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A NEW GEOMETRIC ALGORITHM TO GENERATE SMOOTH
INTERPOLATING CURVES ON RIEMANNIAN MANIFOLDS
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Abstract

This paper presents a new geometric algorithm to construct a C*-
smooth spline curve that interpolates a given set of data (points
and velocities) on a complete Riemannian manifold. Although based
on a modification of the De Casteljau procedure, this new algorithm
is implemented in only three steps, independently of the required
degree of smoothness, and therefore introduces a significant
reduction in complexity. The key role is played by the choice of
an appropriate smoothing function, which is defined as soon as the
degree of smoothness is fixed.

1. Introduction

We propose a new algorithm, which has a pure geometric interpretation, in order to address
the following interpolation problem.

Generate a C*¥-smooth (k = Dcurves : [a,b] C R — M, on a complete
Riemannian manifold M, which fulfills a set of interpolation conditions of the
form

s(t;) = pi and st) =v;, (1)

fora given partition A :a =ty < t] < --- < t,, = b of the time interval [a, b],
given points p; on M and vectors v; tangentto M at p;, i =0, 1, ..., m.

Many solutions and some efficient algorithms have been proposed to solve similar
interpolation problems (where points and velocities are prescribed); these were motivated
by applications in many areas of engineering, like motion-planning problems in robotics or
object animation, which is required in computer graphics. In most cases, M is simply a Lie
group or a sphere.

One development was achieved by Shoemake [18], introducing the idea of using quater-
nions to solve interpolation problems such as the one above, in the sphere S3. This work
was mainly motivated by applications in computer animation, and the approach may be
generalized to higher-dimensional spheres.

The De Casteljau algorithm [5] is a well-known algorithm to generate polynomial curves
in Euclidean spaces, based on recursive linear interpolation, which can be used to solve the
proposed interpolation problem when the required degree of smoothness is equal to one and
the manifold is R”. See Farin [6] for a general presentation of the De Casteljau method.
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Smooth interpolating curves on Riemannian manifolds

Other alternatives for Euclidean spaces, proposed by Nagy and Vendel [10] and Rodrigues,
Silva Leite and Rosa [15], are based on convex combinations of rather simple curves, like
line segments and circular arcs.

There are a number of references to work dealing with Bezier/De Casteljau algorithms
on the manifolds SO(3), $2, 83 and SE(3). In addition to the work by Shoemake [18], we
also mention Barr, Currin, Gabriel and Hughes [1], Chen [2], Ge and Ravani [7], Kim, Kim
and Shin [9], Nielson [11] and Nielson and Heiland [12]. The objective in most of these
papers is to do interpolation on SO(3) using the fact that rotations in R? may be represented
by unit quaternions. This approach does not generalize to higher-dimensional manifolds. In
this paper, we develop a general method for m-dimensional spheres that also includes the
particular case of unit quaternions.

Extensions of De Casteljau’s algorithm to Riemannian manifolds, Lie groups and spheres
can be found in the work of Crouch, Kun and Silva Leite [3, 4] and Park and Ravani [13]. The
idea common to such generalizations is the replacement of linear interpolation by geodesic
interpolation. In Jakubiak, Silva Leite and Rodrigues [8], linear interpolation techniques
have been replaced by polynomial interpolation, in order to improve the complexity of the
De Casteljau algorithm.

The algorithm that we are about to present is performed in only three steps, no matter
what degree of smoothness is required. It is based on a modification of the De Casteljau
construction of a C'-smooth cubic spline, and uses some ideas from the recent work already
mentioned. We start with a review of the De Casteljau construction in Section 2. Another
important feature, which is also shared by the De Casteljau procedure, relies on the fact that
the calculation of each spline segment depends only on the local data. This is particularly
useful in applications, since any change in the data at a particular instant of time requires
only the re-calculation of two segments of the spline. This is not the case for some classical
interpolating spline schemes, for which a single change in the data will mean an entire
re-calculation of the spline curve.

The new geometric algorithm is first presented and discussed for Euclidean spaces. This
will help with the visualization of its main features, and will motivate its generalization to
other complete Riemannian manifolds. However, the algorithm is useful as a computational
device only when the explicit implementation details of the algorithm have been worked
out. In general, this objective is not reachable, but for some specific cases, like connected
and compact Lie groups or spheres, we are able to calculate the interpolating curves in
closed form and derive expressions for their derivatives, in order to be able to check the
degree of smoothness at the interpolating points.

This paper is the natural evolution and an extended version of the paper by Rodrigues and
Silva Leite [14], presented in the minisymposium ‘Geometric optimization with applications
in numerical linear algebra, robotics, and computer vision’ at the MTNS2004 Conference.

2. The De Casteljau algorithm revisited

The De Casteljau algorithm is a geometric algorithm, and is one of the best-known
algorithms used to generate polynomial spline curves in general Euclidean spaces. Its im-
portance also follows from the simple geometric construction that is performed, which is
based on the application of successive linear interpolations.

The classical De Casteljau algorithm is used to construct parameterized polynomial
curves, of any given degree d, joining two points in R”. A sequence of d — 1 points in R”
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is used to implement the algorithm, and for that reason they are called control points; see
Farin [6] for details.

We now show how the De Casteljau algorithm can be used to generate a curve in R” that
fulfills all the interpolation conditions (1).

For instance, from the given points pg, p; and the given vectors vy, vq, two control
points, namely xo and x1, are uniquely determined by

1 1
X0 = po + 300 and X1 = p1— 301

In this case the classical De Casteljau algorithm is performed in three steps, and the resulting
curve will be a cubic polynomial. For simplicity, we may consider the time interval [0, 1]
instead of [#g, t1].

In the first step, the following three line segments are computed:
ao(1) = po + 1(xo — po); a1 (1) = xo + 1(x1 — X0); a(r) = x1 +1(p1 — x1).
Then, two new curves are generated using the curves constructed in the previous step:

Po(t) = (1 — Dao(t) + ta(1); p1(t) = (I — Day (1) + 1 (r).

REMARK 2.1. We can say that fp and 1 are generated from a convex combination of the
curves o, o1 and a1, ap respectively.

These two curves are finally combined in a similar way to generate the cubic polynomial
curve given by

so(t) = (1 —1)Bo(r) +tB1(1)
= (1 — 1) %ao(t) + 2t (1 — a1 (t) + (7).

If the classical De Casteljau construction is repeated for each other interval [¢;, #;41],
one obtains a spline curve t —> s(¢) in R” which is the result of the concatenation of all
polynomial segments ¢t — s;(¢) and has the following final form:

t—t

s(t) =s; <—’> teltitizl, i=0,1...,m—1.
liv1 — 1

The spline curve t —> s(¢) is locally a cubic polynomial and satisfies the interpolation

conditions (1), but it is only C !_smooth (at each instant 7;).

To generate a C¥-smooth curve using the De Casteljau algorithm, one needs to prescribe
k derivatives at each instant #;. The construction of each spline segment ¢ +—— s;(¢) will
require 2k control points and the computation of (2k+ 1)(k+ 1) curves, performed in 2k + 1
steps. It is clear that the computational cost of this algorithm increases substantially with k.

The De Casteljau algorithm has been generalized to complete Riemannian manifolds
[4, 13], and this was mainly due to the fact that the algorithm is geometrically based.
The idea is quite simple. The linear interpolation procedure in the classical case is simply
replaced by geodesic interpolation. When applied to interpolation problems, the resulting
curve has the same degree of smoothness as in the Euclidean case, but the implementation
of the algorithm is much harder, even for low-dimensional cases.
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3. A new geometric algorithm in R"

We first consider the case when M is R" equipped with the Euclidean metric. The
geometric algorithm proposed here is based on a modification of the De Casteljau algorithm,
but has the ability to generate a spline curve in only three steps, with any required degree
of smoothness. This property of our algorithm is due to the role played by a smoothing
function ¢.

We now show how to compute the curve t —> s;(¢) € R", which connects the point p;
attr = 0to p;4+1 at r = 1, with initial and final velocities v; and v, (again, we use [0, 1]
instead of [#;, #;41]). As in the De Casteljau algorithm, we use two control points, which are
now

Xj = pi +vi, Xi+l = Pi+1 — Vi+l,
and three steps. First, we define three line segments:
li(t) = pi +t (xi — pi) = pi +1v,
Step 1 qci(t) = pi +1(piv1 — pi), (2)
ri(t) = Xig1 +1 (pit1 — Xit1) = piv1 + (¢ — D viqr,

which will play the roles of left, center and right components of the spline segment
t —> s;(t). Notice that the left and right components satisfy

[;(0) = pi, ri(1) = pit1,
[i(0) = v, (1) = viy1, 3)
oy=0,  rm=o, j=2.

REMARK 3.1. The three components are such that ¢; (0) = ;(0) = p; and ¢; (1) =r;(1) =
pi+1. This observation helps us to visualize the three line segments.

ri(t)
¢ Pi+l Pi+1
vi Vit li (1)
pi ° Di
Figure 1: Initial data. Figure 2: Step 1 — components.

Next, we introduce a smooth real-valued function ¢ : [0, 1] — [0, 1] satisfying

¢(0) =0, o) =1,

. ) 4
#(0) =0, (1) =0, j=1,2,....k—1(fork > 1), “@
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b; (1)
P Pi+1

a; (1)
Di

Figure 3: Step 2 — curves a; and b;.

and we compute two new curves from convex combinations (using ¢) of those previously
constructed:

Step 2 (5

!ai(t) = =)L) + (1) ci(r),
bi(t) = (1 = (1) ci(t) + () ri (1).

REMARK 3.2. These new curves are such that a; (0) = b; (0) = [;(0) = p;, a;(1) = b; (1) =
ri(1) = pi+1, a;(0) = [;(0) = v; and b (1) = Fi(1) = vi+1. These boundary conditions
do not depend on the choice of the function ¢, as long as ¢ satisfies conditions (4). For the
geometric constructions below, which at this point only help to visualize the steps of the
algorithm, we have chosen ¢ (#) = t. Later, we will explain the relationship between the
required degree of smoothness of the spline curve and the choice of the function ¢.

¢ Pi+1 Pi+1
vi Vit1
Pi Pi
Figure 4: Step 3 — curve s;. Figure 5: Initial data and final segment.

Finally, we combine «; and b; in a similar way to generate the spline segment:
!si(t) = —=¢®)ai@) +¢@) bi(r)
=1 =9’ LM +2¢1) (1 —p1) c;(t) + (1)*ri (1).

The next result presents the main properties of the resulting curve t — s(z).

Step 3 (6)
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THEOREM 3.1. If¢ : [0, 1] —> [0, 1] is a smooth function satisfying (4), then the following

statments hold.

(i) The spline segment t — s;(t) defined by (6), (5) and (2) is smooth and satisfies the
following conditions:

5i(0) = pi, si(1) = piy1,

5i (0) = vi, $i(1) = vit1, (7)
sy =0, Y=o, j=2,... k.
(i1) The resulting spline curve t — s(t) given by
t—1t .
S(I)ZS,'( ), te[li,ti+1],l=0,1...,m—l, (8)
tig1 — 1

is CK-smooth and satisfies the interpolation conditions (1).

Proof. Applying Leibniz’s formula for the jth derivative of a product to the formula (6)
for the spline segment, we get

J
s 0= () 1= e 0) + Z (e @b
1=0 1=0
To check all the boundary conditions more easily, we rewrite s(j ) in a more convenient
form. Since (1 — ¢(¢))) = —¢)(¢) for j > 1, the previous formula can be written as
st @) = Z () 0 bi(1) — a; D + (1 = ) 0 (1) + ¢ (1) b ().
1=0

Using the same argument to calculate al.(j ) (t) and bl.(j )(t), we have

‘ j—1 . .
a” ()= ()¢9 (i) —Li@eND + (1 =g [ (1) + p (1) ¢} ()

=0

k
._

b () = Z NV i) = i) + (1 = ) )"0 + ) 1 1),

=0
Therefore,

j—1

s =3 (e i) — ao)®

=0

j—1
+ (=@ Y (1)o@ (i(t) = 1;an®
=0

+¢ ) Z (1) Y™ ) (ri (1) = ci (e

+(1— ¢<r))2 190 +2¢0) (1 =) P 0) + ) r 0).
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Since ¢ satisfies (4) and ¢; (0) = [;(0), a; (0) = b;(0), ¢;(1) = r;(1) and a; (1) = b;(1)
(see Remarks 3.1 and 3.2), we get

sP0 =170  and  sP1) =),

forall j =0, 1, ..., k. The boundary conditions (7) follow from the properties given in (3).
The second part of the theorem is a direct consequence of conditions (7). O

REMARK 3.3 (THE COMPLEXITY OF THE ALGORITHM). It is clear that the complexity of our
algorithm does not depend on k. Indeed, if we want a C k_smooth curve (for k > 2), our
algorithm produces a spline that also satisﬁess(f)(t,-) =0,i=0,1...,m,forj=2,...,k,
in only three steps.

If these conditions were initially prescribed together with conditions (1), the De Casteljau
algorithm could also be used to solve the problem. But, as already observed, the complexity
of this algorithm increases substantially with k, since 2k + 1 steps are required.

If we choose ¢ (1) = 1, then the spline generated by our algorithm is C!-smooth and
coincides with that produced by the De Casteljau algorithm. This is not a surprise. In fact, by
construction, we know that each segment will be a cubic polynomial in R” which is uniquely
determined, since four data points are given. Each segment of this spline is given by

si(t) = pi +vit + GBpis1 — 3pi — 20 — vip1) 17 + 2pi + v — 2pit1 +vig1) 1.

REMARK 3.4 (THE SMOOTHING FUNCTION). The degree of smoothness of the spline gener-
ated by the new algorithm depends only on the choice of a smooth function ¢ : [0, 1] —
[0, 1], satisfying (4). This is the reason why we call ¢ a ‘smoothing function’ for the spline
curve s. One possible choice for the function ¢ satisfying all the conditions (4) is the
following polynomial function of degree 2k — 1:

k—1

Okl jt1
o) =vy E —r 7, ©))
P k+1

Where

The following formulas will soon be useful:
pPO) =y k-1 and P M) =Dy k=D (10)

The proof relies on the observation that ¢ () is an anti-derivative of the function

k—1

g(t) — ytk—l(l _ t)k_l — y Z(_l)l(k;l) tk_l_t'_l’
=0

which implies that ¢>(k> (1) = g("’ D (1). Itis now sufficient to evaluate the derivative of order
k — 1 of function g att = 0 and ¢+ = 1. More properties of this smoothing function may
be found in [8]. From now on, we will always consider this particular smoothing function.
For instance,

- fork =1, wehave ¢ () =¢t,
- fork = 2, we have ¢ () = 12 (3 — 2t), and
- for k = 3, one obtains ¢ (1) = 13 (10 — 15¢ + 612).

https://doi.org/10.1112/5146115700000098X Published online by C2fbfidge University Press


https://doi.org/10.1112/S146115700000098X

Smooth interpolating curves on Riemannian manifolds

For the function ¢ given by (9), each segment of the generated spline curve is a polynomial
curve of degree (at most) 4k — 1.
We note that the spline + —— s(¢), given by (8), when ¢ is as defined in (9), will not
be C¥*1-smooth, except for some degenerate cases. To see this, it is enough to compute
(Hl)(l) and s(k+])(0) We have to distinguish between k = 1 and k > 1, since for k = 1
we find the followmg formulas:
5i(1) =2 (xi — pi+1) +4 (Vit1 — piy1 + pi),
5i+1(0) = 2 (xit2 — pi+1) + 4 (pit2 — pi+1 — Vit1),
and for £k > 1 we have
sE VW) =20+ 1) (1) i1 = pia + po),
k+1
st =2k + D P 0) (piga — pist — vis1).
Now, §; (1) = §;+1(0), for some i € {0, 1..., m — 1} if and only if the following holds:
—4viy1 = (xi —Xi42) +2(pi — pi+2) <= vi +4viy1 — viy2 = 3 (pit2 — pi),
and for k > 1, we may use the equalities (10) to conclude that s(kH)(l) = (kH)(O), for

l+l
somei € {0, 1. — 1}, if and only if
2 Vi+1 = Pi+2 — Pi if k is Odd,
Di+1 — Pi = Pi+2 — Di+1 if k is even.

REMARK 3.5 (OPTIMAL PROPERTIES). For k = 1 (that is, ¢(¢#) = t), each component of
the spline function given by (8) is an L-spline (of type I) associated with the differential
operator L = d2/dt2, the partition A and the incidence vector Z = (21,22, .- ., Zm—1) =
(2,2,...,2). See [17] for the definition of L-splines and their properties.

Consequently, if (.,.) represents the Euclidean inner product in R”, and 2 denotes the
class of all functions y : [a,b] C R — R" which are C I_smooth in [a, b] and fulfill
the interpolation conditions (1), then the spline function given by (8) and corresponding to
¢ (t) = t is the solution of the following optimization problem:

b
min/ (¥(1), y(@)) dt
e Jq

For k > 1, the optimal properties of the spline function produced by our algorithm are still
under investigation. However, it is interesting to note that the smoothing function ¢ defined
by (9) is the unique solution of the optimization problem

1
min f (O, fPw)ar
fecko,11Jo
subject to the following boundary conditions:
f0) =0, fa =1,
P20 =0, fOPm=0,  j=1,2....k—1(fork>1).

3.1. Extension to problems with uneven conditions

The new algorithm is easily adapted to the computation of a C¥-smooth curve s (where
k > 1) that fulfills a more challenging set of interpolation conditions of the form

sty =pi,  S@)=pi, S =p, ... s@ay=p*  an
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for the partition A : a =ty < t; < --- < t, = b of the time interval [a, b], points p; in
R" and vectors p;, pi, ..., p}ki) tangent to R" at p;, with 1 < k; < kandi =0,1,...,m

This extension allows uneven prescribed conditions at each instant #;, and is of partic-
ular importance in many applications. The only changes required are in the left and right
components of each segment s;. If k; is the number of derivatives prescribed at the initial
point p;, then the left component for the segment s; is a polynomial of degree k;. If k; 41
is the number of derivatives prescribed at the end-point p; 1, then the right component for
the segment s; is a polynomial of degree k; 1. Besides these modifications, all remains the
same, including the center component. More specifically, to compute the curve t — s; ()
that connects the point p; att = 0 to p; 1 att = 1 with prescribed interpolation conditions
(11), we use the same control points, which are now written as

Xi = pi + pi, Xi+1 = Pi+1 — Di+l,
and we define the left and right components to be the Taylor polynomials

ki ki1 ()

li(t) = p]—tf and r,(r)_Z”t+l (t — 1)/, (12)
j=0

Notice that /; and r; are such that

1i(0) = pi, ri(1) = piy1,
[:(0) = pi., Fi(1) = pit1,
kl' ' ki
l(k)(o) (k)’ ri( (1) = Pi(+1+l)v
10 =0,  j>k, ) =0, j >k

As before, we use a smoothing function ¢ satisfying (4), and we compute a;, b; and s;
as described on page 255. The next result, similar to Theorem 3.1, follows immediately.

COROLLARY 3.1. If ¢ : [0,1] —> [0, 1] is a smooth function satisfying (4), then the
following statements hold.

(1) The spline segment t — s;(t) defined by
si(t) = (1= gL (1) + 26 (1) (1 — p(0)ci (1) + (1) *r; (1),

where l; and r; are given by (12) and c; is given by (2), satisfies the following conditions:

5;(0) = pi, si(1) = pit1,
5:(0) = pi, 5i(1) = pit1,
ki ki ki ' ki
( )(0)7 ( )7 Si( +l)(l) — pi(+-lf-1)’
sl.(])(0)7:0, j=ki+1,...k P =0, j=kipi+1,... .k

(ii) the resulting spline curve t — s(t) given by

r—1t
s(t) = s (—’> teltitiy], i=01...,m—1,

tivy1 — 1
is CK-smooth and satisfies the set of interpolation conditions (11).
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4. The new algorithm on complete Riemannian manifolds

In this section we combine the ideas just developed to implement the new algorithm in
Euclidean spaces, with those used to generalize the De Casteljau algorithm to complete
Riemannian manifolds (see details in [3]). In this section we consider the case when only
points and first derivatives are prescribed, since for higher derivatives the implementation
of the algorithm requires the analogues of higher-order polynomials on manifolds. Now,
geodesic arcs play the role of straight-line segments; consequently, the algorithm is generally
applicable as long as the computation of geodesics is tractable. When the manifold is a
compact and connected Lie group G, equipped with the left- and right-invariant Riemannian
metric, geodesics are easily expressed in terms of one-parameter subgroups. When the
manifold is a unit sphere, equipped with the Riemannian metric induced by the Euclidean
metric in the embedding space, geodesics are just great circles. We next describe the new
algorithm for these two special Riemannian manifolds.

4.1. The new algorithm on Lie groups

In this section, G is a connected and compact Lie group, equipped with the unique right-
and left-invariant Riemannian metric, and £ denotes its Lie algebra. Elements in /£ will be
represented by capital letters.

Similarly to the Euclidean case, the construction of the spline curve that solves the initial
problem is local, so the details will be presented only for the construction of the spline
segment ¢ —> s;(¢) that joins two given points in G, p; (at t = 0) and p; 41 (att = 1),
with prescribed velocities v; = V;p; and v;+1 = V41 pit+1, where V; and V;;| belong to
the Lie algebra of G. The smoothing function is the same as in the Euclidean case.

We now describe the three basic steps that are used to obtain the required spline segment
t —> s;(t).

Step 1:  We first construct the geodesic segments which are the left, center and right
components, and are defined by:

Li(t)=e"p;,

ci(t) = eVip;, where W; = log (pi+1 p; ),

ri(t) = e(t_l)ViJrlpl._i_].

The following boundary conditions are easily checked:

1:(0) = pi, Li(1) = e p;,
1;(0) = Vipi, Ii(1) = Ve p;,
¢i(0) = pi, ci(l) = pin1
) ) W (13)
¢i(0) = Wip;, ¢i(1) = Wie" p;,
ri(0) = e Vit piyy, ri(1) = pit1,
7(0) = Vigre Vit pigy, 7i(1) = Viz1pit1.
Step 2:  Now we define t — a;(¢) and t — b;(t) by:
a;i(t) = ?DAOL (1), where A; (1) = log (c; (1) I (1)), (14

bi(t) = e?DBiWe; (1), where B; (1) = log (r: (1) ¢; ' (1)).
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The following alternative formulas for these two curves will simplify checking the boundary
conditions of the spline curve at r = 1:

ai(t) = e~ 1=9OAD ¢ (). )
bi(t) = e*(1*¢(t))3i(l)ri ().
Indeed,
e—(l—tb(t))Ai(l)Ci (1) = e¢(T)Ai(t)e—Ai(l)Ct. )

= HOAWD = log GO D) ¢, 1
= ONOLM T 1) ¢ (1)
— e¢(l)Ai(l)ll. (1)
=ai(t),

and similarly for b;.

Now, using the conditions (4) for the smoothing function ¢ and the boundary conditions
(13), we obtain from (14) and (15) the following:

a;(0) = b; (0) = p;, a;(1) =b;(1) = pi+1,
@ (0) = Vipi, ai(1) = WieVip;,
b (0) = Wi pi, bi(1) = Vig1pit1.

Step 3: Finally, we define the spline segment t — s;(¢) by
si(1) = e?@5Wai(),  where 5;(1) = log (b (1) a; ' (1)),

or, similarly,

si(t) = e¢(t)5i(t)e¢(f)Ai(f)etVipl.. (16)

THEOREM 4.1. If ¢ : [0, 1] — [0, 1] is a smooth function satisfying (4), then the curve
t > si(t) defined by (16) satisfies the following boundary conditions:

5i(0) = pi, si(1) = pit1,
5i0)=Vipi,  $i(1) =Vigipis1.

Proof. We first derive, from (16), an expression for the first derivative of s;. Using the
Campbell-Hausdorff formula

+o00
ADB()e A = A By = Z ad’ A(t)(B(1)),
j=0

where ‘ad’ denotes the adjoint operator on £ defined by ad A(B) = [A, B], and using also
the following formula for the derivative of the exponential, which may be found in [16]:

d 1 .
E(EM) = QL (1)e®, where Q4 (1) = / AW AHdu,
0
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we obtain
§i(t) = Qs (0si (1) + 2 ONOQL  (1)e? DD p;
+ OSOHOAD Y Vi),

= Qfs, (1si (1) + ? DS OQL (1)e D5 V(1) (17)
4 P DOSI0 DDAy =B DAD =S (O ()

— (Qési (1) + P OUSOQL (1) 4 HDUSOHO) adAl-(wVi) 5i (D).

The initial conditions s;(0) = p; and s;(0) = V; p;, follow easily from (16) and (17), if
we take into consideration that ¢(0) = 0. To prove that the conditions at + = 1 are also
satisfied, we rewrite the expression for s; given in (16), similarly to what has been done for
the curves obtained in Step 2, to obtain

5i(1) = e 1=6 OIS0 =A=pWBI® =(1=Vis1 )\ (18)
Consequently, an alternative expression for the first derivative is now as follows:

§i (1) = (was,- (1) + e VOUSOQL (1) 4 ¢ VDMK b2 Bt‘(’)vm) 5i (1),
(19)
where V(1) = 1 — ¢ (¢), so that ¥ (1) = 0. The final conditions, s; (1) = p;+1 and 5;(1) =
Vi+1pi+1, follow easily from (18) and (19). O

To show that when piecing together the spline segments, the resulting spline curve is
C*-smooth, one needs to derive higher-order covariant derivatives. The covariant deriva-
tive of a vector field along a curve in G (a manifold imbedded in some high-dimensional
Euclidean space R") may be viewed as a new vector field along that curve, which results
from differentiating as a vector field along a curve in R” and then projecting it, at each
point, onto the tangent space to G at that point. The details are rather technical, and will be
omitted here. Nevertheless, when G is the Lie group of rotations SO(n), with Lie algebra
so(n) consisting of all n x n skew-symmetric matrices, the Riemannian metric is defined
by (A, B) = trace(AT B), A, B € so(n), and the tangent space at a point p € SO(n) and
its orthogonal complement with respect to (.,.) are, respectively,

T,S0(n) = {Ap: Aesom)} and  T,-SO(n) ={Sp: S €sm)},

where s(n) is the set of all n X n symmetric matrices.
In this case, and after many calculations that are omitted here, we reach the final
conclusion, which is a generalization to the Lie group SO(n) of Theorem 3.1.

THEOREM 4.2. If¢ : [0, 1] —> [0, 1] is a smooth function satisfying (4), then the following
statements hold.

(i) The spline segment t — s;(t) € SO(n) defined by (16) satisfies the following
boundary conditions

5i(0) = pi, si(1) = pit1,
5:(0) = Vipi, 5i(1) = Viz1piyr,
DJs; Djé“i
—(0) =0, —(1) =0, i=1,...,k—1.
277 0) 70 (1 J
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(i1) The resulting spline curve t — s(t) € SO(n) given by

r—1t
s(t) =s; (—’> teltitiz], i=01...,m—1,
tiv1 — 1

is CX-smooth and satisfies the interpolation conditions (1).

4.2. The new algorithm on spheres

Here we describe the geometric algorithm to construct a C2-smooth spline curve inter-
polating a given set of points on the unit sphere S”, with prescribed velocities through those
points. We consider S” equipped with the Riemannian metric induced by the Euclidean
metric in the embedding space R"*!. As before, we start with the construction of a natural
spline segment between two points. This means that the second covariant derivatives are
zero at the boundary, which consequently guarantees the C2 smoothness of the interpolat-
ing curve, as soon as all the spline segments are glued together. In order to describe the
geometric algorithm that generates the natural spline segment ¢ € [0, 1] — s;(¢) € S”
joining two given points p; and p;41, with prescribed initial and final velocities, we first
recall some properties of geodesics on spheres.

Given a point xg € S” and a vector vg tangent to the sphere at xg, there exists a unique
geodesic t —> x(¢) that passes through x at time t, with velocity vo:

x(#) = cos ((r = 7)[lvolDxo + sin (¢ — 7)[lvolD) Vo, (20)

where 0y = vo/||voll.
Also, given two (not antipodal) points yo, y; € S”, the geodesic arc t +—— y(¢) which
joins yg (at r = 0) to y; (att = 1) is given by:
sin (1 —1)6y,.y,) sin (16y.y,)

y() = Yo + Vi 2D

sin By, y, sin By, y,

where 0y, ,, = cos~! (yoT y1) is the angle between the vectors yg and y;.

The formula (20) is used to generate the left component t —— [;(¢) and the right
component r —> r;(¢) of the natural spline segment ¢ —> s; (¢) that joins the points p; (at
t = 0) to pi4+1 (at t = 1) with prescribed initial and final velocity v; and v; 4 respectively.
The formula (21) is used to generate the center component r — ¢; (#) and the intermediate
curves in the algorithm below. Taking into consideration that the left component is a geodesic
satisfying the same conditions as the spline segment at ¢ = 0, that the right component is a
geodesic satisfying the same conditions as the spline segment at + = 1, and that the center
component joins the points p; (atr = 0) and p; 4 (att = 1), the algorithm is performed in
the following three steps.

Step 1:  Construct the left, center and right components, defined by:

1i (t) = cos (t||vi|]) pi + sin (¢]lv; Vi,

sin ((1 — )0p;, p;y1) - sin (160, p;y1)

¢i(t) = . .
' sin 6y, ' sin 6,

i+1,

s Pi+1 s Pi+1

ri(t) = cos ((t = Dllvit1 D pi+1 + sin (¢ = D[vig11)0i41-
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Step 2:  Now define t — a;(t) and t —> b; (t) using convex combinations (parameter-
ized by the smoothing function ¢) of the geodesics in the previous step:

sin (1 — @ ()0, (1),¢; (1)) sin (¢ ()61, ), ¢; (1))

a;(t) = - L)+ - ci(1),
SIN G (1), c; (1) SN 6y, (1),¢; (1)
sin ((1 — ¢ (¢))0,. . sin 16, .

bi (1) = (( ' @ ()Oc;(0).r: (1) () + ('¢( ) cl(t),rl(t))ri(l).
S0 Oc, (1)1 (1) SN Oc, (1)1 (1)

Step 3: Finally, we obtain the required curve:

sin (1 — ¢ (#))0q; (1),b; 1)) sin (¢ (1)0u; (1),b; (1))
- a;(t) + -
$in Bg; (1), b; (1) Sin O, (1), b; (1)

5i(1) = bi(1). (22)

In order to check that the last curve satisfies all the requirements, it is enough to compute
the first and second derivatives, and evaluate them at + = 0 and ¢+ = 1. This is a tedious
calculation that we omit here, but it can be easily checked using the following boundary
conditions for the curves constructed in this algorithm and for the smoothing function ¢:

5i(0) = a;(0) =1;(0) = p;, 5i(1) =b;(1) =ri(1) = piy1,
§:(0) = @; (0) = £;(0) = v;, §5i(1) = bi(1) = Fi(1) = vi41, (23)
§:(0) = d;(0) = L:(0) = —|viI* pis  5i(1) = bi(1) = # (1) = — |1 lI* pig1-

The last two expressions imply that §;(0) and §;(1) are orthogonal to S at p; and p;4+
respectively, so that the second covariant acceleration vanishes at the boundary points. This
observation, together with the other boundary conditions (23), is enough to conclude the
following theorem.

THEOREM 4.3. If ¢ : [0, 1] —> [0, 1] is any smooth function satisfying (4), then the spline
segment t —> s;(t) defined by (22) satisfies the following boundary conditions:

5i(0) = pi, si(1) = piy1,
5i(0) = v;, 5i(1) = vy,
DZSZ' Dzii

0) =0, 1)=0.
2 0) 2 (D

Figure 6 illustrates the result of applying the algorithm above, to generate a natural spline
segment satisfying the following data:

pi = (V3/2,=V3/4,1/4),
pit1 = (1/2,3/3/4, =3/4),
vi = (1/2,7/3,3 = /3),
vig1 = (1/10,9/5, (9v/3 — 1)/15).
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L H2T

Figure 6: Segment s;.
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