
/. Austral. Math. Soc. (Series A) 40 (1986), 194-202

RINGS SATISFYING CERTAIN CONDITIONS EITHER ON
SUBSEMIGROUPS OR ON ENDOMORPfflSMS

A. CHERUB1NI and A. VARISCO

(Received 23 May 1984; revised 11 October 1984)

Communicated by R. Lidl

Abstract

We characterize rings whose multiplicative subsemigroups containing 0 and the additive inverse of
each element are subrings. In addition we consider commutative rings for which every non-constant
multiplicative endormorphism that preserves additive inverses is a ring endomorphism, and we show
that they belong to one of three easily-described classes of rings.

1980 Mathematics subject classification (Amer. Math. Soc): primary 20 M 25; secondary 16 A 48.

1. Introduction

In this paper we study associative rings R possessing one of the following
properties.

(a) Every (multiplicative) subsemigroup 5 of R such that 0 e 5, and such that
a e S if and only if -a e S (for every a e R), is a subring of R.

(/}) Every non-constant semigroup endomorphism <J> of R such that 4>(-a) =
-<j>(a) (for every a e R) is a ring endomorphism.

Throughout the paper these rings will be called a-rings and /?-rings, respec-
tively.

The results here contained (Theorems 2.1 and 3.3) extends Theorem 1 of [9]
and Theorem 1 of [11], respectively, which are in turn generalizations of theorems
obtained in [4] by Cresp and Sullivan. In addition we observe that a different
generalization of the work in [4] and [9] was furnished by Ligh in [8].
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I21 Semigroups and endomorphisms in rings 195

In what follows R will denote an associative ring, the term subsemigroup

(subgroup) of R will mean multiplicative subsemigroup (subgroup), and the

multiplicative semigroup of R will be denoted as usual by (R, •).

2. Subsemigroups

The main result of this section is the following characterization of a-rings.

THEOREM 2.1. A ring R is an a-ring if and only if R belongs to one of the following
types.

(i) R is a finite field of order 2m = p + 1, where p is prime and m is a positive
integer.

(ii) R is a finite field of order 3m = 2p + 1, where p is prime and m is a positive
integer.

(iii) R is a nil ring of order < 3.
(iv) R is the ring of order 4 whose additive group is cyclic and generated by a with

a2 = 2a.

The proof of the theorem will utilize the following lemmas, where 2R (3R)
denotes the set {2a\a G R} ({3a\a <= R}). Moreover, we shall put [y] = {yh\h
G Z+} and -[y] = {-yh\h G Z+} (y G R).

LEMMA 2.2. If an a-ring R has a non-zero idempotent e, then either 2R = 0 or
3R = 0, and e is the identity ofR.

PROOF. Since R is an a-ring, the subset {0, e, -e} is a subring and contains 2e.
Then, either 2e = 0 or 3e = 0. Let 2e = 0. Then, for every x e R, the subset
-[2x] U [2x] U {0, e) is a subring by Property (a), so it contains e + 2x. Since
e # 0, it is immediate that e + 2x = e, whence 2R = 0. Analogously, if 3e = 0,
then by investigating the subring —[3JC] U [3X] U {0, e, -e), we find that 3R = 0.
When 2R = 0, every subsemigroup of R contains the additive inverses of its own
elements; thus e is the identity of R by Lemma 2 of [9]. Now suppose 3R = 0. Let
x G R, and put a = xe — exe. Since a2 = ea = 0, ae = a, and R is an a-ring, the
subset {0, e, -e, a, -a} is a subring and contains a + e. Hence it immediately
follows that a = 0, that is, xe = exe. By a similar argument it is proved that
ex = exe, so e is a central idempotent. At this point, the subset -[x — xe] U [x —
xe] U {0, e, -e) is a subring, by Property (a), and it contains x + e — xe. Now it
is immediate that x + e — xe = e, that is, x = xe, and that e is the identity of R.
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196 A. Cherubini and A. Varisco [31

LEMMA 2.3. If R is an a-ring with identity, and 2R = 0, then R is a finite field of
order 2m = p + 1, where p is prime and m is a positive integer.

PROOF. If 2R = 0, every subsemigroup of R contains the additive inverses of its
own elements. Therefore the statement follows from Theorem 2 of [4].

LEMMA 2.4. If R is an a-ring with identity, and 3R = 0, then R is aperiodic field.

PROOF. Let e be the identity of R. For every x e R \ 0, the subset -[x] U [x] U
{0, e, -e) is a subring by Property (a), so it contains x + e. Hence it easily
follows that x = x2f(x) for some polynomial /(A) e Z[X]. Thus R is commuta-
tive by a well-known theorem of Herstein [6], it is periodic by a theorem of
Chacron [1, Proposition 2], and (R, •) is union of groups [3, Theorem 4.3].
Furthermore, the only idempotents of R are 0 and e by Lemma 2.2; thus we may
immediately conclude that R is a periodic field.

LEMMA 2.5. Let R be an a-field. If 3R = 0, then R has a unique element of order
2, and every finite subgroup of even order has order 2 p with p prime > 1.

PROOF. Let e be the identity of R. Since 3e = 0 implies -e =£ e, and (-e)2 = e,
it follows that R contains an element of order 2. Let/be any element of R having
order 2; since R is an a-field, the subset H = {0,e,-e,f,-f} is a subring and,
obviously, a finite field. Thus H \ 0 is a finite cyclic group, with a unique element
of order 2. Hence/ = -e. Now let G be a finite subgroup of R having even order
2rs with r > 1, s > 1. Then G contains -e, whence -x — -ex e G for every
x e G. So, by Property (a), G U 0 is a subfield of R. From this and from 3G = 0,
it follows that \G U 0| = V for some positive integer j . Therefore

(1) 2rs = 3> - 1 ( ; > 1),

Moreover G, being an abelian group, contains a subgroup A of order 2r and a
subgroup B of order 2s. The same argument employed above for G shows that
A U 0 and B U 0 are subfields of G U 0, of orders 3h and 3k, respectively, (h, k
positive integers). Then we have

(2) 2 r = 3 * - l , 2J = 3 * - 1 , (A, * > 1),

and, using relations (2) in (1), we deduce that

(3h - 1)(3* - 1) 3h + k - 3h - 3k + 3
3J = 2rs+l= *=• ^ -1 + 1 = J

2
 J .

This is a contradiction, since h, k, j > 1. So G must have order 2p with /?
prime > 1.
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LEMMA 2.6. Let R be an a-field. If 7>R = 0, then R is a finite field of order
3m — 2p + 1 with p prime, p > 1 and m a positive integer.

PROOF. Let e be the identity of R. If R = {0, e, -e}, we have \R\ = 3 and the
statement is true. Otherwise, we have R \ (0, e, -e} =£ 0 . Let x, y e
R \ {0, e, -e) and let X = (x, -e) and Y = (y, -e) be the subgroups generated
by x, -e and by y, -e, respectively. By Lemma 2.4, X and Y have finite orders,
which, moreover, are even numbers, since - e e l n Y. Consequently, \X\ = 2p,
\Y\ = 2q and \X C\ Y\ = 2r for some primes p, q > 1 and r > 1, in view of
Lemma 2.5. Suppose X ¥= Y. Since 2r divides both 2p and 2#, we have either
r = 1, or r = p = q. In the first case XY is a subgroup of order 2pq, in
contradiction to Lemma 2.5. In the second we have X — X n Y = Y, which is
another contradiction. Thus X = Y, whence R \ 0 = X. At this point, we may
conclude that \R\ = 2p + 1. Moreover, 3R = 0 implies that \R\ = 3m for some
positive integer m, which proves the statement.

REMARK 2.7. The primes of the form 2m — 1 which appear in Lemma 2.3 are
the well-known Mersenne primes, where m is necessarily prime. Analogously, it is
easily verifiable that, if p is a prime and m a positive integer satisfying the
condition 3m = 2p + 1, then m must be prime. In fact, suppose m > 1 and
put m = hq with </ prime > 1 and h positive integer. Then 2p =
V"> - 1 = (3* - lXS*^-^ + • • • + 3* + 1), whence 3* - 1 = 2. Thus h = 1, and
w = <? is prime. Pairs (m, p) satisfying the above condition do actually exist; we
include a small table of such pairs

m l 3 7 13

13 1093 797161

LEMMA 2.8. Let R be an a-ring without non-zero idempotents. Then, for every
x G R, either x2 = 0 or x2 = 2x.

PROOF. Let |^ | > 1, and let x e R \ 0. The subset H = -[x] U [x] U {0} is a
subring by Property (a) and contains x — x2. Since x # x2, we have either
x — x2 = xh or x - x2 = -xh for some positive integer h. U h > 1, we have
x = x2f(x) = xf(x)x for some polynomial/(A) e Z[X], and xf(x) is a non-zero
idempotent, which is a contradiction. Thus, for every x e R, we have either

2 2 = 2x.

In what follows we shall denote by R2 the set {xy\x, y & R).
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LEMMA 2.9. Let R be an a-ring without non-zero idempotents. Then either R2 = 0
and \R\ < 3, or R is the ring of order 4 whose additive group is cyclic generated by
an element a satisfying the relation a1 = la.

PROOF. Let x e R with x2 = 0. Then the subset {0, x, -x) is a subring by
Property (a), and it contains 2x. Hence it easily follows that either 2x = 0 or
3x = 0. Next, let y e R with y1 # 0. Then from Lemma 2.8 it follows that
y2 = 1y and (-y)2 = -2y, whencey2 = 2y = -2y, and also _y3 = 2y2 = 4_y = 0.
At this point we may distinguish two cases:

(1) R satisfies the identity x2 = 0. Then, for every x G R, we have either
2x = 0 or 3x = 0. Since the subsets H = {x e R\2x = 0} and K = {x e R\7>x
= 0} are additive subgroups of R = H U K, we must have either R = H or
R = K. In the first case, every subsemigroup of R contains the zero and the
additive inverses of its own elements. So, R2 = 0 and \R\ < 2 follows from
Theorem 1 of [4]. If R = K, let us suppose \R\ > 1 and let x, y e R \ 0. Then we
have 0 = (x + y)2 = xy + yx, whence xyx = 0. Therefore, the subset
(0, x, -x, xy, -xy} is a subring by Property (a), and it contains x + xy. This
implies that xy = 0. Hence, the subset {0, x, -x, y,-y} is also a subring by
Property (a), and it contains x + y. Now it is immediate that either y = x or
y = -x. Thus R = (0, x, -x} and this implies that R2 = 0 and |fl| = 3.

(2) R contains an element y such that y2 ¥= 0. Then Ay = 0 and, for every
w G /?, we must have either 4w = 0 or 3vv = 0. Repeating the argument used in
(1), we see that 4w = 0 for every w e R. Now, for every x e R\0 with x2 = 0,
we have 2x = 0. Consequently the subset {0, x, 2y) is a subring by Property (a),
and it contains x + 2y. Hence it easily follows that x = 2y, and that 2y is the
unique element of R with index of nilpotence 2. Now, for every z e /? with
z2 =jt 0, we have z2 = 2z = 2y. Hence, (^z)2 ± 0 implies that (yx)2 = 2yz = z3

= 0, which is a contradiction. So we must have (yz)2 = 0, whence yz = 2y. In
the same way we find that zy = 2y; thus the subset (0, y,-y, z,-z,2y] is a
subring by Property (a), and it contains j» + z. At this point it is immediate that
either z = y or z = -y. So R = {0, y, -y, 2y} is the ring of order 4 described in
the lemma.

PROOF OF THEOREM 2.1. From the preceding lemmas we immediately deduce
that every a-ring belongs to one of the types listed in the statement. The converse
is immediately verifiable.

REMARK 2.10. Let R be a field of order 3m(w > 1) with identity e. Since
3e = 0, we have 2e e R \ {0, e}; thus R has a subsemigroup containing the zero
which is not a subring. Next, let R be a nil ring of order 3. Since the additive
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group of R is cyclic, we have R = {0, a, -a} and a1 = 0. Hence the subset (0, a}
is a subsemigroup of R containing the zero, but it is not a subring. Finally, let R
be the ring of order 4 with the additive group generated by an element a
satisfying the relation a2 = 2a. It is immediate that the subset {0, a, 2a} is a
subsemigroup of R but not a subring. That being stated, let R be a ring all of
whose subsemigroups containing the zero are subrings. Obviously, R is a a-ring,
and consequently it is one of the rings listed in the statement of Theorem 2.1. But
from the above it follows that if \R\ > 2, then R is necessarily a field of order
2m = p + 1, where p is a prime [9, Theorem 1].

3. Endomorphisms

The purpose of this section is to describe commutative /J-rings. We recall that
an ideal / of a ring R is said to be completely prime if a, b e R, ab e / imply
a G / or b G /. R is completely prime if the zero ideal is a completely prime ideal
in/?.

LEMMA 3.1. Let R be a fi-ring. If I is a proper, completely prime ideal of R, then
1 = 0.

The proof is analogous to that of [7, Lemma 1].
In what follows we shall use the terminology of [10].

LEMMA 3.2. Let R be a fi-ring. If (R, •) is a semilattice of archimedean
semigroups, then either R is completely prime or R is a nil ring.

PROOF. From [2, Theorem A and Theorem 1.3] it follows either that (R, •) is
archimedean, or that it contains a proper, completely prime semigroup ideal /.
(We remark that in [2] the term "prime" stands for "completely prime".) In the
first case R is obviously a nil ring. In the second case, let <?> be the map of R into R
defined by <j>(x) = 0 for x e /, and <j>(x) = x for x e R \ I. It is easily seen that
<j> is a non-constant semigroup endomorphism of R, and that x e / if and only if
-x e /. Hence </>(-*) = -4>(x) and, since R is a j8-ring, </> is a ring endomorphism
whose kernel is /. Thus / is a ring ideal. Hence / = 0 by Lemma 3.1, and so R is
completely prime.

Now we are able to state the following.

THEOREM 3.3. A commutative fi-ring belongs to one of the following types
(i) R is a ring of order < 3;
(ii) R is the ring of order 4 whose additive group is cyclic generated by a with

a2 = 2a;
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(iii) R = R2 is the direct sum of a ring P satisfying the identities x2 = 2x = 0 and
a ring Q satisfying the identities x3 = 3x = 0.

PROOF. Let x be the map of R in R defined by x(a) = °3 f°r every a e R. If x
is non-constant, then, since R is a commutative /J-ring, x is a T^IlS> endomorphism.
Then R satisfies the identity

(3) (a + b)3 = a3 + b3.

If x is constant, we have a3 = x(a) — X(0) = 0, and (3) continues to hold.
Analogously, utilizing the map ^ defined by \p(a) = a5 (a e R), we obtain the
identity

(4) (a + bf = as + b\

Now we recall that, since R is commutative, (R, •) is a semilattice of archimedean
semigroups [3, Theorem 4.13]; consequently R is either completely prime or a nil
ring, by Lemma 3.2. In the first case, if \R\ > 1, we obtain from (3) that
3a + 3b = 0 for every a, b e R \ 0. Hence, when a = b, it follows that 6a = 0.
Utilizing these relations in (4), we find that a3 — a2b — ab2 + b3 = 0. Replacing
a by -a and summing the two relations, we obtain 2a2b - 2b3 = 0, whence
2a2 = 2b2. Moreover, 3a + 3b = 0 implies that 9a2 = 9b2, whence a2 = b2. Now
if a + b =* 0, then (a + b)(a - b) = 0 implies that a = b. Therefore, either
R = {0, a) or R — {0, a, -a}. Now let us suppose that R is a nil ring. If R2 c R,
let a be an element of R \ R2, h the least positive integer such that a2h = 0, and
/ = R\{a,-a). Let <j>: R -» R be defined by <f>(a) = ah, 4>{-a) = -ah and
<l>(x) = 0 otherwise. Then <j> is non-constant, and it is a ring endomorphism by
Property (/S). Therefore, for every x e J, we have <£(a + x) = a* # 0. Hence,
either a + x = a o r a + x = -a, whence either x = 0 or x = -2a. So we have
.R = {0, a, -a, -2a}. At this point, either \R\ < 3 or the elements 0, a, -a, -2a are
distinct; in this case the additive group of R is cyclic, and -2a = 2a. Moreover,
we cannot have a2 = 0, since then we would have h = 1, whence <j>(2a) = 2<j>(a)
= 2a, and 2a e {0, a,-a}, which is a contradiction. Thus a2 ¥= 0, and it is
immediate that a2 = 2a. Finally, we have to examine the case R = R2. First, let
us verify that x3 = 3x2 = 6x = 0 for every x e R. In fact, putting b = a2 in (3)
and (4), we find that 3a4 + 3a5 = 0 and 5a6 + 10a7 + 10a8 + 5a9 = 0, whence
3a4 = 5a6 = 0, and consequently a6 = 0. Then (a + b)6 = 0 for every a, b e R
and, using again 3a4 = a6 = 0, we obtain 20a3b3 = 0. Moreover, from (3) it
follows that 3a2Z> + 3ab2 = 0, whence 3a3b3 = -3a*b2 = 0. Therefore a3b3 = 0,
and this, in view of the fact that R = R2, implies that x3 = 0 for every x e R.
Now 3a2b + 3ab2 = 0 implies that 3a2Z>2 = 0, whence 3x2 = 0 for every x e /?.
Finally, 3(a + Z>)2 = 0 implies that 6aZ> = 0, that is, 6x = 0 for every x e l
That being stated, we let P = {x e «|2JC = 0}, and we let Q = {x e /?|3x = 0}.
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It is immediate that P and Q are ring ideals of R, that P n Q = 0 and that, for
every x e R, we have x = Ix = 3x + 4x, with 3x e P and 4x e g. Therefore R
is the direct sum of P and Q. For every x e P, we have 2x2 = 0 and, since we
have shown that 3x2 = 0, we may conclude that x2 = 0. So the proof is complete.

REMARK 3.4. It is immediate that the rings of types (i) and (ii) described in the
statement of Theorem 3.3 are /?-rings. As regards the rings of type (iii), Duncan
and Macdonald have shown in [5] that rings like P (called power rings in [11]) do
exist. A similar argument can be used to show that rings hke Q also exist. At this
point, the existence of rings satisfying condition (iii) is assured. But we do not
know whether they are /J-rings, and it is still not known whether power rings are
e'-rings.

REMARK 3.5. From Theorem 3.3 we may easily deduce Theorem 1 of [11]. In
fact, if R is a ring of order 3, we have necessarily R = (0, a,-a}, and it is easily
seen that the map <f> defined by <j>(0) = 0, and </>(a) = </>(-«) is a non-constant
semigroup endomorphism which does not preserve addition. The same result may
be obtained when R is the ring of type (ii), with the map <#> defined by </>(0) = 0,
<j>(a) = 4>(-a) = a, and <t>(2a) = la. Further, let us suppose that R is a commuta-
tive ring with the property (e') introduced in [11]. Obviously, R is a /?-ring and, if
\R\ > 2, it follows from the above that R is of type (iii). Now the function <f>
defined by <j>(x) = x2 for every x e R is a ring endomorphism by property (e'),
and it induces in R the identity (a + b)2 = a2 + b2, whence lab = 0. Since
R = R2, this implies that 2x = 0 for every x e R. Thus Q = 0, and R = P is a
power ring.

REMARK 3.6. In Theorem 3.3 the hypothesis of commutativity may be weakened.
Following the terminology used for semigroups, we say that a ring R is medial if
abed = acbd for every a, b,c, d e R. A medial ring need not be commutative, as
is shown by the ring of real square matrices of the form [Q £]. The authors have
proved that Theorem 3.3 continues to hold if the word "commutative" is replaced
by "medial", but the proof is here omitted.

References

[1] M. Chacron, "On a theorem of Herstein", Canad. J. Math 21 (1969), 1348-1353.
[2] A. Cherubini and A. Varisco, "On Putcha's 2-semigroups", Semigroup Forum 18 (1979),

313-317.
[3] A. H. Clifford and G. B. Preston, The algebraic theory of semigroups (Amer. Math. Soc.,

Providence, R. I., Vol. 1,1961).

https://doi.org/10.1017/S1446788700027178 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027178


202 A. Cherubini and A. Varisco [9 ]

[4] J. Cresp and R. P. Sullivan, "Semigroups in rings", J. Austral. Math. Soc. (Ser. A) 20 (1969),
172-177.

[5] J. Duncan and I. D. Macdonald, "Some factorable nil rings of characteristic two", Proc. Roy.
Soc. Edinburgh Sect. A, 82 (1979), 193-199.

[6] I. N. Herstein, "The structure of a certain class of rings", Amer. J. Math. 75 (1953), 864-871.
[7] Y. Hirano and H. Tominaga, "On rings whose non-constant semigroup endormorphisms are

ring endomorphisms", Math.J. Okayama Univ. 23 (1981), 13-16.
[8] S. Ligh, "On a class of semigroups admitting ring structure", Semigroup Forum 13 (1976),

37-46.
[9] S. Ligh, "A note on semigroups in rings",/. Austral. Math. Soc. (Ser. A) 24 (1977), 305-308.

[10] M. S. Putcha, "Semilattice decompositions of semigroups", Semigroup Forum 6 (1973), 12-34.
[11] R. P. Sullivan, "Semigroup endomorphisms of rings", J. Austral. Math. Soc. (Ser. A) 26 (1978),

319-322.

Dipartimento di Matematica
Politecnico di Milano
Piazza Leonardo da Vinci 32
20133 Milano
Italy

https://doi.org/10.1017/S1446788700027178 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700027178

