors. In Proceedings of the Tenth Annual ACM Symposium on Parallel Algorithms

and Architectures. SPAA ’98. ACM Press, pp. 119–129.

Arora, N. S., Blumofe, R. D. & Plaxton, C. G. (2001). Thread scheduling for multiprogrammed

multiprocessors. Theory Comput. Syst. 34(2), 115–144.

Barnes, J. & Hut, P. (December 1986). A hierarchical O(N logN) force calculation algorithm.

Nature 324, 446–449.

Bergstrom, L., Fluet, M., Rainey, M., Reppy, J., & Shaw, A. (2010). Lazy tree splitting. Icfp

2010. ACM Press, pp. 93–104.

Blelloch, G., & Greiner, J. (1995). Parallelism in sequential functional languages. In Proceedings

of the 7th International Conference on Functional Programming Languages and Computer

Architecture. FPCA ’95. ACM, pp. 226–237.

Blelloch, G. E., Fineman, J. T., Gibbons, P. B. & Simhadri, H. V. (2011). Scheduling irregular

parallel computations on hierarchical caches. In Proceedings of the 23rd ACM Symposium

on Parallelism in Algorithms and Architectures. SPAA, ’11, pp. 355–366.

Blelloch, G. E. & Gibbons, P. B. (2004). Effectively sharing a cache among threads. In SPAA.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

Oracle-guided scheduling 39

Blelloch, G. E., & Greiner, J. (1996). A provable time and space efficient implementation

of NESL. In Proceedings of the 1st ACM Sigplan International Conference on Functional

Programming. ACM, pp. 213–225.

Blelloch, G. E., Hardwick, J. C., Sipelstein, J., Zagha, M. & Chatterjee, S. (1994).

Implementation of a portable nested data-parallel language. J. Parallel Distrib. Comput.

21(1), 4–14.

Blelloch, G. E. & Sabot, G. W. (February 1990). Compiling collection-oriented languages onto

massively parallel computers. J. Parallel Distrib. Comput. 8, 119–134.

Blumofe, R. D. & Leiserson, C. E. (September 1999). Scheduling multithreaded computations

by work stealing. J. ACM 46, 720–748.

Brent, R. P. (1974) The parallel evaluation of general arithmetic expressions. J. ACM 21(2),

201–206.

Chakravarty, M. M. T., Leshchinskiy, R., Peyton Jones, S., Keller, G. & Marlow, S. (2007).

Data parallel Haskell: a status report. In Workshop on declarative aspects of multicore

programming. DAMP ’07, pp. 10–18.

Chowdhury, R. A., Silvestri, F., Blakeley, B. & Ramachandran, V. 2010 (Apr.). Oblivious

algorithms for multicores and network of processors. In Proceedings of International

Symposium on Parallel Distributed Processing (ipdps), pp. 1–12.

Cole, R. & Ramachandran, V. (2010). Resource oblivious sorting on multicores. In Proceedings

of the 37th International Colloquium Conference on Automata, Languages and Programming.

ICALP’10. Springer-Verlag, pp. 226–237.

Crary, K. & Weirich, S. (2000). Resource bound certification. In Proceedings of the 27th ACM

Sigplan-Sigact Symposium on Principles of Programming Languages. POPL ’00, pp. 184–198.

Feeley, M. (1992). A message passing implementation of lazy task creation. In Proceedings of

Parallel symbolic computing, pp. 94–107.

Feeley, M. (1993). An Efficient and General Implementation of Futures on Large Scale Shared-

Memory Multiprocessors. PhD Thesis, Brandeis University, Waltham, MA, USA, UMI Order

No. GAX93-22348.

Fluet, M., Rainey, M. & Reppy, J. (2008). A scheduling framework for general purpose

parallel languages. In Proceedings of ACM Sigplan International Conference on Functional

Programming (icfp). ACM, pp. 241–252.

Fluet, M., Rainey, M., Reppy, J. & Shaw, A. (2011). Implicitly threaded parallelism in

Manticore. J. Funct. Program. 20(5–6), 1–40.

Frens, J. D. & Wise, D. S. (1997). Auto-blocking matrix-multiplication or tracking blas3

performance from source code. In Proceedings of the Sixth ACM Sigplan Symposium on

Principles and Practice of Parallel Programming. PPOPP ’97. New York, NY, USA: ACM,

pp. 206–216.

Frigo, M., Leiserson, C. E. & Randall, K. H. (1998). The implementation of the Cilk-5

multithreaded language. In Pldi, pp. 212–223.

Goldsmith, S. F., Aiken, A. S. & Wilkerson, D. S. (2007). Measuring empirical computational

complexity. In Proceedings of the 6th joint meeting of the european software engineering

conference and the acm symposium on the foundations of software engineering, pp. 395–404.

Gulwani, S., Mehra, K. K. & Chilimbi, T. (2009). Speed: Precise and efficient static estimation

of program computational complexity. In Proceedings of the 36th Annual ACM Sigplan-

Sigact Symposium on Principles of Programming Languages, pp. 127–139.

Halstead, R. H. (1985). Multilisp: A language for concurrent symbolic computation. ACM

Trans. Program. Lang. Syst. 7, 501–538.

Hiraishi, T., Yasugi, M., Umatani, S. & Yuasa, T. (2009). Backtracking-based load balancing.

In Ppopp ’09. ACM, pp. 55–64.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

40 U. A. Acar et al.

Huelsbergen, L., Larus, James R. & Aiken, A. (1994). Using the run-time sizes of data

structures to guide parallel-thread creation. In Proceedings of the 1994 ACM Conference on

Lisp and Functional Programming. LFP ’94, pp. 79–90.

Jost, S., Hammond, K., Loidl, H. & Hofmann, M. (2010). Static determination of quantitative

resource usage for higher-order programs. In Principles of programming languages (popl),

pp. 223–236.

Leroy, X., Doligez, D., Garrigue, J., Rémy, D. & Vouillon, J. (2005). The Objective Caml

System.

Lopez, P., Hermenegildo, M. & Debray, S. (June 1996). A methodology for granularity-based

control of parallelism in logic programs. J. Symbol. Comput. 21, 715–734.

Mohr, E., Kranz, D. A. & Halstead Jr., R. H. (1990). Lazy task creation: A technique for

increasing the granularity of parallel programs. In Conference Record of the 1990 ACM

Conference on Lisp and Functional Programming. New York, New York, USA: ACM Press,

pp. 185–197.

Narlikar, G. J. (1999). Space-Efficient Scheduling for Parallel, Multithreaded Computations.

PhD Thesis, Carnegie Mellon University, Pittsburgh, PA, USA.

Pehoushek, J. & Weening, J. (1990). Low-cost process creation and dynamic partitioning in

Qlisp. of: Ito, Takayasu, & Halstead, Robert (eds), In Parallel lisp: Languages and Systems.

Lecture Notes in Computer Science, vol. 441. Springer Berlin/Heidelberg, pp. 182–199.

Peyton Jones, S. L. (2008). Harnessing the multicores: Nested data parallelism in Haskell. In

Aplas, p. 138.

Peyton Jones, S. L., Leshchinskiy, R., Keller, G. & Chakravarty, M. M. T. (2008). Harnessing

the multicores: Nested data parallelism in Haskell. In Fsttcs, pp. 383–414.

Plummer, H. C. (March 1911). On the problem of distribution in globular star clusters. Mon.

Not. R. Astron. Soc. 71, 460–470.

Rainey, M. (August 2010). Effective Scheduling Techniques for High-Level Parallel

Programming Languages. PhD thesis, University of Chicago.

Rosendahl, M. (1989). Automatic complexity analysis. In Fpca ’89: Functional Programming

Languages and Computer Architecture. ACM, pp. 144–156.

Sanchez, D., Yoo, R. M. & Kozyrakis, C. (2010). Flexible architectural support for fine-grain

scheduling. In Proceedings of the Fifteenth Edition of Asplos on Architectural Support for

Programming Languages and Operating Systems. ASPLOS ’10. New York, NY, USA: ACM,

pp. 311–322.

Sands, D. (September 1990). Calculi for Time Analysis of Functional Programs. PhD Thesis,

University of London, Imperial College.

Sivaramakrishnan, K. C., Ziarek, L. & Jagannathan, S. (2014). Multimlton: A multicore-aware

runtime for standard ml. J. Funct. Program. FirstView:1–62, 6.

Spoonhower, D. (2009). Scheduling Deterministic Parallel Programs. PhD Thesis, Pittsburgh,

PA, USA: Carnegie Mellon University.

Spoonhower, D., Blelloch, G. E., Harper, R. & Gibbons, P. B. (2008). Space profiling for

parallel functional programs. In International Conference on Functional Programming.

Tzannes, A., Caragea, G. C., Vishkin, U. & Barua, R. (September 2014). Lazy scheduling: A

runtime adaptive scheduler for declarative parallelism. TOPLAS 36(3), 10:1–10:51.

Valiant, L. G. (August 1990). A bridging model for parallel computation. CACM 33, 103–111.

Weening, J. S. (1989). Parallel Execution of Lisp Programs. PhD Thesis, Stanford University.

Computer Science Technical Report STAN-CS-89-1265.

https://doi.org/10.1017/S0956796816000101 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000101

