
JFP 18 (4): 553–564, 2008. c© 2008 Cambridge University Press

doi:10.1017/S095679680800676X First published online 24 April 2008 Printed in the United Kingdom

553

Caml trading – experiences with functional
programming on Wall Street

YARON MINSKY and STEPHEN WEEKS

Jane Street Capital, New York Plaza, New York, NY 10004

(e-mail: {yminsky,sweeks}@janestcapital.com)

Abstract

Jane Street Capital is a successful proprietary trading company that uses OCaml as its

primary development language. We have over twenty OCaml programmers and hundreds of

thousands of lines of OCaml code. We use OCaml for a wide range of tasks: critical trading

systems, quantitative research, systems software, and system administration. We value OCaml

because it allows us to rapidly produce readable, correct, efficient code to solve complex

problems, and to change that code quickly to adapt to a changing world. We believe that

using OCaml gives us a significant advantage over competitors that use languages like VB,

Perl, C++, C#, or Java. It also makes finding and hiring high-quality software developers

easier than with mainstream languages. We have invested deeply in OCaml and intend to use

OCaml and grow our team of functional programmers for the foreseeable future.

1 Introduction

The world of financial trading is dominated by a small number of mainstream

programming languages: Perl and VBA (the latter often within Excel) for quick-

and-dirty applications; C and C++ for performance-critical software; and Java

and C# for everything else. There are some subfields, notably derivatives modeling,

where functional programming languages have gained a foothold (LexiFi, 2007;

CSFB, 2007). But overall, functional programming has little presence on Wall Street.

This report will discuss the experiences of Jane Street Capital, a financial firm that

has gone counter to the standard development practices of Wall Street by adopting

OCaml (Leroy et al., 2007) as its primary development platform. Jane Street is a

proprietary trading company, which is to say that the company’s business is to

use its own capital base to trade profitably in the financial markets. We have no

customers and we do not actively solicit outside investors. Our expertise lies largely

in market-making and arbitrage in equities and equity derivatives. Jane Street was

founded in 2000 with three employees. Since then, we have grown into a global

organization, with over 130 employees and offices in New York, Chicago, Tokyo

and London.

Trading is an intensely technological business, and getting more so by the day.

Jane Street puts a large amount of effort into developing custom systems for a variety

of needs: management of historical data; quantitative research; live monitoring of

positions and risk; trading systems; order management and transmission systems;

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

554 Y. Minsky and S. Weeks

and so on. At present, the development of software to satisfy all of these needs is

being done in OCaml. Below, we will discuss the reasoning and history behind the

decision to switch to OCaml, as well as some of the problems that we have found

with OCaml along the way.

2 Why OCaml?

As Jane Street has grown, its technology has grown and changed with it. Initially,

Jane Street’s technology was largely based on Excel and VBA. These were excellent

tools for quickly building the systems we needed, but it was clear from the start that

this was not a viable long-term strategy. The systems at the time were insufficiently

modular, leading to a great deal of cut-and-paste code; they were too slow, despite

heroic optimiziations; and they were too difficult to modify with confidence in the

correctness of the results.

Correctness and safety are obviously essential in a trading context. Automated

systems that trade rapidly magnify the cost of mistakes. From our perspective, the

most prized ability of any trading system is the ability of that system not to trade. But

there are other important considerations outside correctness. Reliability is essential,

since downtime at the wrong time can mean missed opportunities. Performance

matters as well; there is a lot of data to be processed and there is substantial

financial gain to be had by responding quickly to that data. In addition, a language

must help to manage the inherent complexity that comes from a sophisticated

trading operation that spans a wide variety of financial markets, data sources, and

trading strategies. Finally, a language must allow code to be developed rapidly in

response to changing market conditions and emerging opportunities.

The firm’s first contact with OCaml came in 2002. That year, Yaron Minsky

started working at Jane street, and having some experience with OCaml as a

graduate student at Cornell started using OCaml for quantitative research. Over

time the research group grew and, along with it, the use of OCaml at the firm. After

some experiments with using C# for systems software, the firm decided in 2005 to

switch to using OCaml as the primary development language.

Jane Street’s move to OCaml has been highly successful. Since 2005, we have

rewritten large swaths of our internal infrastructure, fielding systems more sophis-

ticated than previously possible, and far more efficient. Moreover, we have been

able to sustain a rate of change to our core trading systems that is an order of

magnitude higher than would have been conceivable previously. All of this has

happened while raising the standards of safety and correctness to which we hold

our systems. The net result has been a significant increase in the current, and we

believe future, profitability of our core business. In the following, we will discuss

some of the properties of OCaml that we believe helped us succeed to the degree

that we did.

2.1 Readability

One of the easiest ways that a trading company can put itself out of business is

through faulty software. We believe that code review is an essential ingredient in

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

Functional Programming on Wall Street 555

building reliable software. For this reason, Jane Street has long insisted on complete

and careful code reviews for our core trading systems. In particular, a number of

the partners of the firm personally review almost every line of code that goes into

these systems. Perhaps surprisingly, some of the partners who do the code review

have minimal training in programming and computer science. For one of them, VB

was the first programming language he used in any serious way, and OCaml was

the second.

Given the importance placed on code review, the ease with which code in a given

language can be reviewed is critical. We have found that OCaml makes it possible

to write code that is considerably easier to read, review, and think about than code

written in more mainstream languages, due to a number of factors:

Terseness Other things being equal, expressing program logic more concisely makes

that logic easier to read. There are obvious limits to this; readability is not generally

improved by reducing all function names to single characters. But OCaml allows

for a pleasantly terse coding style while giving sufficient context.

One part of being terse is avoiding duplicated code. We try very hard to avoid

saying the same thing over and over in our code, not just because it makes the

code longer, but because it has been our experience that it is hard for human

beings to read boilerplate as carefully as it deserves. There is a tendency to gloss

over the repeats, which often leads to missed bugs. Moreover, as the code evolves,

it is difficult to ensure that when one instance is updated, its siblings are updated

as well. Higher order functions and functors are powerful tools for factoring out

common logic.

Immutability OCaml is not a pure language, but the default in OCaml is for

immutability. Imperative code is an important part of the language, and it is a

feature that we use quite a bit. But it is much easier to think about a codebase

where mutability is the exception rather than the rule.

Pattern Matching A great deal of what happens in many programs is case analysis.

One of the best features of ML and similar languages is pattern-matching, which

provides two things: a convenient syntax for data-directed case analysis, and a

proof guaranteed by the compiler that the case analysis is exhaustive (our coding

practices eschew wildcard matches). This is useful both when writing the case-

analysis code in the first place, and also in alerting the programmer as to when a

given case analysis needs to be updated due to the addition of some new cases.

Labeled Arguments If a function takes multiple arguments of the same type, the

arguments can easily be switched at a call. In most situations, we label arguments

of the same type to prevent such errors. We also find labels useful in other

situations, e.g., to name a function supplied as an argument to a higher order

function, in order to give the reader a clue as to what the function does.

Polymorphic Variants If a function returns an ad-hoc sum type, we use a polymor-

phic variant (Garrigue, 1998) and include the description of the type directly in

the specification of the function. For example, we would write

val f : unit -> [‘A | ‘B]

rather than

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

556 Y. Minsky and S. Weeks

type result = A | B

val f : unit -> result

This makes it easier for a reader (they do not have to connect to the definition

of result with its use) as well as for someone coding against the library, since

they do not have to qualify the constructors in order to match against the result

of f ().

Because exceptions are not tracked by the type system, we avoid them as

much as possible. Rather than have a function that returns a value or raises an

exception, we would have a function that returns a sum of polymorphic variants.

For example, we would prefer

val int_of_string : string -> [‘Ok of int | ‘Invalid]

rather than

val int_of_string : string -> int

This style makes it clear to the reader that something bad could happen and makes

the coder handle the problem. And polymorphic variants make it possible to do

without any type declarations, module qualifiers, or other syntactic baggage.

One could imagine going futher and using monadic syntax like Haskell’s do

notation (Peyton Jones, 2002) to simplify client code, but we have not found this

necessary. We find a mix of polymorphic variants and the rare use exceptions to

give a nice mix of usability, readability, and error detection.

Types The main point of code review is for the reader to put together an informal

proof that the code they are reading does the right thing. Constructing such a

proof is of course difficult, and we try to write our code to pack as much of the

proof into the type system as possible.

There are a number of different features of the type system that are useful here.

Algebraic data types are a powerful way of encoding basic invariants about types.

One of our programming maxims is “make illegal states unrepresentable”, by

which we mean that if a given collection of values constitutes an error, then it is

better to arrange for that collection of values to be impossible to represent within

the constraints of the type system. This is of course not always achievable, but

algebraic datatypes (in particular variants) make it possible in many important

cases.

Data-hiding using signatures can be used to encode tighter invariants than are

possible with algebraic data types alone. The importance of abstraction in ML

and Haskell is well understood, but OCaml has a nice extra feature which is

the ability to declare types as private (Blanqui et al., n.d.) in the signature. Just

like an abstract type, a private type cannot be constructed except using functions

provided in the module where the type was defined. Unlike private types, however,

the values can still be accessed and read directly, and in particular can be used in

pattern-matches, which is very convenient.

Another useful trick is phantom types (Fluet & Pucella, 2006). Phantom types

can be used to do things like implement capability-style access control for data

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

Functional Programming on Wall Street 557

structures, or keep track of what kind of validation or sanity checking has been

done to a given piece of data. All of this can be done in a way that the compiler

proves ahead of time that proper book-keeping is done, thus preventing run-time

errors.

Modularity Our initial systems based on Excel and VBA involved an enormous

amount of cut-and-pasted code, both within a system, and between different

variants of the same system. When changes needed to be made, they needed to be

done in one place and then manually copied to others. This is obviously a difficult

and error-prone process, and something that could be improved considerably

by moving to almost any language with decent support for modularity. But

our experience has been that the standard functional programming mechanisms

(closures, parametric polymorphism, modules, and functors) for providing mod-

ularity in OCaml are significantly better suited to the task than the standard

object-oriented mechanisms (objects, classes, and inheritance).

When we first tried switching over from VB to C#, one of the most disturbing

features of the language for the partners who read the code was inheritance.

They found it difficult to figure out which implementation of a given method was

being invoked from a given call point, and therefore, difficult to reason about the

code. It is worth mentioning that OCaml actually does support inheritance as part

of its object system. That said, objects are an obscure part of the language,

and inheritance even more so. At Jane Street, we almost never use objects

and never use inheritance. We use standard functional programming techniques

and code reviewers find that style more comprehensible. In particular, they can

reason by following static properties of the code (module boundaries and functor

applications) rather than dynamic properties (what class an object is).

2.2 Performance

Trading requires a lot of computational resources, both for batch-oriented research

applications and for production systems that must respond quickly to the markets.

An automated trading system may receive tens of thousands of updates per second

and should react as quickly as possible to data. A few milliseconds in response

time can make a substantial difference in profitability. We also store many tens of

gigabytes of market data per day, and the amount is growing exponentially. Batch

research applications must perform complex computations on hundreds of gigabytes

of data in a reasonable amount of time.

There are a lot of good things to say about the performance of the OCaml compiler

and runtime. The code generation is very good, despite there not being much

optimization (although the cross-module inlining is important). OCaml’s compiler

uses a straightforward approach to data representation and code optimization. This

makes the compiler simpler, which contributes to our confidence in the correctness

of generated code. It also leads to an important aspect of OCaml’s performance –

predictability. A simple compiler and optimizer makes it easier to understand the

time performance and space usage of a program. It is also easier to reason about

performance tradeoffs when deciding between different ways of writing a piece of

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

558 Y. Minsky and S. Weeks

code, or when changing code to improve the performance of a bottleneck. With

OCaml it is possible to look at a piece of code and understand roughly how much

space it is going to use and how fast it is going to run. This is particularly important

in building systems that react to real-time data, where responsiveness and scalability

really matter.

OCaml’s allocator and garbage collector are extraordinarily fast. One might think

that automatic memory management would make low latency applications such as

ours impossible, but in fact we have had good success. OCaml uses a generational

collector (Lieberman & Hewitt, 1983) and collections of the nursery take tens or

at most hundreds of microseconds. For the old generation, much of the collection

is done incrementally and by controlling the slices of incremental collection one

can avoid latency hiccups. The only non-incremental part, compaction, is extremely

fast and can be done very rarely or not at all in some applications. Finally, some

applications are run such that they are usually not fully loaded. These applications

can eagerly garbage collect when they are not busy, essentially making collection

free and having little or no impact on latency.

OCaml provides a high quality foreign function interface (chapter 18 of (Leroy

et al., 2007)) which allows for very efficient bindings to C and C++ libraries. We

need to handle such libraries to deal with market data provided by vendors. The

need to write our own bindings to external libraries is not just an obligation, it

is also in a surprising way an advantage. There are many libraries that have only

inefficient bindings to C# and Java, which means that the only way to use them

efficiently is to write in C or C++. By writing our own bindings directly to the C or

C++ libraries, we are generally able to get much better performance than can be

found in other managed languages.

2.3 Macros

OCaml, like any language, has its limitations (which we will discuss in more detail

later on). One way of mitigating the limitations of a language, as the Lisp community

has long known, is to modify the language at a syntactic level. OCaml has an excellent

tool for making such modifications called camlp4 (de Rauglaudre, 2003). camlp4

is a macro system that understands the OCaml AST and can be used to add new

syntax to the system or change the meaning of existing syntax. It has also been used

to design new domain-specific languages that translate down into OCaml code and

can then be compiled using OCaml.

Probably the best thing that we have done with the macro system to date is

our addition of a set of macros for converting OCaml values back and forth to

s-expressions. If you write the following declaration while using our s-expression

macros:

module M = struct

type dir = Buy | Sell with sexp

type order =

{ sym : string;

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

Functional Programming on Wall Street 559

price : float;

qty : int;

dir : dir; }

with sexp

end

you will end up with a module with the following signature:

module type M = sig

type dir = Buy | Sell

type order =

{ sym : string;

price : float;

qty : int;

dir : dir; }

val sexp_of_dir : dir -> Sexp.t

val dir_of_sexp : Sexp.t -> dir

val sexp_of_order : order -> Sexp.t

val order_of_sexp : Sexp.t -> order

end

The s-expression conversion functions were written by the macros, which are

triggered by the with sexp at the end of the type declaration. It is worth noting

that a compile-time error would be triggered if the with sexp declaration were also

not appended to the dir type, since the functions for converting orders to and from

s-expressions refer to the corresponding functions for the dir type.

The s-expression conversion functions allow you to do simple conversions back

and forth between OCaml values and s-expressions, as shown below.

sexp_of_order { sym: "IBM";

price = 38.59;

qty = 1200;

dir = Buy };;

- : Sexp.t = ((sym IBM) (price 38.59) (qty 1200) (dir Buy))

order_of_sexp

(Sexp.of_string "((sym IBM) (price 38.59) (qty 1200) (dir Buy))");;

- : order = { sym: "IBM"; price = 38.59; qty = 1200;

dir = Buy; }

This fills an important gap in OCaml, which is the lack of generic printers and

safe ways of marshaling and unmarshaling data (OCaml does have a marshaling

facility, but it can lead to a segfault if a programmer guesses wrong as to the type

of some marshaled-in value). Macros can serve this and many other roles, making it

possible to extend the language without digging into the guts of the implementation.

For those who are interested, our s-expression library has been released under

an open-source license, and is available from our website (JaneOCaml, 2007). We

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

560 Y. Minsky and S. Weeks

also plan to release a library for fast and safe marshaling and unmarshaling using

a binary protocol. There has also been some recent progress in adding generic

functions to OCaml using macros (Yallop, 2007).

3 OCaml pitfalls

For all of OCaml’s virtues, it is hardly a perfect tool. The language lacks features

in some places (and provides too many in others), the libraries are inconsistent and

incomplete, the compiler’s simple optimizer misses a lot, the language and runtime

do not support true parallelism, and the language and build environment are not

ideal for programming in the large. Many of these deficiencies are further hindered

by the “cathedral” development model adopted by INRIA, which slows the pace of

improvement.

3.1 Generic operations

One of the biggest annoyances of working in OCaml is the lack of generic printers,

i.e., a simple general purpose mechanism for printing human-readable representations

of OCaml values. Generic human-readable printers are really just one class of generic

operations, of which there are others such as generic comparators and generic binary

serialization algorithms. One way of writing such generic algorithms in OCaml is

through use of the macro system, as we have done with the s-expression library.

That is an adequate solution, but OCaml would be a better platform if more generic

operations were available by default.

3.2 Objects

In our opinion, having an object system in OCaml (Rémy & Vouillon, 1998) is

a mistake. The presence of objects in OCaml is perhaps best thought of as an

attractive nuisance. Things that other languages do with objects are better achieved

in ML using features like parametric polymorphism, union types and functors.

Unfortunately, programmers coming in from other languages where objects are the

norm tend to use OCaml’s objects as a matter, of course, to their detriment. In the

hundreds of thousands of lines of OCaml at Jane Street, there are only a handful

of uses of objects and most of those could be eliminated without difficulty.

3.3 Optimization

OCaml’s code generator is good, but the lack of optimization does have a cost. At

Jane Street, the lack of optimization often causes us to make a tradeoff between

readability and performance. We are aware that closures, functors, type abstraction,

and simple data representations have costs, and we keep those costs in mind when

programming.

All OCaml programmers that care about performance learn to write in a style that

pleases the compiler, rather than using more readable or more clearly correct code. To

get better performance they may duplicate code, expose type information, manually

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

Functional Programming on Wall Street 561

pack data structures, or avoid the use of higher-order functions, polymorphic types,

or functors. In short, programmers may sometimes avoid the same features that

make OCaml such a pleasant language to program with. It is possible to address

this problem by using more aggressive optimization techniques (e.g., whole-program

optimization as is used in the MLton Standard ML compiler (MLton, 2007)).

Unfortunately, it does not seem likely that such optimization will be available any

time soon for OCaml.

3.4 Parallelism

OCaml does not have a concurrent garbage collector, and as a result, OCaml does

not support truly parallel threads. Threads in OCaml are useful for a variety of

purposes: overlaying computation and I/O; interfacing with foreign libraries that

require their own threads; writing responsive applications in the presence of long-

running computations; and so on. But threads cannot be used to take advantage

of physical parallelism. This is becoming an increasingly serious limitation with the

proliferation of multi-core machines.

It is not obvious what the right solution is. The OCaml team has made it

clear that they are not interested in the complexity and performance compromises

involved in building a truly concurrent garbage collector. And there are good

arguments to be made that the right way of handling physical concurrency is

to use multiple communicating processes. The main problem here is the lack of

convenient abstractions for building such applications in OCaml. The key question

is whether good enough abstractions can be provided by libraries or whether

language extensions are needed.

3.5 Programming in the large

One of the best features a language can provide is a large ecosystem of libraries and

components that make it possible to build applications quickly and easily. Languages

such as Perl and Java have done an excellent job of cultivating such ecosystems and

one of the keys to doing so successfully is providing good language and tool support

for programming in the large. Things that can help include facilities for managing

namespaces (modules are not enough), tools for tracking dependencies and handling

upgrades between packages, systems for searching for and fetching packages, and

so on.

The most notable work in this direction in the OCaml world is findlib (Stolpmann,

2003), an excellent package system that makes it easy to use invoke installed OCaml

packages; and GODI (Stolpmann, 2007), a system for managing, downloading,

upgrading, and rebuilding OCaml packages. GODI is still rough around the edges,

with an idiosyncratic user interface and sometimes temperamental behavior. One

thing that would greatly help GODI or a system like it to take off would be if it

was included in the standard distribution.

3.6 The cathedral

The team that developed the OCaml compiler has historically adopted a cathedral-

style development model for the compiler and the core libraries. Contributions are

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

562 Y. Minsky and S. Weeks

for the most part only accepted from members of the team, which largely consists

of researchers at INRIA. While the OCaml developers do an outstanding job, it is

hard not to think that the system could be improved by leveraging the talents of

the larger OCaml community.

One example of how OCaml could be improved by a more open development

process is the standard library. The current standard library is implemented well

and provides reasonable coverage, but it is missing a lot of useful functionality and

has a number of well-known pitfalls (perhaps the most commented upon is the fact

that a number of the functions in the list module are not tail-recursive).

As a result, many people have implemented their own extensions to the standard

library. There have even been projects, like ExtLib (Cannasse et al., n.d.), that

have tried to gain acceptance as “standard” extensions to the standard library. It

is, however, hard to get the community to coalesce around a single such library

without getting it absorbed into the standard distribution.

But the standard library is just one place where a more open development process

could improve things. There is a lot of energy and talent swirling around the OCaml

community and it would be great if a way could be found to tap into that for

improving the language.

4 Personnel

Personnel is one area in which OCaml has been an unmitigated success for us. Most

importantly, using OCaml helps us find, hire, and retain great programmers. One

of the things we noticed very quickly when we started hiring people to program in

OCaml was that the average quality of applicants we saw was much higher than

what we saw when trying to hire, say, Java programmers. It’s not that there are not

really talented Java programmers out there, there are. It is just that for us, finding

them was much harder. The density of bright people in the OCaml community is

impressive and it shows up in hiring, when reading the OCaml mailing list, and

when reading the software written by people in the community. That pool of talent

is probably the single best thing about OCaml from our point of view.

Once we find great OCaml programmers, we have a good chance at hiring them,

because the fact that we use OCaml is seen as an indication that Jane Street is an

interesting place to work. Furthermore, OCaml contributes to a vibrant intellectual

atmosphere that programmers appreciate and in which they are very productive. So

once we hire great OCaml programmers, they do not want to leave.

Another perhaps surprising result is that we have had success in having other

programmers (and even traders) in the firm with no previous experience with

functional programming learn OCaml and become productive. OCaml has also been

useful as a common language for communication of mathematical, algorithmic, and

trading ideas among people from many different backgrounds.

5 Conclusion

OCaml has been tremendously successful at Jane Street, and is a major part of Jane

Street’s continuing success. All of Jane Street’s businesses rely on software written

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

Functional Programming on Wall Street 563

in OCaml and there are a number of businesses in which we would no longer

be competitive without that software. OCaml has been directly responsible for an

increase in the current and future profitability of our business. It has allowed us to

develop code to very high standards of safety and correctness while rapidly adapting

to changing markets. There are strategies we now engage in that are too complex to

have even been contemplated previously.

A number of factors contributed to Jane Street’s successful adoption of OCaml.

First, OCaml is a particularly good and fit for trading, a business that imposes

stringent requirements for correctness and offers significant benefits for agility and

performance. Our early successes in using OCaml for research made it easier to

see that OCaml could succeed as the firm’s primary language. Jane Street’s small

size and the the deep involvment of top people in technology made it possible for

the critical decisions to be made. And the need for complex in-house specialized

software meant that that there were fewer benefits of developing it as a mainstream

language.

Our experiences using OCaml in a commercial environment have strengthened our

belief in the value that powerful programming languages can allow to an organization

nimble enough to take advantage of them. OCaml succeeds on many fronts at once:

it is a beautiful and expressive language; it has an excellent implementation; and its

community is second to none.

But we believe that OCaml can become better yet. We hope that our example

will encourage the growth of the language by showing students and universities that

statically typed functional languages are practical, real-world tools, and that there

really are jobs where students can make use of such languages. Hopefully, this will

encourage the teaching, study, and development of functional languages.

OCaml is part of the family of functional languages that are seeing increased

commercial use. Other functional languages such as Erlang and Haskell have

many of the same advantages as OCaml when compared to mainstream languages,

and would be plausible choices for proprietary trading company. It is difficult to

predict how things would have gone differently had we chosen a different functional

language. What we can say with confidence is that we are very happy with our

choice of OCaml and would make the same choice again given what we now

know.

References

Blanqui, F., Hardin, T., & Weis, P. On the implementation of construction functions for non-

free concrete data types. In the 16th European Symposium on Programming, ESOP 2007.,

Braga, Portugal, pp. 95–109.

Cannasse, N., Hurt, B., Yoriyuki, Y., & Hellsten, J. OCaml ExtLib – Extended Standard

Library for Objective Caml. http://code.google.com/p/ocaml-extlib/, Dec 2007.

CSFB. (2007) Credit Suisse First Boston http://www.csfb.com/. Accessed December 2007.

de Rauglaudre, D. (2003) Camlp4 tutorial. http://caml.inria.fr/pub/docs/tutorial-camlp4/

index.html. Accessed December 2007.

Fluet, M. & Pucella, R. (2006) Phantom types and subtyping. J. Funct. Program. 16(6),

751–791.

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

564 Y. Minsky and S. Weeks

Garrigue, J. (1998) Programming with polymorphic variants. In 1998 ACM SIGPLAN

Workshop on ML, Baltimore, Maryland.

JaneOCaml. (2007) http://www.janestcapital.com/ocaml/index.html.

Leroy, X., Doligez, D., Garrigue, J., Rmy, D., & Vouillon, J. 2007 (May) The Objective Caml

system, documentation and user’s manual – release 3.10. INRIA.

LexiFi. (2007) http://www.lexifi.com/. Accessed December 2007.

Lieberman, H., & Hewitt, C. (1983) A real-time garbage collector based on the lifetimes of

objects. Commun. ACM 26(6), 419–429.

MLton. (2007) http://mlton.org/. Accessed December 2007.

Peyton J., Simon. (2002) Haskell 98 language and libraries. In The Revised Report. http://

haskell.org/onlinereport/.

Rémy, D., & Vouillon, J. (1998) Objective ML: An effective object-oriented extension to ML.

Theory prac. object syst. 4(1), 27–50.

Stolpmann, G. (2003). The findlib User’s Guide. http://www.ocaml-programming.de/

packages/documentation/findlib/guide-html/. Accessed December 2007.

Stolpmann, G. (2007) GODI, The source code Objective Caml distribution. http://www.ocaml-

programming.de/godi. Accessed December 2007.

Yallop, J. (2007). Practical generic programming in OCaml. In 2007 ACM SIGPLAN Workshop

on ML. Freiburg, Germany. http://code.google.com/p/deriving/.

https://doi.org/10.1017/S095679680800676X Published online by Cambridge University Press

https://doi.org/10.1017/S095679680800676X

