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Eigenvalues of -A, — A, Under Neumann
Boundary Condition

Dedicated to Professor Ioan A. Rus on the occasion of his eightieth birthday

Mihai Mihailescu and Gheorghe Moroganu

Abstract. The eigenvalue problem —Apu — Aqu = A|u|172u with p € (1, 00), g € (2, 00), p # q sub-
ject to the corresponding homogeneous Neumann boundary condition is investigated on a bounded
open set with smooth boundary from RN with N > 2. A careful analysis of this problem leads us to
a complete description of the set of eigenvalues as being a precise interval (A1, +o0) plus an isolated
point A = 0. This comprehensive result is strongly related to our framework, which is complemen-
tary to the well-known case p = g # 2 for which a full description of the set of eigenvalues is still
unavailable.

1 Introduction and Main Result

Our goal in this paper is to investigate the eigenvalue problem

Au:=-Apu—Agu=Aulu inQ,
Qu _ g on 0Q),

vy

(1.1

where p € (1,00), g € (2,00), p # ¢, Q c¢ RN (N > 2) is a bounded domain with
smooth boundary 0Q}, and

ou
aVA

= p-2 q-2 aj

= (vl + [vu*) =,

with v = the unit outward normal to 9Q). The solutions u will be sought in the Sobolev
space W := Whmax{r.a}(()), so that the above PDE is satisfied in the distribution
sense, and the normal derivative ;T” (associated with operator A) exists in a trace
sense (see [3]). Using a Green’s formula (see [3, Corollary 2, p. 71]) one can define the
eigenvalues of our problem in terms of weak solutions u € W as follows: A € R is an

eigenvalue of problem (1.1) if there exists u; € W \ {0} such that
(L.2) f (IVurlP™? + |[Vuy|T7) Vuy Vv dx = A / lup| T 2upv dx, VveWw.
o} o

Conversely, if A is an eigenvalue, then any eigenfunction u € W ~ {0} corresponding
to it satisfies problem (1.1) in the distribution sense. This follows by the same Green’s
formula.
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In the particular case q = 2, the set of eigenvalues for problem (1.1) was completely
described in [7] (for p > 2) and [4] (for p € (1,2)). Our goal here is to show that
a complete description of the eigenvalue set is also possible for any g > 2 and p «
(1, 00) ~ {q}. This general case requires separate analysis, and some difficulties that
occur within the new framework have to be overcome.

Note that the case ¢ = p # 2 has been very much discussed in the literature, but
a complete description of the corresponding eigenvalue set is still unavailable (it is
only known that, as a consequence of the Ljusternik-Schnirelman theory, there exists
a sequence of nonnegative eigenvalues of the corresponding operator; see, e.g., [6]).

Now, choosing v = u; in (1.2), we infer that no negative A can be an eigenvalue of
problem (1.1). It is also obvious that A = 0 is an eigenvalue of this problem (the cor-
responding eigenfunctions being the nontrivial constants). So we need to investigate
the case A > 0.

Note that if A > 0 is an eigenvalue of (1.1), then testing with v = 1in (1.2) we deduce

that
f lua|?%uy dx = 0.
Q

Thus, the eigenfunctions corresponding to positive eigenvalues of problem (1.1) be-
long to the nonempty, symmetric, closed cone

C::{veW:[)|v|q_2vdx:0}.

Remark It is easy to see that C \ {0} # @. Indeed, one can simply choose u =
u1 — Uy, where u;, u, are nonnegative test functions having supports in two disjoint
balls included in Q) such that [, ul™ dx = /q ud™ dx. More specifically, let x;, x, € Q
be two different interior points of Q. Then there exists an € > 0 small enough such
that the balls B.(x;), B¢(x2) are included in Q and B.(x;) N B¢(x2) = @. Consider
the functions u;, i = 1,2,

wity o [T x e B,
1 0, x € QN Be(x;).

These are test functions (see, e.g., [2, p. 108]), and thus they belong to the Sobolev
space W. Obviously, u: O — R defined by

u(x) =ui(x) —ux(x), VxeQ,
belongs to C \ {0}. Of course, tu also belongs to C ~ {0} forall t e R\ {0}.

The main result of this paper is the following theorem.

Theorem 1.1  Assume p € (1,00), g € (2,00) and p # q. Then the eigenvalue set of
problem (1.1) is precisely {0} U (A1, +00), where

1d
1.3) A= inf M
veCn{0} [, [V|9 dx
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2 Proof of Theorem 1.1

As pointed out before, problem (1.1) cannot have negative eigenvalues, while A = 0 is
an eigenvalue of this problem. In what follows we investigate the case A > 0.

For the rest of the proof, we start by introducing some notation and recalling some
well-known results. For each r > 1, define

C={vew'(a): f0|v|’-2vdx=o}.

Note that C = C, only if g > p; otherwise (i.e., if g < p), C is a proper subset of C,,.
Consider the eigenvalue problem

. {—A,u =AMul"?u inQ,

|Vu[23% =0 on 0Q),
where r > 1. Define
vv|" dx
Af](r) = inf 7&2 [V .
veCn {0} [ V|7 dx

We know from [5, Theorem 6.2.29] that if r > 2, then A = A} (r) is the lowest positive
eigenvalue of problem (2.1). In particular, we deduce that A; = A} (q) > 0if g > 2,
l<p<qand A > MV (gq)>0if2< g < p.

Further, define

%[Q [Vv|? dx + %fg [Vv|P dx

mn
veC {0} %fﬂ |V|q dx

V1=

It is easy to check that

(22) /11 ="V1.

Indeed, note that for each u € C \ {0} and each ¢ > 0, we have

%/Q [V (tu)[P dx + éfg |V (tu)|? dx _qtP [ [Vul? dx . Jo |Vul? dx
g Jo |tul? dx P Jolultdx [, |ul1dx

Thus, letting t — 0if p > gand t - oo if p < g, and then passing to infimum in the
right-hand side, we get v; < A;. On the other hand, for all u € C \ {0}, we have

o Tl e oSl s o
i Jolult dx ~ Jalultdx -

which implies v; > ;. Consequently, (2.2) holds true.

v <

1>

2.1 The Nonexistence Part

We have the following two claims.

Claim 1 There is no eigenvalue of problem (1.1) in (0, ;).
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Assume by contradiction that there existsa A € (0, A;) that is an eigenvalue of (1.1),
with 4, € C ~ {0} the corresponding eigenfunction. Using (1.3) and the definition
relation (1.2) with v = u,, we derive

0<(A1—A)fﬂ|m|ﬁ dngnwum dx—)tfﬂmw dx

S/|Vuﬂp dx+f|VuA|‘7 dx—/l[|u;t|q dx =0.
Q Q o

This contradiction shows that Claim 1 holds true.
Claim 2 A =\ is not an eigenvalue of problem (1.1).

Assume the contrary, i.e., there exists u), € C \ {0} such that (1.2) holds true with
A = Ay. Letting v = uy, in (1.2), we get

f|Vu,11|P dx+/|Vu,11|q dx:/\1[|u;h|q dx.
o o o

From this equality and the definition of A;, one gets

[|Vu;h|p dx+/\1/|u;h|q de[|Vu;L1|P dx+f|VuM|q dx:)tlf|uh|q dx,
Q Q Q Q Q
which yields

f |Vup,|f dx=0=Vu,, =0 ae. inQ.
o

By Weyl’s regularity lemma, u), € C*(Q), so u,, is a constant function. This com-
bined with the fact that u), € C implies u), = 0, contradiction. So Claim 2 holds
true.

2.2 The Existence Part

Let us first recall the following theorem (Lagrange multiplier rule) (see, e.g., [10,
Thm. 3.3.3, p.179] or [8, Thm. 2.2.10, p. 76]), which will play a key role in our analysis.

Lemma 2.1 Let X and Y be real Banach spaces and let f:D — R, h: D — Y be C'
functions on the open set D c X. If y is a local solution of the minimization problem

(P) min f(x), h(x)=0,
and h'(y) is a surjective operator, then there exists y* € Y* such that
(2.3) f')+y"eh(y)=0,

where Y™ stands for the dual of Y.
Our purpose in this subsection is to prove the following claim.
Claim 3 Every A € (A, o) is an eigenvalue of problem (1.1).

In order to prove Claim 3, let us fixa A > A; and define I: W — R by

I(u) ::l/|Vu|q dx+l/|Vu|P dx—&[|u|q dx.
qJa pJa q-sa
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Standard arguments can be used to deduce that I, € C'(W \ {0}, R) (actually, I, €
C'(W,R) if2 < g < p) with the derivative given by

(I;(u),¢):f|Vu|q_2VuV¢ dx+[|Vu|P_2VuV¢ dx—/\/|u|q_2u¢ dx,
Q Q Q

forall u € W\ {0} (actually, allu € W if 2 < g < p) and all ¢ € W. Thus, we note
that A is an eigenvalue of problem (1.1) if and only if I) possesses a nontrivial critical
point. Further, we split the discussion into two cases: 1< p < g, g >2,and 2 < g < p,
respectively.

2.2.1 The Casel<p<gq,q>2

In this case, C = Cy, W = WH1(Q) and A; = 1 (q).

A careful analysis shows that I is not coercive on W, and consequently, we cannot
use the Direct Method in the Calculus of Variations in order to determine critical
points of I . Our idea (inspired by [1, Section 2.3.3]) will be to consider the restriction
of I) to the Nehari-type manifold defined by

Ny:i={ueCy~{0}: IA(u) =0}

:{uqu\{0}:fQ|Vu|qdx+/Q\Vu|de:/1/(;uqu}.

In fact, this is a natural idea since any possible eigenfunction corresponding to A is
necessarily an element of N;. Note that for all v € N, functional I, (v) has the fol-
lowing expression

1 1
IA(v):f[\VvW dx+ff|Vv|P dx—&[|v|q dx
q/a pJa q-/a
:—lf|VV|P dx+lf|Vv|P dx:u[WvP’ dx.
q-/0 pJa pq Ja

Consequently, denoting
my = inf Ij(w),
weN,

we have m, > 0.
In what follows the proof of Claim 3 is done in several steps.

Step I. N # @. Indeed, since A > Al (g), it follows by the definition of AV (g) that
there exists vy € Cy \ {0} for which

f|VV,\|q dx</1f|m|q dx.
Q )

Then there exists ¢t > 0 such that tv, € Ny, i.e,

tqf|Vv,\|q dx+tpf|Vv;L\P dx:)ttqf|v1|q dx.
Q Q Q

This is obvious when
t_(A/Qh/Alq dx — fQ|VVA|q dx)l/(P )
) Jolvmal? dx

Note that we have also used the fact that C; is a cone. If w € C,, then tw € C, for all
t>0.
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Step 2. Every minimizing sequence for Iy on Ny is bounded in W"1(Q). Let {u, } bea
minimizing sequence in Ny, i.e.,

(2.4) 0<)L/|un|q dx—/|Vu,,|q dxzf\VunV’ dx—>p7qm,\, as n — 0o.
Q Q Q q-p

Assume by contradiction that {u, } is unbounded in W"4(Q), so a subsequence of it,
again denoted {u, }, converges in the norm of W4(Q) to co. Then by (2.4) it follows

that [, |[us|? dx — oo and [ |Vu,|? dx — oo as well. Set v, := m Since

Jo |Vun|? dx < A [, |un|? dx, we deduce that [, |[Vv,|? dx < A for all n. Thus, {v, }

is bounded in W4(Q). It follows that there exists vy € W"4(Q) such that v, — v

in Wh1(Q) (hence in W?(Q) as well) and v,, — v in L1(Q). In particular, this last

convergence implies that v € C; (cf. Lebesgue’s Dominated Convergence Theorem).
Dividing (2.4) by |un ||€,1<Q) we get

f|an|de—>0 as 1 — 0o.
Q

Next, since v,, = vo in W2 (Q), we infer that

f |Vvol? dx < liminff |Vval? dx =0,
Q n—oo Q

and consequently v, is a constant function. In fact, from v € C, we see that vy = 0. It
follows that v, — 0 in L9(Q), which contradicts the fact that v, | 1q(q) = 1for all n.
Consequently, {u, } must be bounded in W"1(Q).

Step 3. m) := infyen, I (w) > 0. Assume by contradiction that m, = 0. Let {u, } c
N) be a minimizing sequence, i.e.,

(2.5) 0<A/|un\q dx—f|Vun|q dx:f|Vun|p dx -0, asn— oo.
Q Q o

By Step 2 we know that {u, } ¢ C, is bounded in W»?(Q). It follows that there exists
up € WH1(Q) such that (on a subsequence, again denoted {u, }) one has u,, — u in
Wh4(Q) (hence in W»?(Q)) and u,, — uo in L1(Q). Therefore, ug € C, and

[|Vuo|P dxgliminf/|Vu,,|P dx =0,
Q n—co Jo

and consequently uy = 0. Thus, we have proved that u, — 0 in W»1(Q).

Now set v, = up/|unlra(a). Since [, |Vun|? dx < A [, |us|? dx, we have
Jo |Vval? dx < A for all n. Thus, {v,} c C, is bounded in W"1(Q). It follows
that there exists vy € C, such that v, = v in Wb4(Q) and v, - vo in L1(Q).

Dividing (2.5) by ||u, Hiq(m, we get

[Q|Vv,,|P dx:|\un|zgfﬂ)[)u—fﬂ|an|q dx] -0 asn - oo.

Next, since v, — vy in W2 (Q), we infer that

f [Vvolf dx Sliminf[ [Vv,|f dx =0,
) n—co Jo

and consequently vy is a constant function. In fact, vy = 0, since vy € C,. Thus, v, — 0
in L1(Q), which contradicts the fact that |v, ] 14(q) = 1 for all .
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Consequently, m, is positive, as asserted.

Step 4. There exists u € N such that I (u) = m,. Let {ux} c N, be a minimizing
sequence, i.e., [} (ux) - m) as k > oo.

By Step 2 {uy} is bounded in W"4(Q). Thus, there exists u € C, such that uy
converges weakly in W"4(Q) and strongly in L(Q) to u.

By the above pieces of information we deduce that

(2.6) IA(L{) < lilzninfl;t(uk) =m,).
Since uy € N for all k, we have

2.7) [|wk|‘1 dx+f|wk|P dx:/\f|uk|q dx, VK.
Q Q Q

If u = 0, then it follows by (2.7) that u; converges strongly to 0 in W>(Q) (and
consequently in Wh?(Q)). Thus,

0<A[|uk|q dx—f|Vuk|q dx=f|Vuk|P dx -0, ask— oo.
o Q o

Next, arguing as in the proof of Step 3, we are led to a contradiction. Consequently,
ueCy~ {0}
Now, letting k — oo in (2.7), we deduce

f |Vul? dx+f|Vu|P dxs/\f|u|‘1 dx.
Q Q Q

If we have equality here, then u € N, and everything is done. Assume the contrary,
ie.,

(2.8) f Vul? dx + [ Vul? dx < A f ul? dx.
Q Q Q
Let t > 0 be such that tu € N, i.e.,

( Mg | dx - [ [Vul? dx)l/(P*q)
Jo|Vulp dx .

From (2.8) and our condition p < g, one can infer that ¢ € (0,1). Finally, since tu € N
with ¢ € (0,1) we have

tP t1 t1
0<mA§I,\(tu):—f|Vu|P dx+—f|Vu|q dx—)l—f|u|q dx
p o q Ja q Ja

tP tP
= — / |VulP dx - — [ [Vul? dx
p Ja q Ja

<t liininfl;t(uk) = tPmy < my,

which is impossible. Hence, relation (2.8) cannot be valid, and consequently we must
have u € N, and thus I (u) = m, (see (2.6)).
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Step 5. The proof of the theorem is concluded. Let u € N, \ {0} be the minimizer found
in Step 4. In fact u is a solution of the minimization problem min,,cy- (o} Ir (W),
under restrictions

(2.9) hy(w) := f |[Vw|? dx + f |[Vw|f dx — A f |w|? dx =0,

Q Q Q
(2.10) ha(w) = f Iw]9~2w dox = 0.

Q
Now Lemma 2.1 (Lagrange multiplier rule) comes into play. We choose X = W, Y =
R%, D = W~ {0}, f = I, h = (hy, hy). Obviously, the dual Y* can be identified
with R%. All the conditions from the statement of Lemma 2.1 are met, including the
surjectivity condition on h’(u), which means that for any pair ({;, {3) € R?, thereisa

w € W such that (h](u),w) = (i, (h5(u), w) = {». Indeed, choosing w = au + b with
a, b € R in these equations, we obtain a linear algebraic system in a and b:

aq/;2 |Vul? dx + apfQ [VulP dx - /laq/(; lul? dx = {3,
bg-1) [ [l dx =0,
which yields
a(p-q) [ (vul dx =G, b(g-1) [ ut? dx =0
Thus, a and b can be uniquely determined, hence h’(u) is surjective, as asserted.

Consequently, Lemma 2.1 is applicable to our minimization problem. Specifically,
there exist some constants ¢, d € R such that (see equation (2.3)):

T2uvgdx+ [ [ul2vuvgdx -2 [ uli2ugd
[[QIVu| Vuve dx + Q|Vu| VuVe dx Q|u| ug x]
2yuvgdx+p [ [VulP2vuvg dx-gh [ |ultPug d
vl [ 1vuTvuvg dx+p [ [vul?vuve dx-qr [ fultug dx]
+d(q—1)[|u|q’2¢ dx =0, forall¢e WH1(Q).
o
Testing with ¢ = 1 above, we deduce
—q/lf|u|q_2u dx—cq)tf|u|q_2u dx+d(q—l)[|u|q‘2 dx =0,
o o o

which, in view of (2.10), yields d = 0.
Next, testing with ¢ = u above and using (2.9), we deduce

c(p—q)f0|Vu|P dx =0,

which implies ¢ = 0. Therefore, for all ¢ ¢ W-1(Q),

f VT2 Vuvé dx + / IVulP 2 vuv dx—Af "¢ dx = 0,
Q Q Q

i.e., A is an eigenvalue of problem (1.1).
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2.2.2 The Case2<g<p

Obviously, in this case, W = W»?(Q) and C c C,.
Fortunately, under our assumption (2 < q < p) I, is a coercive functional as shown
next. We will conclude the proof of Claim 3 in three steps.

Step 1. I, is coercive, i.e.,

1 1 A
lim (*f [Vul? dx + f/ |V ul? dx—ff lul? dx) - oo,
‘|uHW1,p(n)—>oo, ueC p Q q Q q Q

Define «, 8, y: C - R by
= P dx, ::[ 1 dx, ::/ 1 dx,
a(u) = [ [vul dx, )= [ [Vultdx, y(w)= [ |ulf dx

so that | | N
;0‘(“) + aﬁ(“) - a)’(“)-

In order to go further, note that since q € (2, p), the standard norm on W>?(Q), i.e.,

I(u) =

lullwiecay = VUl ooy + 4] Leca),
is equivalent to the following norm (see [2, Remark 15, p. 286]):
|””|||WLP(Q) = HV“HLP(Q) + ””HM(Q)-

Thus, |[u] wis(qy = oo if and only if || ul|[wre(q) — oo.
On the other hand, by the definition of 1; we have

My(u) <p(u), VueC.

Then, since the estimates

%tx(u) . é/z’(u) > %((x(u) +B(u)) 2 %min{l, M) + y(w)]
hold true, we deduce that
1 1
. li — - = 00.
(2.11) Huuww(;:r_lm’ e poc(u) + qﬁ(u)

Further, Holder’s inequality yields
B(u) < |Q| P DPa(u)V?, v ueWHP(Q).
Combining this estimate with relation (2.11), we get

a(u) — oo.
HuHWl,P(Q):oo, ueC

Using again Holder’s inequality, we have

(1) ) + L) = 1007 P ().

Since g € (2, p), we infer that the term in the right-hand side of the above inequality
blows up as ||| w1 (q) — oo. The conclusion of this step is now clear.
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Step 2. Functional I, has a global minimum point over C, say 0y € C, such that
I ( GA ) <0.

Indeed, by Step 1 we know that I is coercive. On the other hand, C is a weakly
closed subset of the Banach space W, and for any u € C and any sequence (u,) in C
such that u,, converges weakly to u in W, we have I) (#) < liminf ;o0 I} (¢4, ). Then
we can apply [9, Theorem 1.2] in order to obtain the existence of a global minimum
point of Iy, say 6, € C, i.e., I;(0,) = minc I,. Using the fact that 1; = v; (see relation
(2.2)), we deduce that for any A > A, there exists wy € C such that I} (w;) < 0, so
I,(63) < Iy (wy) < 0. In particular, this shows that 8, # 0.

Step 3. We conclude the proof of Theorem 1.1.
Let 0, € C be the minimizer found in Step 2, i.e., I} (6, ) = min,c I (w). Thus, 6,
is actually a solution of the minimization problem min,ew I (w), under restriction

h(w) = f lw|7%w dx = 0.
o

Lemma 2.1 is again applicable, with X = W, Y =R, D =W, f = I, W — Ras
defined above, and y := 0,. It is easily seen that all the conditions of Lemma 2.1 are
fulfilled, including the fact that 4'(6)) is surjective. Therefore, there exists a constant
a € R such that (cf. (2.3))

[foweup‘zvemqs dx+fQ|V0;L\q_2V61V¢ dx—/lfQ|9A|q‘26A¢ dx]+

a(q—l)fﬂ|6,\|q_2</>dx:0, Vo e W (Q).

Testing with ¢ =1 above, we deduce

a(q-1) fQ 16,972 dx = 0,
which yields a = 0. Thus, for all $ € W2(Q),
f V0P 2V0, Ve dx + f V0,720,V dx - A f 1629726, ¢ dx = 0,
Q Q Q

i.e., A is an eigenvalue of problem (1.1).

Final comments

(a) Inviewof[7, Theorem 1.1] and [4, Theorem 1], our present result (Theorem 1.1)
extends to the more general case p € (1, 00), g € [2,00), p # g with the same conclu-
sion.

(b) If1 < p < qand q > 2, then A, defined by (1.3) is the first positive eigenvalue
of —A, with Neumann boundary condition, i.e., A; = 1] (). On the other hand, if
2< g < p, then C is a proper subset of C,, and we have 1; > A'(q). It seems that, in
fact, A; > AN (g). This is an open problem.
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