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CHOQUET BOUNDARY FOR REAL FUNCTION
ALGEBRAS

S. H. KULKARNI AND S. ARUNDHATHI

Introduction. The concepts of Choquet boundary and Shilov boundary
are well-established in the context of a complex function algebra (see [2]
for example). There have been a few attempts to develop the concept of a
Shilov boundary for real algebras, [4], [6] and [7]. But there seems to be
none to develop the concept of Choquet boundary for real algebras.

The aim of this paper is to develop the theory of Choquet boundary of a
real function algebra (see Definition (1.8)) along the lines of the
corresponding theory for a complex function algebra.

In the first section we define a real-part representing measure for a
continuous linear functional ¢ on a real function algebra 4 with the
property ||p|| = 1 = ¢(1). The elements of A are functions on a compact,
Hausdorff space X. The Choquet boundary is then defined as the set of
those points x € X such that the real part of the evaluation functional,
Re(e, ), has a unique real part representing measure. Several properties of
the Choquet boundary are given including those that characterize the
Choquet boundary (Theorem 1.17).

In the second section, we show that the closure of the .Choquet
boundary in X is the smallest closed boundary for 4 (see Theorem (2.4) ).
This is defined to be the Shilov boundary of A.

The third section deals with the complexification B of a real function
algebra A. It is shown that the Choquet boundaries of 4 and B are the
same. This is used to compute the Choquet boundary of the real disc
algebra, (Example (3.11) ). Finally we study a particular type of a real
subalgebra of a complex function algebra U (Example (3.12) ) and estab-
lish a certain relationship between the Choquet boundaries of the two
algebras (Theorem (3.14) ).

1. Choquet boundary. As usual, R denotes the real line and C the com-
plex plane.

Definition (1.1). Let X be a compact, Hausdorff space and 7 a homeo-
morphism on X such that 7 o 7 = 72 = identity map on X. Then 7 is called
an involution on X or an involutionary homeomorphism on X.
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Definition (1.2). Let X be a compact, Hausdorff space. Then by C(X)
(respectively by Cr(X) ) we denote the complex (respectively real) Banach
algebra of all continuous complex-valued (respectively real-valued) func-
tions on X with supremum norm. Let 7 be an involutionary homeomor-
phism on X and

C(X,7) = {f € CX): f(r(x)) = f(x) for all x € X}.

Then C(X, 7) is a real commutative Banach algebra with identity 1. Also,
C(X, 7) separates points on X, that is, for any x,;, x, in X with x; # x,
there exists f € C(X, 7) with f(x|) # f(x,). A real function algebra on
(X, 7) 1s a real subalgebra 4 of C(X, 1) such that

(1) A4 is uniformly closed in C(X, 7)

(i1) 4 contains real constants

(iii) A separates points on X.

For examples of real function algebras and other details refer to [5].

Remark (1.3). Note that every real function algebra A is a real uniform
algebra as defined in [7], that is, it is a real commutative Banach algebra
with identity such that

/2 = IIfII* for every f € A.

Conversely, a real uniform algebra can be viewed as a real function
algebra as described in Section 1 of [5].

Definition (1.4). For a real function algebra 4 on (X, 7) the set of all
non-zero real-linear homomorphisms of 4 into C is called the carrier space
of A and is denoted by ®,. For f € A, define a mapping

f:(DAﬁC

by f(¢) = ¢(f) for ¢ € @,. f is called the Gelfand transform of f € A.
Then ®, is a compact, Hausdorff space with respect to the Gelfand
topology, [3]. Observe that whenever ¢ € @,, the element ¢ defined by
&(f) = ¢(f) is also in ®,, bar denoting complex conjugation. It is clear
that each point x in X can be identified with the evaluation homeomor-
phism e, defined by e (f) = f(x) for f € A. Define the map

by 74(¢) = ¢. Then X can be regarded as a subset of ®; and T may be
viewed as the restriction of 7, to X.

Definition (1.5). Let A be a real function algebra on (X, 7) and let
Ky = {9 € A%:9(1) = [l¢ll = 1}

where A* denotes the set of all continuous linear functionals on A4. It is
obvious that K, is a convex subset of the closed unit ball of 4* and K,
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contains Re(e,) for each x € X. It is easy to see that K, is weak-star
closed. So K is weak-star compact.

Remark (1.6). Note that if ¢ € K, then ¢ is a positive linear functional,
that is, ¢(f) = 0 whenever f = 0.

Proof. Let f = 0 and ||f|| = 1. Then ||1 — f|| = 1. Hence

o1 = )=l = HI= gl 1 = fII=1 or &f) =0.

Definition (1.7). Let A be a real function algebra on (X, 7) and ¢ € K.
A real part representing measure (r.p.r. measure) for ¢ is a regular Borel
positive measure p on X such that ¢(f) = [y Re fdu for all f € 4 and w(E)
= w(7(E)) for all Borel subsets E of X.

That r.p.r. measure for ¢ € K, exists, can be seen as follows: Let

Red = {Re /i fe€ A4}.

Then Re A4 is a subspace of Cr(X) and ¢ is a bounded linear functional
on Re A. Hence by applying the Riesz representation theorem to any
Hahn-Banach extension of ¢ to Cg(X), we obtain a regular Borel measure
po such that

o(f) = /:\, Re fdp, forall fe 4

and [|¢|l = |lgyll where [|ugll denotes the total variation of p,. We may
define p by

1
WE) = E[MO(E) + po(1(E)) ]

for every Borel subset E of X. Then u is a r.p.r. measure for ¢. Note that
since ¢ is positive and ||¢|| = 1, a r.p.r. measure for ¢ is a probability
measure.

If ¢ is in the carrier space ®,, then Re ¢ is in K; and hence by the above
arguments it has a r.p.r. measure. As in [5], we shall refer to it as r.p.r.
measure for ¢. Note that p is a r.p.r. measure for ¢ € @, if and only if it is
a r.p.r. measure for ¢.

Definition (1.8). Let A be a real function algebra on (X, 7). The Choquet
boundary of A denoted by Ch(A) is the set of all x € X such that e, admits
a unique r.p.r. measure.

Remark (1.9). Note that this unique r.p.r. measure for e, must be of the
form (1/2)(8, + &8,y = m, (say) where §, denotes the pointmass at x,
that is the Dirac-delta measure of x.

Observe that when x = 7(x), m, = 8. Also, if x € Ch(4) then
7(x) € Ch(4) and vice-versa.

Now we prove a few properties of Ch(A4 ). Proofs of many of these proper-
ties follow closely the analogous proofs in the complex case given in [2].
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Throughout this section, A is a real function algebra on (X, 7) and
x € X.

THEOREM (1.10). If x & Ch(A), there exists a t.p.r. measure pu for
e, with

w({x, 1(x)}) = 0.
Proof. Let o be a r.p.r. measure for e, with 6 # m, and let

¢ =o({x,7(x) }),

then ¢ < 1.
Define

1
1 —¢

u = [6 — em,].

It is easily verified that

];(Re fdu = Re f(x) forevery f € 4,
that w(7(E)) = u(E) for every Borel set E in X and that
w( {x, 7(x)}) = 0.

Hence to finish the proof, all we need to check is that p is a positive
measure.

For this let £ be any Borel subset of X. Then

Case (1). If x € F and 7(x) € E, then

1
wWE) =
1 —¢

[0(E) — ¢] = 0.

Case (i1). If x € F and 7(x) & E, then
o(E) Z o({x}) and o(7(E)) = o( {7(x) }).
Since o(1(E) ) = o(E), it follows that 26(E) = ¢ but
c
2

The case when x &€ E but 7(x) € F is similar to case (i1) and finally
Case (ii1). If x &€ F and 7(x) & E, then

WE) = o(E) = 0.

= 0.

WE) = o(E) —

This shows that p is a r.p.r. measure for e, with

w({x, 7x)}) = 0.

The next theorem provides a relation between Ch(4) and the extreme
points of the set K.
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THEOREM (1.11). Let ¢ € K,. Then ¢ is an extreme point of K, if and
only if ¢ = Re(e,) for some x € Ch(A).

Proof. Let x € Ch(A) and Re(e,) = t; + (1 — 1)y, where ¢, ¢, € K,
and 0 < < 1.

Suppose that p; and p, are r.p.r. measures for {; and i, respectively.
Then tu; + (1 — t)p, is a r.p.r. measure for e,. For,

/Refd(,u]t + (1 = Dy

I/Refd,u, + (1 - t)/Refd,uz
= () + (1 = ()
Re(e (f))

Re(f(x) ).
But x € Ch(4) and so

1
m, = 5(8)( + 81’()()) = t”’l + (l - t)H‘Z

where 0 << ¢ < 1. Since p, and p, are positive Borel measures, it follows
that u,(E) = py(E) = 0 whenever E is a Borel subset of X and x & E,
7(x) & E. Thus p; = p, = m, and hence §; = , = Re(e,). Thus Re(e,) is
an extreme point of K.

Conversely let ¢ be an extreme point of K,. Let u be a r.p.r. measure
for ¢ and suppose that x € Supp(p). Then 7(x) € Supp(p). (Note that
w(t(E)) = w(E) for every Borel set E contained in X.)

If for some neighbourhood U of {x, 7(x) } with U = 7(U) we have
w(U) < 1 define 6 and ¢ by

1
o) = w0y Ju Re fdy,
L
I — WU
Then 0,y € K, and
¢ =) + (1 — wU) W

Since ¢ is an extreme point of K, § = ¢ = ¢. Thus

qb(f):ﬁﬁjRefdu for all f in 4.

If W(U) < 1 for some neighbourhood U of {x, 7(x) } with U = 7(U) then
w(V) < 1 for any smaller neighbourhood V with (V = 7(V)) same
properties so that

“YW/f) = _/;_U Re fdu, forall f € A.
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1
&(f) = — |, Re fdp
wvy v
for all fin A and for arbitrarily small neighbourhoods V of {x, 7(x) } with
V = (V). So,
o1
= Re fdp = R
M) = 0] Josrcon R = Relf)

by a simple calculation. Thus ¢ = Re(e,). This also implies that
p({x, 7(x) }) # 0.

Thus, we have shown that for every r.p.r. measure p for e,
p({x, 7(x) }) # 0.

Hence by Theorem (1.10) x € Ch(4).

THEOREM (1.12). Let x € X. Suppose there exist constants «, B with
0 < a < B < 1 such that for every neighbourhood U of {x, 7(x)}
with U = 7(U), there exists f in A with ||f|| = 1, Re f(x) > B and
lfO) | < « forally & U. Then x € Ch(A).

Proof. Let p be a r.p.r. measure for e, and U a 7-invariant neighbour-
hood of x. Then 7(x) € U and

B < Re f(x) = _/;(Refdp
fU Re fdu + .[qu Re fdu

= wU) + ap(X — U)
=a+ (1 — o)

since w(X) = 1.
Thus

wy =B
1l — a

for any 7-invariant neighbourhood U of {x, 7(x) }. Hence

Wl ry ) = 5=
-

The theorem now follows by invoking Theorem (1.10).

THEOREM (1.13). Let x € X. Suppose there exist constants a, B with
0 < a < B such that for every neighbourhood U of x where U is T-invariant,
there exists f in A with Re f = 0, Re f(x) > —a and Re f(y) < —B for
ally € X — U. Then x € Ch(4).
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Proof. Let U be a r-invariant neighbourhood of {x, 7(x)} and p a
r.p.r. measure for e,. Then

—a < Re f(x) = //;,Refdp,
:LRefdu+A7URefdu

= L*URefdu
since Re f = 0 on X
< —BuX — U)

= —B(1 — wU)) asuX) = 1.
Thus

B— a
U
wU) > B

for any r.p.r. measure p for e, and any 7-invariant neighbourhood U of x.

So by Theorem (1.10) x € Ch(A4).

Before proceeding further we introduce a notation:
Let X be a compact, Hausdorff space and 7 an involutionary homeo-
morphism on X. Also let,

CpX, 1) = {u € Cp(X): u(r(x)) = u(x) forallx € X} and
Co(X, 1) = {v € Cr(X): v(r(x)) = —v(x) forallx € X}.
Let u € Cg(X). Then

1
u(x) = E[V(X) + wix) ]
where v and w are defined by
1 1
v(x) = Eiu(X) +ou(r(x)) ] wx) = E[u(x) = u(r(x)) ]

Thus v € Cr(X, 7) and w € C¢(X, 7). Thus every element of Cr(X) can
be uniquely decomposed as a sum of two elements, one from Cgx(X, 7) and
the other from C¢(X, 7). If A is a real function algebra on (X, 7) and
f € A then

Ref e Cy(X.7) and Imf e Cy(X, ).
THEOREM (1.14). Let ¢ € K, u € Cg(X, 1) and
a = sup{¢p(f): f€ A4, Re f = u},
= {inf ¢(f): f € A, Re f = u}

=
I
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and so a = B. For any y with a = y = B there exists a r.p.r. measure p for
¢ with f udp = vy.

Proof. Replacing u by u — y we may assume thaty = 0. So,a = 0 = .
Let
N ={fe CX): Ref=tu+ Regforsomes € R,
some g € A with ¢(g) = 0}.
P ={fe C(X): Ref>0}
Clearly N and P are convex cones, that is, N and P are convex sets and
are also closed under addition and multiplication by real, non-negative
scalars. Further we claim that N and P are disjoint sets. If f € N N P then

f € C(X) and Re f = tu + Re g for some real ¢, for some g € A with
¢(g) = 0, Re f > 0. These imply that ru + Re g = Re f > 0 or

(1) Reg> —t.
Case (1). Let ¢ > 0. Then (1) implies

Re(g) > —u or Re(—g) = u.
t t

Hence

q&(~%) =a or ¢(—g) = ta.

Ast>0,a =0,¢(g) = —ta = 0.
Case (ii). Let + << 0. Then (1) implies that

Re(—%) >u as —t > 0.

Hence,
o|-5)zp o sz -8

Thus ¢(g) = —tB =0ast < 0,8 =0.

Case (iii). Let t = 0. Then, Re g = Re fimplies ¢(g) = ¢(f) as ¢ € K,
by Remark (1.6). So ¢(f) > 0.

Thus in all cases, ¢(g) = 0 which is a contradiction. So N and P are
disjoint sets. Hence by the Hahn-Banach separation theorem, there exists
a non-zero 6 in (C(X) )* with §(f) = 0 for fin N and 8(f) = 0 for fin P.
Now 8(f) = 0 for f € P implies that 8 is a positive linear functional on
C(X). So, we may assume that (1) = 1. If f € A4 then

=(f — o(f)) € N.
For if g = f — ¢(f) then ¢(g) = 0 and
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Reg=0-u + Reg.

So g € N. Similarly, —(f — ¢(f)) € N. Therefore, =(f — ¢(f)) € N
and so

0(f — ¢(f)) =0 and 6(¢(f) — f)) =0

which yield 6(f) = &(f).

Also it can be proved that =u € N by taking t = 1, g = 0 in the
definition of the set N. So 8(u) = 0. Let u, be the representing measure for
8. Define

1
WE) = E[HO(E) + po(r(E) ) ]

for every Borel subset E of X. Then for any w € Cg(X, 7),

./;( wdp = /X wdl.

In particular,

/:\,udp = ];(udp,o =0u) =0
and for f € 4,

JoRe i = [ Re fiy = Ret@()) = Re 0(f) = 601
Thus p is a r.p.r. measure for ¢.

THEOREM (1.15). Let ¢ € K,. Then ¢ admits a unique r.p.t. measure . if
and only if for every u € Cg(X, 7),

sup{ep(f): f€ A, Re f=u} = '/;(udu
inf{¢(f): f € A, Re f = u}.

Proof. Let
a, = sup{e(f): f € A4, Re f = u},
B, = inf{o(f): f € A RefZu)

where u € Cg(X, 7). Then, for every r.p.r. measure o for ¢,

o(f) = _[\,Refdoéj;(udo for all f in A.

Hence

a, /X udo.

Similarly

lIA
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/;,udo = B,
Thus

a, = fxudu =B,

Hence if a, = B, for every u € Cg(X, 1) there can exist only one r.p.r.
measure u for ¢ such that

a, =B, = /Xud,u.

Conversely if for some u € Cgx(X, 1), a, < B,, we can find y;, v, such
that «, = vy, = vy, = B, Then by Theorem (1.14) there exist r.p.r.
measures u; and p, for ¢ such that

Y = L“dﬂ] # LUdﬂz = Y2

COROLLARY (1.16). Let x € X. Then x € Ch(A) if and only if for every
u € Cp(X, 1),

sup{Re f(x): fe A,Ref=u} = u(x)
inf{Re f(x): f€ A, Ref = u}.

Proof. This follows by applying Theorem (1.15) to the special case
¢ = Re(ex) (S KA'

I

The following theorem should be compared to Theorem (2.2.6) of [2].

THEOREM (1.17). Let x € X. Then the following statements are
equivalent:

(i) x € Ch(A).

(ii) If p is a r.p.r. measure for e, then p( {x}) > 0.

(iii) For every a, B with 0 < a < B and for every t-invariant neigh-
bourhood U of x there exists f in A with Re f = 0, Re f(x) > —a and
Re f(y) < —B forally € X — U.

(iv) There exist a, B with 0 < a < B such that for every t-invariant neigh-
bourhood U of x there exists [ € A with Re f = 0, Re f(x) > —a and
Re f(y) < —B forally € X — U.

(v) For all u € Cg(X, 7),

sup{Re f(x): f€ A,Ref=u} = u(x)
= inf{Re f(x): f&€ A,Ref = u}.

Proof. Let (i) hold. If x € Ch(4), m, is the only r.p.r. measure for e,.
Hence (ii) follows.

(i1) implies (i) is Theorem (1.10).

We will now prove that (i) implies (iii). Let x € Ch(4), U a r-invariant
neighbourhood of x and «, 8 be such that 0 < a < B. By Urysohn’s
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Lemma, there exists w € Cx(X) such thatw = 0, w(x) = 0and w < — VB
on X — U. Define a function u by

u(s) = —w(s)w(r(s)) foralls € X.

Then u € Cg(X, 7). Since w(x) = 0, we have u(x) = 0. Since
w(s) < —y/Bforalls € X — U and since U = 7(U), w(r(s)) < —/B.
Hence u(s) < —B for alls € X — U. By Corollary (1.16),

sup{Re f(x): f€ A, Ref=u} =ux)=0> —a

Hence there exists f € 4 such that Re f = u and Re f(x) > —a. Since
u< —BonX—-URef=u< —BonX— U

That (iii) implies (iv) is obvious.

(iv) implies (i) is Theorem (1.13).

(1) and (v) are equivalent in view of Corollary (1.16).

Remark (1.18). At this point the reader may ask when the Choquet
boundary of a real function algebra on (X, 7) is the whole of X. Theorem
(1.20) gives a sufficient condition for this.

Definition (1.19). A real function algebra 4 on (X, 1) is called a real
Dirichlet algebra if Re A is dense in Cg(X, ).

THEOREM (1.20). If A is a real Dirichlet algebra on (X, T) then
Ch(4) = X.

Proof. Let x € X be any point and p,, p, be r.p.r. measures for e,.
Then,

L Re fdp, = L Re fdp, = Re f(x) forall f € A.
Hence for all u € Cg(X, 7),

L udp, = A udj,,

since Re A is dense in Cgx(X, 7). It is also easy to see that

_[\,vdul = f){ vdp, = 0 forallv € Cy(X, 7).
Let w € Cg(X). Then, w can be written uniquely as w = u + v where
u € Cp(X, 1), v € Cg(X, 7). Hence

L wdp, = ./:\' wdp, for all w € Cgr(X),

that is, p; = u,. Thus e, admits a unique r.p.r. measure. Hence,
x € Ch(A).

Example (1.21). Let A = C(X, 7). Obviously, 4 is a real Dirichlet
algebra. Hence in view of the above Theorem (1.20), Ch(4) = X.
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Remark (1.22). Since for a real function algebra A4 on (X, 1) X can be
identified with a subset of ®, by the map x — e, we can regard Ch(4) as a
subset of ®,. Let M be the maximal ideal space of 4. Then for each f in
A, Re f and |f]| are well-defined real-valued functions on M,. It was
shown in [5] that the smallest topology on M, making Re f continuous for
all f € A is the same as the smallest topology on M, making |f|
continuous for all f € A4 and that M, is a compact, Hausdorff space with
respect to this topology. Let T:®, — M, be defined by

T($) = ¢ '({0}), ¢ € @,
Note that T(¢) = T(¢) for all ¢ € @,.

CoROLLARY (1.23). Let y € M,. Then the following statements are
equivalent:

(i) y € T(Ch(4)).

(i) For every a, B with 0 < a < B and for every neighbourhood V
of y in My there exists f in A such that Re f = 0, Re f(y) > —a and
Re f(z) < —B forallz € M, — V.

(iii) There exists a, B with 0 < a < B and for every neighbourhood V
of y,in M there exists f € A such that Re f = 0, Re f(y) > —a and
Re f(z) < —B forallz € My — V.

(iv) For allw € Cg(M,)

sup{RefA(y): feA, RefA =w} =w(y)
inf{Ref(y): fe A, RefA = w}.

2. Shilov boundary.

Definition 2.1. Let A be a real function algebra on (X, 7)and S € X. S'is
called a Choquet set (respectively a boundary) if S = 7(S) and if Re f
(respectively | f|) assumes its maximum on S for all f € 4.

Remark (2.2). Choquet set and boundary of a real commutative Banach
algebra with unit were defined in [6] as subsets of M. Our proof of the
following theorem (Theorem (2.3)) is similar to that of an analogous
Theorem in [6].

THEOREM (2.3). (i) Every boundary for A is a Choquet set for A.
(i) Every closed Choquet set for A is a boundary for A.

Proof. (i) follows from the fact that
Re f = loglexp(f)| forall f e 4.

(ii) Let S be a closed Choquet set for A. If possible, let S be not
a boundary for 4. Then there exists f € 4, ¢ < 1 and y € X such that
|f] = eon S and |f(y)| = 1. Since for each positive integer n,

Re(f") | = |f"] = ¢"
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on S and S is a Choquet set for 4, |Re(f") | = € on X and in particular at
y. Since | f(y)| = 1 let f(y) = exp(ia) for some real number a. Thus

[Re(/")(p) | = |cos na| = ¢"

for each positive integer n. But as n — oo, " — 0 while cos na does not and
hence we have a contradiction. Thus S is a boundary for 4.

THEOREM (2.4). cl(Ch(4)) = closure of Ch(A) is the smallest closed
boundary as well as the smallest closed Choquet set for A.

Proof. First we shall prove that cl(Ch(4)) is a boundary. Recall that
Ky ={¢ € 4% o) = |lgll = 1}.

Since K; = convex hull of ext(K,) where ext(K}) is the set of all extreme
points of K, we see that for all f in 4

sup{ [Re f(x)[: x € X} = sup{lp(/)|: ¢ € K}

as Ree € K,

sup{ [¢(f)|: ¢ € conv(ext K;) },
sup{ lo(f)|: ¢ € cllext K,)}
sup{ |[Re f(x)|: x € cl(Ch(4))},

I

I

in view of Theorem (1.11). Thus cl(Ch(A4) ) is a Choquet set and since it is
closed it is a boundary for A4.

Now we prove that cl(Ch(A4) ) is contained in every closed boundary. In
view of Theorem (2.3), it suffices to prove that Ch(A4) is contained in every
closed Choquet set for 4. Let x € Ch(4) and U a r-invariant neighbour-
hood of x. Then by Theorem (1.17) for all a, 8 with 0 < a < B and for all
T-invariant neighbourhoods of x there exists f/ € A such that Re /= 0,
Re f(x) > —a and Re f(y) < —B forall y € X — U. Thus Choquet
boundary of A4 is contained in every closed Choquet set for 4 and hence in
every closed boundary for 4. This proves the theorem.

Definition (2.5). cl(Ch(4)) which is the smallest closed boundary and
Choquet set for A, which exists by Theorem (2.4) is called the Shilov
boundary for A and is denoted by S(4).

Remark (2.6). The concept of Shilov boundary for a real commutative
Banach algebra 4 has been defined in [4], [6] and [7]. In [6] and [7] the
Shilov boundary of A4 is a subset of the maximal ideal space M, of 4
whereas in [4] it is a subset of the carrier space ®, of 4. For a real function
algebra, Shilov boundary as defined in [4] coincides with our definition
whereas the Shilov boundary as defined in [6] and [7] is the image of the
Shilov boundary as defined above under the map 7. However, our ap-
proach is entirely different.
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3. Complexification. Let 4 be a real function algebra on (X, 7).

Define
B={f+ig fgeAd}
It is seen that for f, gin 4 ||/ + igll = ||f — igl| so that

WAL Hlgll = 1f + dgll = LA+ ligll

which shows that B is uniformly closed in C(X). So B is a complex
function algebra on X and may be regarded as the complexification of 4,
[S]. For definition and properties of the Choquet boundary of a complex
function algebra refer to [2]. In this section we prove that the Choquet
boundaries of 4 and B coincide.

Definition (3.1). Let Mp, the maximal ideal space of B, be identified with
the space @ of all non-zero complex homomorphisms of B as usual.
Define a:®, — &, by

a(p)(f + ig) = ¢(f) + ip(g) forp € @, f, g € A.
Then, « is a bijection and a(¢)|; = ¢.

Definition (3.2). Let p be a Borel measure on X. Define a measure g on
X by p(E) = w(r(E)) for all Borel subsets E of X. If & is u-measurable
then it can be proved that 4 is also p,-measurable and in a straight for-
ward manner, one has

,/:\’ hdp, = ]X (h o T)dp.
Also note that (p,), = p.

THEOREM (3.3). Let A be a real function algebra on (X, 7), B its complexi-
fication and ¢ € ®,. Suppose u is a representing measure for a(p). Then p._ is
a representing measure for a(e).

Proof. Let f + ig € B where f, g € A. Then
Jour + igiu, = [ s, + 1 J, s,
— forondu i [ o nds
- Jo 7+ i f g
= (fosa) i e

as u is a real measure
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= o(f) + id(g)
= (®))(f + ig).

COROLLARY (3.4). Under the hypotheses of Theorem (3.3) (1/2)[n + p,] is
a r.p.r. measure for ¢.

COROLLARY (3.5). a(¢) has a unique representing measure if and only if
a(P) has a unique representing measure.

CoROLLARY (3.6). x € Ch(B) if and only if 7(x) € Ch(B).
Next we will prove that Ch(4) = Ch(B).
THEOREM (3.7). Ch(4) = Ch(B).

Proof. First we will show that Ch(4) c Ch(B). If possible assume that
x & Ch(B). Then by Theorem (2.3.4), Chapter II of [2], there exists a
representing measure p for e, with u( {x}) = 0. Let

6:u+u7.
2

Then o is a r.p.r. measure for e, by Corollary (3.4) and
1 1
o({x}) = E[H( {x}) + uw({r(x) })] = EM( {r(x) }).

Case (a). Let x = 7(x). Then o( {x}) = 0 and hence x & Ch(4) by
Theorem (1.10).

Case (b). Let x # 7(x). As A4 separates points on X, there exists a func-
tion & € A such that h(x) # h(r(x)). We may assume that

h(x) = i, h(r(x)) = —i.
Therefore, [y hdy = i but

‘/)‘( hd&,’.(x) = —i.
Thus p # 8. Hence
MAir(x)}) =c<1
and so
1 1
=-c<-.
o({x}) =Je<3

But m ({x}) = 1/2.

Thus we have shown that there exists a r.p.r. measure o # m, for e,.
Hence x & Ch(A4). Thus Ch(A4) is contained in Ch(B).

Conversely let x € Ch(B). Suppose U is a t-invariant neighbourhood
of x. Choose € > 0 such that 0 << ¢ << 1/3. Thus
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1
0<e<5(1—e)<1.

We will show that there exists f € A4 such that ||f|| = 1, Re f(x) >
(1721 — ¢ and |f(y)] < e for all y € X — U. This will imply that
x € Ch(4) by Theorem (1.12).

Case (a). Let x = 7(x). As x € Ch(B) by Theorem (2.3.4), Chapter II of
[2], there exists f + ig € B such that

IIf+igll =1, f(x) +ig(x) =1 and
lf(y) +ig(y)| <e forally e X — U.
Now
fx) = ig(x) = flr(x)) — ig(n(x)) = fx) +ig(x) = 1.
Hence we have f(x) = 1.Let y € X — U. Then7(y) € X — U. Hence

If(y) +ig(y)| <e and [f(7(y)) — ig(7(y))| <e
that is,

/() —igy)) | <e
Thus,

1
/= 5[ /() +ig) |+ 1f(y) —igy) 11 <e

clearly f € A and ||fl| = ||f + igl] = L

Case (b). x # 7(x). As X is Hausdorff, there exists a neighbourhood V'
of x such that 7(x) & V. Let W = U N V. Then W is a neighbourhood of
x. As before, there exists a function f + ig € B such that

Wf+igll =1, f(x) +ig(x) =1 and
lf(y) +ig(y)|<e forally e X — W.

Clearly f € 4, ||fI| = 1.If y € X — Uboth y and 7(y) arein X — W
and hence as above [f(y) ]| < e
Also since f(x) + ig(x) = 1 we have

Re f(x) — Im g(x) = Re((f + ig)(x)) = L.
Further,
IRe f(x) + Im g(x) | = [Re((f — ig)(x)) |
S[(f- i) =1+ ig)rx)) | <e
as 7(x) & W. Hence
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IRe f(x) |

1
= 5[ IRe f(x) — Im g(x) | — IRe f(x) + Im g(x) ]

> %(1 — €).

Replacing f by —f if necessary, we have Re f(x) > (1/2)(1 — e).
CoRrOLLARY (3.8). S(4) = S(B).

Remark (3.9). We have pointed out earlier (Remark (2.6) ) that in [6]
and [7] the Shilov boundary is a subset of M. Let

*.
ox*: My — My

be the restriction map. Then Proposition (2.1) of [6] is equivalent to the
assertions

cx*(S(B)) = 7(S(4)) and
(ex*) TN ((S(4))) = S(B).

This fact follows immediately from Corollary (3.8) by noting that we have
identified My with ®; and hence cx* = 70 a .

Remark (3.10). Let A be a real function algebra on (X, 7), and X a
metrisable space. By Corollary (2.2.7), Chapter II of [2], Ch(B) is a Gj set.
Hence Ch(4) is a G5 set by Theorem (3.7).

Examples. We can use Theorem (3.7) to compute the Choquet
boundaries of those real function algebras whose complexifications are
well-known complex function algebras. This technique is illustrated in the
following example.

Example (3.11). (Real disc algebra). Let D be the closed unit disc in the
complex plane. Define 7:D — D by 7(z) = Z for all z € D. Let

A = {f € C(D, 7): The restriction of f to the interior of D
is analytic}.

Then A4 is a real function algebra on (D, 7) and its complexification B
is the well-known disc algebra. Since Ch(B) = unit circle in the com-
plex plane (Chapter II, [2]) we obtain Ch(4) = unit circle in the
complex plane by Theorem (3.7).

In the above example, we computed the Choquet boundary of a real
algebra through that of its complexification. In the example to follow we
construct a real function algebra from any given complex function algebra
and a relationship between the Choquet boundaries of these two function
algebras is established.
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Example (3.12). Let U be a complex function algebra defined on a
compact, Hausdorff space X. Let {z, z,,...,z,} be a specified finite
subset of ¢ points in X and D, a continuous point derivation of U at z; for
each k. Construct a subset 4, of U as follows:

A4,={f€ U f(z;)and D (f) are real for 1 = k = ¢}.

Then A, is a real uniform algebra. Further A, can be viewed as a real
function algebra on (Y, 1) where Y and 7 are defined as follows: Let Y
consist of two copies of the set X identified at the prescribed points
z), 2, ..., z,. Thus ¥ = X X {0, 1} where {0, 1} has the discrete topology
and Y has the usual product topology. Define 7:Y — Y by 7(x, 0) = (x, 1)
and 7(x, 1) = (x, 0) for all x € X. Then 7 is an involutionary homeomor-
phism on Y. Note that (z, 0) = (z;, 1) foralli = 1, 2,...,4q. Hence

zy, 2y, . . ., z, are all fixed points of 7. Define

f(x,0) = f(x) and f(x, 1) = f(x)
forall x € X and f € A, Then

J(r(x, 0)) = f(x, 1) = fix)
forallx € X, f € A, and

Jr(x, 1)) = f(x,0) = f(x)

forallx € X, f e A, Thus A, can be regarded as a real function algebra
on (Y, 7). Further we may identify X X {0} with X and regard X as a
subset of Y. With this convention Y = X U 7(X). We now investigate the
relationship between the Choquet boundaries of U and 4. It turns out
that Ch(U) = Ch(4 ¢) N X. The proof of this assertion depends on the
following lemma, which seems to be essentially known.

LEMMA (3.13). Let B be a complex function algebra and ¢ € ®p. Suppose
¢ € Ch(B). Then there exists no non-zero point derivation at ¢.

Proof. Let ¢ € Ch(B). Then ¢ is a peak point in the weak sense by
Theorem (2.3.4), Chapter II of [2]. In view of a remark made after the
proof of Theorem (2.3.5), Chapter II of [2], the kernel of ¢ has an approxi-
mate identity. Therefore there exists no non-zero point derivation at ¢ by
Corollary (1.6.6), Chapter I of [2].

THEOREM (3.14).
(@) Ch(U) = Ch(4,) N X
(b) Ch4,) = Ch(U) U 7(Ch(U)),

that is Ch(A,) is the union of two copies of Ch(U) identified at
{Zl, 22, ey Zq} N Ch(U)
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Proof. (a) Suppose x € Ch(4,) N X. Let V be a neighbourhood of x in
Xand0 < a < B.Let W=V U 7(V). Then W is a r-invariant neighbour-
hood of x. Hence by Theorem (1.17), there exists f € 4, with Re f = 0,
Re f(x) > —a and Re f(y) < —Bforally € X — Vas X — Vis
contained in Y — W. Hence x € Ch(U) by Theorem (2.2.6), Chapter II
of [2].

Next, let x € Ch(U). Obviously x € X.

Claim. For every neighbourhood V' of x in X and every a > 0 there
exists b € A, such that A(x) = 1 and |h(y)| < aforally € X — V.

Let V be a neighbourhood of x and @ > 0.

Case (i). Suppose x & {z|, z5,...,2,}. As x € Ch(U), by Theorem
(2.3.4), Chapter II of [2], there exists f € U with ||f]] = 1, f(x) = 1
and |f(y)] < 1 for all y € X — V. As X is Hausdorff, we can so
choose the neighbourhood V that z, z,, .. 2, & V. So lfz) | < 1

forl =k = q.
Let f(z;) = ¢;. Define the functions f, by
S-a f—5
= X forl =k =g
h l—of1—qf I
Then f, € Ufor1 = k =qasigl <lforl =k = gq.Also fi(z;,) =0
forall k = 1, 2,...,q. Construct a function g as follows:
q

Then g € U, |lgll = 1, g(z;,) = 0 foreach 1 = k = ¢ and

q

ge) = 1 fico = 1.
Define h by setting h = gz. Then, h € U, ||h|| = 1, h(z;) = 0 for 1 =
k = g. Further

Dy(h) = Dy(g)) = 2D4(8)8(z) = 0 for 1 = k = q.

Thus i € A, with [[h]| = 1, h(x) = g°(x) = L
Next let y € X — V. Then |h(y)| = |g%(y)| < 1 since

) | =1L TAED) |- 14 ]
_ /) — ¢ ’ f() — ¢
=/ T =75,/

as [f(y)] < land|¢| < 1for 1 = k = g. By taking sufficiently higher
powers of A, if necessary, we see that |h(y) | can be made less than any
a > 0.
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Case (ii). x € {z}, 25, ..., z,}. We may assume x = z;. As x € Ch(V)
as before by Theorem (2.3.4), Chapter II of [2] there exists a function
f € Usuchthat||f]| =1, f(x) = land |[f(y)| < 1forally € X — V.
Since x € Ch(U), by Lemma (3.13) there exists no non-zero point
derivation at x.

If ¢ = 1, define h = f. So, D(h) = D|(f) = 0. Thus D(h) and
h(z)) = h(x) = f(x) are real and hence h € A, Thus h € A, with
h(x) = 1, ||h]| = 1 and by taking sufficiently higher powers of A, |h(y) |
can be made <a for any a > 0.

If 2 = k = ¢, we proceed as follows: In view of the Hausdorff nature

of X we can choose V so that z,, z5, ... vz, E V. Hence |f(z;) | < 1 for
i=23,...,qLet f(z;) = ¢, fork = 2,3,...,q. Define f’s as before
by
S a oo
S = — .
1L=of1—qaf

As |c,] < 1forall k =2,3,...,q and f(x) = f(z)) = 1, f is well-
defined. Also f, € U, ||/ ]l = 1 for 2 = k = q. Construct another func-
tion g by

q
g =11 £
k=2

Theng € U, |lgll = 1,8(z;,) =0for2 =k = ¢, g(x) = land |g(y)]| < 1
forally € X — Vandforallk =2,3,...,q.
Seth = g~ Thenh € U, ||hl| = 1, h(z;) = 0for2 = k = g,

h(x) = h(z)) = gXx) = 1 = real.
Also fork = 2,3,...,q,

Dy (h) = Dy(g%) = 2D, (2)g(z;) = 0.

Further Jh(y)| < 1 for all y € X — V. By taking sufficiently higher
powers of h, we see that |h(y)| < a for any a > 0.

Thus the claim is proved in all the cases. Now to prove that x € Ch(4)
we proceed as follows:

Let W be a neighbourhood of x in Y such that /(W) = W and a > 0.
Then V' = X N W is a neighborhood of x in X. Hence by the above claim
there is h € A4, such that |[h]| = 1, A(x) = 1 and |h(y)| < a for all
y € X — V. Then it is easy to see that |h(y)| < aforally € Y — W.
Hence x € Ch(4,) by Theorem (1.12).

Proof of (b). Let x € Ch(U) U 7(Ch(U)). So x € Ch(U) or x €
7(Ch(U) ). x € Ch(U) implies x € Ch(Aq) in view of Theorem 3.14 (a). If
x € 7(Ch(U) ), then this implies 7(x) € Ch(U). Hence 7(x) € Ch(4,) by
Theorem 3.14 (a).
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So x € Ch(Aq). Thus Ch(U) U 7(Ch(U) ) is contained in Ch(4,).

On the other hand let x € Ch(4,). Thenx € Y. Sox € Xorx € 7(X),
thatis x € Xor 7(x) € X. If x € X, by 3.14 (a), x € Ch(U). Otherwise
7(x) € Ch(U) which implies

x € 7(Ch(U)).
So, Ch(4,) is contained in Ch(U) U 7(Ch(U) ). Hence (b) is proved.
CoROLLARY (3.15).
(@ SWU) =XnSHA4,)
(b) S, = SW) U «(SU)).
Remark (3.16). From Corollary 3.15 (b), we have
T(S(4,)) = T(S(U)) U T(r(S(V))
= T(SU)) U T(SU))
since T(7(S(U))) = T(S(U))
= T(SW))
= S(U)
by definition of 7.
But T(S(Aq) ) is nothing but the Shilov boundary oqu as defined in [7].
Hence the Shilov boundary of 4 q (as defined in [7]) and the Shilov
boundary of U are the same. This result has been proved in [7]

(Proposition 2.2) under the additional hypothesis that the Dirichlet
deficiency of U be finite whereas we have made no such assumption.
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