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INNOVATION PROCESSES ASSOCIATED WITH STATIONARY
GAUSSIAN PROCESSES WITH APPLICATION TO
THE PROBLEM OF PREDICTION

YASUNORI OKABE

§1. Introduction

As a continuation of the previous paper [7], we shall consider in
this paper the problem of prediction given bounded intervals and obtain
integral representations of predictors and prediction errors. For that
purpose we shall introduce innovation processes well matched with
bounded intervals. We follow the notation and terminology in [6].

Let X = (X(®);teR) be a real separable and measurable stationary
Gaussian process on a probability space (2,F,P) with expectation zero
which is continuous in the mean and purely nondeterministic. Further-
more we suppose that X has the N-ple Markovian property in the broad
sense ([7]). We then know that the spectral measure of X has a Hardy
density 4 whose outer part 7 is expressed in the form

=220 gep,

P(—2
LD PO =3 e(=id", QW =3 bu(—iD", enbacR, cy# 0

and
VPCC+, VQCC+UR, VpﬂVQ:¢,

where Vg denotes the set of zero points of a polynomial S.
In [7], we have constructed an N-dimensional stationary Gaussian
process & = (Z(¢); t e R) satisfying

1.2 Fi'=(t) = F}/~ () = o(Z @) teR .

Similarly we can obtain an N-dimensional stationary Gaussian process
% = (#(t); t e R) satisfying
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1.3) Fx"() =F;*(t) =a(@(®) (teR).

Using these processes £ and %, we shall define in §2 for any a e R
innovation processes y¥ = (v=(f); t > 0) which are standard (Fz(t); t > 0)-
Brownian motions, where F,; (t) = dFg(a) (t =0), Fx((a,a + ) (&> 0)
and F;(t) = oFg(a) (t = 0), Fx((a — t,a)) (t > 0).

In §3 we shall obtain integral representations of the predictors
E& (@ + T)|Fx((a,a + 1)) and EX(a+ T + t)|Fx((a, @ + T))) (resp.
E@@ — T)|Fx((@a — T,a))) and E(X(@ — T — t)|Fx((a — T,)))) in terms
of innovation processes yp; (resp. v;) (@eR, t >0, T >0). As an ap-
plication of these results, we shall find that Gaussian processes Y, =
Y.®);t>0) = X(+t) — E(X(F1)|0Fx(0)); t > 0) have canonical repres-
entations ([3]).

We shall obtain in §4 integral representations of the predictors
E@(a — t)|Fx((a,a + T))) and E(X(e — t)|Fx((a,a¢ + T))) (resp. E@# (@ +
t)|Fx((@ — T,a))) and E(X(a + t)|Fx((a — T,a)))) in terms of innovation
processes v} (resp. v;) (@eR, t >0, T > 0). Representation kernels in
representation theorems in §3 and §4 can be written using the solution
of matrix Riccati equation.

In §5 we shall prove orthogonal decomposition theorems of integral
representations of the predictors E(Z(—a — t)|Fx((—a,))) and E(X(—a
—8)|Fx((—a, @) (resp. E(¥(a+1)|Fx((—a, @) and E(X(a+1t)|Fx((—a, @))))
in terms of innovation processes y; and v*, (resp. »; and ;) (a > 0,
t > 0).

In §6 we shall give concrete computations in the space Z, of re-
presentation kernels in representation theorems in §3 and §4 and then
obtain explicit representations of prediction errors of E(X(a + ?)|Fx((@
—T,a), EX(@ —t)|Fx((a,e + T)) (@R, t>0, T >0) and EX(+(a
+ )| Fx((—a, ) (@ >0, £ > 0).

Using the results of the previous section, we shall obtain in §7
integral representations of the predictors E(Z(a + t)|Fx((a — T, a)))
(resp. E(@(a — t)|Fx((a,a + T)))) in terms of innovation processes y;
(resp. v}) (@ € R, t >0, T > 0) and then the predictors E(Z(a+1) | Fx((—a, a)))
(resp. E(%(—a—1t)| Fx((—a, @)))) in terms of innovation processes vi and p;
(resp. vy and v*,) (@ >0,¢>0).

§2. Innovation processes y; and p; (acR)

We denote by E the Fourier transform of % in (1.1). Then we have
the following canonical representation:
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@.1) X(t) = ¢27r—1f E(t — )dB(s) ,
where (B(t); te R) is a standard Brownian motion satisfying
(2.2) Fx(t) = a(B(s)) — B(s,); 8,8, < 1) (teR).

We define an N X N-matrix A and an N X 1l-vector & by

0 ay
0
-1 0 a, by
@.3) A=| -10 a4 | ana p=|" |,
0 .. 0 CL‘N—Z bN—l
\ -1 ay_,)

where a, = ¢,¢y* (0 <n < N —1). Since the characteristic equation of
A is equal to (—1)Y¢3'P(i7'2) and so all eigenvalues of A have negative
real parts by (1.1), we can define N real L’*-functions £, O <n <N —1)
and a real L:-function F' by

(2.4) E (&) = v217 () (e4-b),, (teR)

and
1

@.5) F(t) = — v/Zrci'yo.n ()] o4 0 teR).
o/ /v

Using these L’functions F,, we define an N-dimensional stationary
Gaussian process & = (@) ;teR) = (X|(t), -+, Xy_(E)*;tc R) by

(2.6) X, () = x/Zr"“r_ B,t—sdBs) O<n<N-—1, teR).

Then we see from the results in [7] that

THEOREM 2.1 (i) Xy_,(t) = (—2n)"'cyX(®) (teR.

(ii) {X,.®;0<n <N —1}is linearly independent in My for any t € R.
(ili) Mgt = M;(t) and Fy(t) = F;(t) (teR).

(iv) /() is equal to the linear hull of {X,(#);0<n<N —1} (e R).
(v) Fy~@t)=Fy @) =aZ®) (teR).
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(Vi) @) — Z(s) = v2a"(B(&) — B(s)b + f AZw)du (s < 1)
(vil) &) = e-942(s) + /a7 f et-4.pdB(w) (s < 1).

il) EX®|F56) = 3 (—1F9E — 9X,(5) 5 < D).

(ix) E(@&E®|Fz(s)) = e 4% (s) (s < 1)
[2.1] Now we fix any a e R and define the s-fields F;(f) (t > 0) by

oFx(a) t=0,

2.7 Frt) =
@D © {Fx((a,a +8) ¢>0.

Then we shall show

THEOREM 2.2. There exists a standard Brownian motion v} =
Wi@);t > 0) such that

(i) »;(0) =0,

(i) F:(@) = oFx(@) V o(»i(8);0<s<t) (¢t >0),

(iii) 7 is independent. of the o-field 0Fx(a),

(V) Xt +0) — X (@) = V22 b, () + b,,oe.J“” B(Z(5)| Fx((a, 9)))ds
t>0),

where m,=max{ne{0,1, ---,N —1};b, #+ 0} and b,e = the n, + 1-th
row of the matrix A.

Proof. By (iv) we define a stochastic process vi = (v (®); ¢ > 0) with
continuous paths. It then follows from (2.2), Theorem 2.1 (iii) and (iv)
that p; is a square integrable (F:(f);t > 0)-martingale with expectation
zero. We put M =N — 1 —n, It is easy to see from Lemma 2.4,
Theorem 2.1 (i) and Lemma 4.1 (i) in [7] that E™»(0+)=00 < <M —1).
This implies by (2.1) that X(f) is M-times differentiable in the mean
and a stationary Gaussian process X = (X™(t);te R) has the same
property as X. Applying Theorem 2.1 in this paper to the process X‘*,
we have an N-dimensional stationary Gaussian process £, = (Z () ; te R)
such that &y y_,(t) = (—27)7'cy X’(t) and

g‘M,N—l(t + (L) - '%‘M,N—l(a’)
= (—-1D¥b,, V2z Y(B(t + @) — B(a)) + JWC (AZ y(w)y_,du t>0.

Using this process %,, we define an R%Y-valued stochastic process
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(Z@®);t > 0) and a real valued stochastic process (Y(t);t > 0) by
Z(@t) = Xy + a) — E(& 4t + a)|0Fx(a)) ,
Y(#) = (—1)* «/Z—ne-j: #(s)ds + Bt + a) — B(@) ,

and then a real valued stochastic process (7:(¥); ¢ > 0) by
Pi®) = Y(t) — (—1)¥ vZze j E(Z(s)| Fx((a, 0 + $))ds .

Then it follows from the results of [4] and [5] that (i(?);¢t>0) is a
standard (F;(%);t > 0)-Brownian motion for which ¢(y;(s);0 < s <?) is
equal to o(Y(8);0 < s <t) and o(pi(w) — p2(); u,v > 1) is independent
of F} (). By +the definition of the process (Y({#);t>0), Y() =
(D0 X% w1 + @) — E(Zy,v_1(t + a)|0Fx(a))). Therefore, noting that
0Fg(a) =o(X™(a); 0 <n < M) and &'y y_,() = (—27) ey X0(t), we find that
a(Y(8);0 <8 <t) VaFg(a) = Fx((a,a + t)) and so F; (t) = oFx(a) V o(u;(s);
0 <s<t). On the other hand, by the definition of the processes (v} ({);
t>0) and (;(®); t > 0), we see that (v;(¥) — »;(®); t > 0) is a bounded
variation process. Since (v;(¢); £>0) and (;(t) ; ¢>0) are continuous (F,; (t) ;
t>0)-martingales, we find that v (¥) = 5:(t) for any te[0,o0) and so
this completes the proof of Theorem 2.2. Q.E.D.)
[2.2] Next we define the o¢-fields F;(¢) (t > 0) by

E)FX((L) (t =0) ’

@8) Fo® = {Fx((a —ta) E>0).

N
Noting that # = E, we see that there exists a standard Brownian motion
(B_(t); te R) for which the followings hold:

2.9) X(t) = v/25! r E(s — )dB_(s) ,

(2.10) Fx(t) = o(B_(s) — B_(s,); 81,8, > 1) (teB) .
Using this Brownian motion (B_(t); teR) and N real L’-functions F,
O<n<N-—1) in (2.4), we define an N-dimensional stationary Gaussian
process ¥ = (Z(@); teR) = (Y (@), -+, Yy_(£))*; te R) by
@11) Y. = Jz“n-lj“ E(s—8B.(s) O<n<N-—11tcR).

t

Similarly as in Theorem 2.1, we have
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THEOREM 2.8. (i) Yy_(t) = Xy_i(®) = (—2r)"'cyX(@) (tcR).

(ii) {Y.®;0<n< N — 1} is linearly independent in My for any
teR.

(iii) Mz®) = M;(t) and F3@t) = F;(t) (teR).

(iv) M3z*@) is equal to the linear hull of {Y,#); 0 <n <N — 1}
(teR).

(v) Fy*() = Fy/*(t) = o(# (@) (teR).

(vi) @(s) — U(t) = v (B_(£) — B_(s)b + f AZw)du (s < 9.
(Vi) @(s) = e“-94@(t) + v/2r! j‘ =94, bdB_(w) (s < ).

(vil) EX(s)|Fi(®) = Ig:(—l)”F‘m(t — Y, () (s < b

(ix) E@)|F@®) = e %) (s < B).
By virtue of Theorem 2.3, in the same way as Theorem 2.2, we
obtain

THEOREM 2.4. There exists a standard Brownian motion v = (v;(£);
t > 0) such that

(i) »7(0) =0,

(ii) F;(t) = 0Fg(a) Vo(u;(8); 0<s <) (£ >0),

(iil) w7 ts independent of the g-field dFx(a),

iv) Y,(a—1t)—Y, () = v2r7'b,v;(®) + l>n.,e~r_c E(%(s)| Fx((s,a)))ds
& >0).

DEFINITION 2.1. We call the standard Brownian motions p; (resp.
v7) (Fi@); t > 0)- (resp. (F;(t); t > 0)-) innovation processes associated
with the stationary Gaussian process X.

[2.3] Finally in this subsection we shall give a relation between
the family of innovation processes »: (¢ e€R). We have the unitary
transformation group (U(t); t € R) acting on the space My defined by

(2.12) Ut)X(s) = Xt + s) (t,seR) .
Then we shall show
THEOREM 2.5. Uty = v, for any ac R and teR.

Proof. It is easy to see that U({)Mjx((e,d)) = Mx((a + ¢, b + 1)),
U()oMx(a) = oMx(a + t) and UM (a) = M (o + t). We define an N-
dimensional stationary Gaussian process Z () =(U(#)X,(0), - - -, U)X »_,(0))*
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(teR). Then it follows from Theorem 2.1 (ii) and (iv) that Z() is
continuous in the mean, each component of Z(f) belongs to the space
M3/~(t) and {U®X,(0);0 <n <N — 1} is linearly independent in My
for any te R. Therefore we see from Theorem 5.1 in [7] that there
uniquely exists a constant N X N-matrix 7 for which Z(@¢) = TZ(®)
(teR). Since Z(0) = (0), we find that 7 is the unit matrix and so
Z({t) = (). By Theorem 2.2 (iv) this implies that U@)v;(s) = v;,.(s).
Similarly, we have U(t)y;(s) = v, ,(s). (Q.E.D.)

§3. Integral representations of the predictors (I)

[3.1] In this subsection we shall obtain integral representations of
the predictors E(Z(a + T)|F;(T)) (ae R, T > 0). For any a € R we define
N x N-matrices P,(t) (¢t > 0) by

3.1 P,(t) = E{(Z(a + ¢) — E&(a + O|F; 1) (Z(a + 1)
— EZ (@ + )| F;®))N*}
and then N X 1-vectors f,(t,s) (0 < s <t < o) by
(3.2) fult, 8) = et 94 (Py(s)e* + v2z7'b) .
At first we shall show
LEMMA 3.1. f,(t,8) = 0/0)EQ;(s)-Z(a + 1) (0 <s <t < o).

Proof. We put Z(s) = Z(a + s) — E(%(a + s)|F;(s)). It then fol-
lows from Theorems 2.1 (vi) and 2.2 (iv) that

3.3) Vi (t) = e-j” F(s)ds + Ba + t) — Bl@) (¢t >0).
0
Therefore we see from (2.2) and Theorem 2.1 (vii) that

EQ:(s)-Z(a + ) = j E@(@ + - FO)¥e* - de
+ E(B@ + 5) — B@)-Z( + )

- j B E (0 + ) T(O)F)e*de
0
+ x/gﬁ.—ljwrs e(a+t—:)Abd‘

a

— I et=24(P ()e* + vz B)de .
0
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On the other hand, by Corollaries 2.1 and 2.2 in [6] and the results
in [7], we find that P,(c) is continuous in ¢ and so this implies Lemma
3.1. (Q.E.D.)

LEMMA 3.2. For any ae R and any T € (0, o),

E&(@ + D) |Fx((@, 0 + 1)) = E(&%(a + T)|9Fx(a)) + j: ST, 8)dv; (s) .

Proof. Weput Y=%(a+T)—E*(a + T)|0Fx(a)) — LT Fo(T, $)dv ().

It then follows from Theorem 2.2 (i), (@iil) and Lemma 3.1 that
(d/ds)E(Y v (s)) = 0 and so E(Y-vi(s)) = E(Y-v;(0)) = 0 for any se[0, T1].
Since Y is orthogonal to the space dMy(a), we see that Y is orthogonal
to the closed linear hull of {1}(s); 0 < s < T} U dMy(a) and so Y is in-
dependent of the o-field generated by {vi(s); 0 < s < T} U dM4(a). There-
fore, by virtue of Theorem 2.2 (ii), we find that E(Y|Fx((a,a + T))) =0
and this implies Lemma 3.2. (Q.E.D.)

Next we shall derive a differential equation which P,(t) satisfies.

LEmMA 3.3. For any aeR, P, (1) is the unique solution of the fol-
lowing matriz Riccati equation :

AP0 _ (4 _ 3z be)-Py(t) + Pu()(A — VZnb-e)* — P,(t)e*- ePy(t)

dt
€>0,
P,(0) = K,(0) — 2,(0),

where X,(0) = E{E(%(a)|3Fx(a))-E(Z (a)|0Fx(a))*}.

Proof. We put 3,(t) =E{E(Z (- t)|Fi®t) -E(&(a + t)|Fi(t))*}. Then
it follows from Theorems 2.1 (xi), 2.2 (iii) and Lemma 3.2 that

i) = 4500 + [ £ut, 9128, 5)ds .
0
Noting that P, (¢t) = K,(0) — X,(t), we see from Lemma 5.2 in [7] that

d}:zat(t) = —A-3,@) — T,()A* — P (B)e*-e-Py(t)

— V2P, (t)e* - b* — v/2r"'b-e-P,(t) — (2n)"'b-b*
= A-(K,(0) — 3,@®) + (K 0) — X (t)A*
— P (t)-e*-e-P,(t) — v/21r P (D)e* - b* — v/2r 'b-e-P,(t)
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= A-P,(t) + P (t)A* — Py (t)e*-e-Py(t)
— V217 P, (t)e* - b* — v/2a7'b-e- Py(t)
= (A — V217'b-&)P,(t) + P,(t)(A — v/217'b-&)* — P,(t)e* -e-Py(?) .
(Q.E.D.)
We define an N X (N — ny)-matrix J by

(3'4) J = (Kar(o)'mn)ﬂgmglv— 3 * (Kx(o)mn);olsm, n<N-1 *

noSnEN -
Then we shall show
LeMMA 3.4, 2o(0) = J- (KO ninzney1 = I KO nnnosm, ncv-1'J*.
In particular, 2,(0) is independent of a.

Proof. Since the dimension of the space oMx(a) is N — n, ([1]), it
follows from Theorem 2.1 (i) (ii) (vi) that oMx(a) equals the linear hull
of {X,(a); ny <n <N — 1}. Therefore there uniquely exists an N X (N
— my)-matrix J(a) such that E(%(a)|oFx(a)) = J(@)(X,, (@) - - Xy_,(@))*. This
implies that

J (@)
= E{Z(@)- (X (@) - - Xy_1(@)} E{(X (@) - - - Xy _y(@))*+ (X (@) - - - Xy _y(@))}
= E{Z(0) (X ,(0)- - - Xy _1(O)} B{(X 1,,(0) - - - Xy _1(0))*+ (X, (0) - - - Xy, (0D}
and so we have Lemma 3.4. (Q.E.D.)

By the uniqueness of local solutions, we see from Lemmas 3.3 and
3.4 that

LEMMA 38.5. For any a,be R P,(t) = P,(t) (t > 0).
Consequently, combining above lemmas, we obtain
THEOREM 3.1. For any ac R and any T € (0, co),
EZ @@ + T)|Fx((a,a + T)))
= (@@ + DoFx(@) + | ¢™P4Pe)e* + V2 DBL()
= T4 (X @+ X @) + [ T PO + VEDDLG)

where J is the N X (N — ny)-matriz given by (3.4) and P(t) is the unique
solution of the following matrix Riccati equation :

https://doi.org/10.1017/50027763000021796 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021796

90 YASUNORI OKABE

dzit) = (A — v2z7'-e)P(t) + P(t)(A — v/217'b-&)*

@3.5) — P(t)e*-e-P(t) (t>0),
P(O) = Kx(O) - J'(Kx(o)mn)nos'm, nsN—l‘]* .

[3.2] In this subsection we shall obtain integral representations of
the predictors E(@(a — T)|F;(T)) (@ R, T > 0). Similarly as in Lemmas
3.1 and 3.2, we see from Theorems 2.3 and 2.4 that

LEMMA 3.6. For any ac R and any T e (0, co),
E@ @ — T)|Fx((a — T, a))
= BE@(a — T)|0F(@)) + jr eT-94(Q (8)e* + +/2-B)dvz(s) ,
where Q) =E{(# @ —1) —E@@—)|F;,®)} - @@—1t) — E@@ —
| F - ()))*}.

In the same way as Lemma 3.3, by Theorems 2.3, 2.4 and Lemma
3.6, we have

LEMMA 3.7. For any acR, Q,() satisfies the following matrixz
Riccati equation

0D _ (4 — V2EB-€)Qu®) + Qu)(A — VIO~ Qut)-*- e Qu(0),
Q.(0) = K,(0) — 11,(0) ,
where I1,(0) = E{E(%(a)|0Fx(a))- E(%(a)|3F(a))*}.
Now we shall show
LEMMA 3.8. For any ac R Q,(0) = P(0).
Proof. Similarly as in Lemma 3.4, we see that
IT,0) = J - (Ky(O)m)npsm, nev—1-J* »
where J = (Ko(Onocmer-1 * Ko@) mm)im ney-1. On the other hand, it

noSns<N -1

follows from (2.6) and (2.11) that K,0) = K,(0). This implies that
Q.(0) = P(0). (Q.E.D.)

Therefore, we find from Lemmas 3.6, 3.7 and 3.8 that

THEOREM 3.2. For any ae R and any T € (0, o),
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E@ (@ — T)|Fx(la — T, a))
— E@(a — T)|oFx@)) + r eT-D4(P(s)e* + /27-B)dvz (s)

= (Y@ Yy @) + [ €T APEE + VI ()
. ;
where J is the N X (N — ny)-matriz given by (3.4) and P(t) is the unique
solution of the matrix Riccati equation (3.5).

[3.3] As an application of Theorems 3.1 and 3.2, we shall show

THEOREM 3.3. For any acR, te (0, ) and T (0, o),
(i) EX(a+ T + t)|Fx((a,a + 1))

=FX(@ + T + t)|oFx(a))

4 (0---0(—cp)127) j F(T + t,9)dvr(s)
() EX@— T — t)|Fx((@ — T, )
— E(X(a — T — t)|0Fx(a))

T
+ 0+ 0(—e)20): [ £T + £, 99,
where f(t,s) is the N X l-vector function for a =0 in (3.2).

Proof. By Theorems 2.1 (xi) and 3.1, we have

E@@+ T + )| Fx((@,a + T)))
= E(e“%(a + T)|Fx((a,a + T)))

T
= AE@E @ + T)|0F2@) + || (T, 8)dvi(s)
T
= B@@+ T+ DIoFx@) + [ ST + t,9d5() .
Therefore we obtain (i) noting Theorem 2.1 (i). By Theorem 2.3 (i) (xi)
and Theorem 3.2, (ii) is similarly proved. (Q.E.D.)

Immediately from Theorem 3.3, we have

THEOREM 3.4. For any ac R and te (0, 00),
(i) X(a +t) = E(X(a + t)|0Fx(a))

+ (0-. .0(—cN)’12n)-j:f(t, s)dv; (s) ,
() X —t) = E(X(a — t)|0Fx(a))
+ 0 -0(—ex)20)- [ £(t, (o) -
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We define two Gaussian processes Y, = (Y. (#); ¢t > 0) by
(3.6) Y.®) = X(£1t) — E(X(%1)|0Fx(0)) .

From Theorem 3.4, we have the following representations
3.7 Y.() = 0---0(—ex)20)- [ £t 9D .
0

It is easy to see from Theorems 2.2 (ii) and 2.4 (ii) that ¢(Y.(s); 0 < s
<tV oF(0) = o(rE(s); 0 < 8 <t) VVoFx(0). Moreover Y. and p¢ are
independent of 6F;(0). Therefore we obtain

3.9 0(Y.(8);0<s<t)=0(5(); 0<s8<?) t=>0).

This implies that representations (3.7) are canonical ([3]).

§4. Integral representations of the predictors (II)

In the previous section we have obtained integral representations of
EX® + t)|Fx(a,0))) — E(X(b + t)|0Fg(@)) (¢ <b, t >0). The aim of this
section is to obtain integral representations of E(X( + t)|Fx((a, b)) —
EX® + t)|oFx() (@ < b, t > 0).

For any a e R we define N X 1-vectors g,(f,s) (0 <s, t < o) by
@1  g@,8)=E{%@a+ 1) (@ a—s) — E@F@w— 9)|F;(s))*}-e*.
Then we shall prove

LEMMA 4.1. g,(&,s) = @0/0s)E(; ()% (a + 1)).

Proof. We put 9(s) = ¥(a —s) — E(%(a — $)|F;(s)). It then fol-
lows from Theorems 2.3 (vi) and 2.4 (iv) that

“.2) () = e-f F(s)ds + B_(@) ~B_(a—1t) (E>0).
0
Therefore, by (2.10) and Theorem 2.3 (v) (vii), we have

E@;(s)%(a + 1)
= e“AE{ug(s)(@(a) - «/Zz:"l'rl+

a

¢ e(u—a)Ade_(u))}

a

= cuBfe. [ 00d @@ — VB - @45 aB_w)

= E(e- j F(O)de-Y(a + t)) .

This implies Lemma 4.1. (Q.E.D.)
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Similarly as in Lemma 3.2, we can see from Theorem 2.4 and
Lemma 4.1 that

LEMMA 4.2. For any ac R, te (0, ) arnd T e (0, oo),
E@(a + )| Fx((a — T,a))) = E(#(a + t)|0Fx(a) + LT g.(t, 9)dvz(s) .

Next we shall obtain an explicit form of g,(f,s). We define for any
te[0,0) an N X N-matrix R(t) by

(4.3) R(t) = E{Z()-(%(0) — E(%(0)|0Fx(0)))*} .
LEMMA 4.3. For any ac R
2.(t, s) = R(t)D*(s)e* 0<s t< o),

where @(s) is the unique solution of the following linear differential

equation
abs) _ 4 I

“.4) s (A — P(s)e*e — v/2r7b-e)0(s) (s> 0),
O0) = I .

In particular, g,(t,s) are independent of a.

Proof. We put R,(t,s) = E{% (@ + t)-(#(a —s) — E@(a — s)| F;())*}.
By Theorem 3.2,

R,(t,s) =E{% @+ t) (%@ —s) — E@(a — s) |0Fx(a)))*}
_E@@+ b j:f*(s, Ddvz ()
=I1—1I.

Itis easy to see from Theorem 2.4 and Lemma 4.2 that I =‘r g.(t, ) f*(s, Ode.
0

On the other hand, by Theorem 2.3 (iii) (ix), I = E{@(a + t)-(%(a) —
E@(a)|0Fg(@))*}-e4*. Since Ky(0) = K,(0) and oFx(a) = o(Y,(@); n, <
<N —1), it can be seen that E(%(a)|dFx(@) = J- (Y, (@) --Yy_(@)*,
where J is the N X (N — ny)-matrix in (3.4). Therefore we find that
I = E{% @)(#(0) — E(%(0)|0Fx(0))*}e*4" = R(t)e’4". Consequently, we have

R.(,s) = R)e " — L R, De* - £5(s, )de .

Since (9/9s) f*(s,0) = f*(s,0)A* by (3.2), we obtain the following linear
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differential equation

%Ra(t, 8) = R,(t, S)(A — P(s)e*e — v2z-'b-&)* (s> 0),
R,(t,0) = R(®) .

Thus, using the unique solution @(f) of equation (4.4), we find that
R,(t, s) = R(t)P*(s) and this completes the proof of Lemma 4.3. (Q.E.D.)

In the proof of Lemma 4.3, we have shown
4.5) R(t) = K (0)e'** — E(Z(t)- (Y ,(0)- - - Yy _,(0))) - J*,

where J is the N X (N — ny-matrix in (3.4). Furthermore we define
for any te R an N X (N — ny-matrix J(t) by

(4-6) J(t) = (Kvy(t)mn)osmslv—ll ‘(KW(O)mn);oISm, n<N-1 *

noSnsN -
Immediately from Lemmas 4.2 and 4.3, we have
THEOREM 4.1. For any acR, te(0,) and T € (0, o),
E@ (@ + )| Fx((@ — T,m))
= I (Yol@ - Yo + || ROD @) .
Since K, (—t) = K (t) (t > 0), it is easy to see from (4.3) and (4.5) that
E{Z(—t)(Z(0) — E(%(0)|0F,(0)*} = R(t) (¢t > 0). Therefore, similarly as

in Theorem 4.1, we can show from Theorems 2.1, 2.2, 3.1 and (8.3)
that

THEOREM 4.2. For any ac R, tc(0,) and T € (0, o),
E@* (@ — t)|Fx((a,a + T)))
= JE)(X (@) - - Xy (@)* + j RO*S)e*dvi(s) .

For any ¢¢[0,c0) we define a 1 X N-vector r(t) by

4.7 () = E{X(@®)-(¥(0) — E(%(0)|9Fx(0)))*} .

Since X(¢) = (—2n)c7' X y_1(®) = (—2r)c3*Y y_,(t), it can be seen from
Theorems 4.1 and 4.2 that

THEOREM 4.3. For any ac R, tc(0, ) and T e (0, o),
(i) EX(a + t)|Fx((@a — T, a))
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— E(X(a + t)|0Fy@) + j HEO*(8)e*dvz(s)
() EX@ — t)|Fx((@, a + T))
= B(X(a — £)|aFx(@)) + LT HE)O*(s)e*dv? (3) .

More generally, we define for any Y € My two 1 X N-vectors r.(Y)

by

4.8 r,(Y) = E{Y -(Z(0) — E(Z(0)|0Fx(0)))*}
and

“4.9) r_(Y) = E{Y - (#(0) — E(%(0)|aF(0)))*} .

Note that r(t) = r.(X(—1)) = r_(X(#)) (t€l0, ). Using the unitary
operator U(—a) in (2.12), we can prove, by Theorem 4.3,

THEOREM 4.4. Let any ac¢ R and T € (0, o) be fixed.
(i) For any Y e Ma)

E(Y |Fy(@ — T, q))) = E(Y |aFx(@)) + j 1 (U(—a)Y)D*(s)e*duz (s) .
(i) For any Y e Mz(a)

E(Y|Fx((a,0 + 1)) = E(Y|dFx(a) + LT r (U(—a)Y)0*(s)e*dv; (s) .

§5. Integral representations of the predictors (III)

In this section we shall obtain integral representations of E(X(a
+ t) | Fx((—a, a))) — E(X(a + t)|0Fx(0)) (@ >0, t > 0). We define for any
te[0, o) two N X N-matrices S.(f) by

é.D S.(@t) = E@@)-Z2*(0))-K.(0)!
and
(5.2) S_(t) = E(Z(—1)-Z*(0))-K,(0)™* .

As an application of Theorem 4.1, we shall prove
THEOREM 5.1. For any ac (0, ) and e (0, ),
E@ (@ + )| Fx((—a,a))
= B(@( + 8)[0Fz0) + || S, 4P©e* + VZ8)di ©)
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+ f * RIOO*(s)e*dvz(s) .
Proof. It is easy to see from Theorem 4.1 that
E@(a + t)|Fx((—a,®)) = E(%(a + )| Fx((0,a))) + IZGR(t)@*(S)e*dv; (s) .

By Theorems 2.1 (iii) (iv) and 2.3 (iii) (iv), we can show that
E@ (@ + t)|Fx@) = S.)%(a) .
Therefore, it follows from Theorem 3.1 that
E@(a + t)| Fx((0, a)))
= 5. E@@|F0) + | f(@, 9 (s)
= E@ (@ + )10FxO) + | 8,(0£@ 985,
where f(a,s) are N X 1-vectors in (3.2). Thus we have proved Theorem
5.1. (Q.E.D.)
Similarly, we find from Theorems 3.2 and 4.2 that
THEOREM 5.2. For any ac (0, ) and te (0, ),
E(%(—a — t)|Fx(—a, a)))
= E(Z(—a — 1)|0Fx(0)) + f: S_(t)e @ 4(P(s)e* + +/2n'b)dy; ()

+ ra R(@®)P*(s)e*dvZy(s) .

Remark 5.1. By Theorems 2.2 (ii) (iii) and 2.4 (ii) (iii) we note
that the decompositions in Theorems 5.1 and 5.2 are orthogonal.

For any te[0, ) we define two 1 X N-vectors S.(f) by

(5.3) S, () = E(X(t)-2*(0))-K,(0)}
and
(5.4) S_(t) = BE(X(—1)-2*(0))-K,(0)*.

Since X(t) = (—2n)c7'Xy_(t) = (—27n)c7*Y 5_,(t), we can show from Theo-
rems 5.1 and 5.2 that

THEOREM 5.3. For any a ¢ (0,00) and te (0, o),
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(i) B(X(@ + t)|Fx((—a, )
— E(X(@ + t)|aF(0)) + f S, (£)e @2 4P(s)e* + v/ B)dy; (s)

+ f“ r(B)D*(s)e*dvz (s)

(i) EX(—a —1)|Fx(—a,a))
= E(X(—a — ?)|0Fx(0))

+ j S_(B)e@4(P(s)e* + +/2x~'B)dyy (s)
+ f” HBD*(s)e*dy* ,(s) .

More generally, we define for any Y € My two 1 X N-vectors S.(Y)

by

(5.5 S.(Y) = E(Y-2*(0))-K,(0)
and

(5.6) S_(Y) = E(Y-#*(0))-K,(0)" .

Using the unitary operators U(+a) in (2.12), we can generalize Theo-
rem 5.3 as follows.

THEOREM 5.4. Let any a < (0, o) be fixed.
(i) For any Y e Mi(a)

E(Y|Fx((—a, a)))
= E(Y|aFx(0)) + I S, (U(—a)Y)e @ 94(P(s)e* + +/2z7'b)dy; (s)

+ f“ r_(U(—a)Y)D*(s)e*dvz(s) .

(i) For any Y e Mz(—a)
E(Y|Fx((—a, )
= E(Y |0F¢(0)) + ‘[: S_(U(@)Y)-e@=24(P(s)e* + v2z~'b)dv; (s)

+ f * r (U@Y)-0%(s)e* dv*ofs) -

Remark 5.2. We note that the decompositions in Theorems 5.3 and
5.4 are orthogonal.
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§6. Prediction errors

In [6] we have obtained the following commutative diagram

My -z,

6.1) U, v
IT{ K, L(R)

Uk(-—t) = X(¢) , K(F(-—1) = v2r'E@t—-) and UX(®) = ei .

Similarly we have the following commutative diagram

U

MX e Zd
(6.2) U*T TT; K(k(-—t)) = ¥2z7'E(-—t) .

S nw,
We note that
6.3) f =2 \(Vf-)N = V2 (VS -W)N (f e LA(R)) .
Using L*-functions E, in (2.4) we define N functions ¢, in Z, (0 <n <
N —1) by
(6.4) 0on = V22 V(E,) .

It is easy to see from (6.3) that
6.5) VW2z'E,t—")) =e-¢, and VW22 'E,(-—1t) = e, .
Therefore it can be shown from (2.1), (2.6), (2.9) and (2.11) that

(6.6) UX,®) = e, and UY,®) = e -&,.

Furthermore we are able to prove by Theorems 2.2 (iv) and 2.4 (iv)
that

©.7) V6D = VZ= [ (532000t — Pyyaunle- UZ()D)ds
and

68 UG =VE& [ G- (—ie

— Pyea(e- UZ(sDD)ds ,

where UZ(s)=(UX(s), -+ -, UXy_(8)* and UZ(8)=(UY(s), - - -, UY y_,(8))*.
We define functions Dz(t,2) by
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DI, 2) = «/Z—n{b;:gono(l)'i,%e““““ — Priaarny(e- UZE + a))A)},
D;(t, ) = ¥ 2a{brlpn(—D(—id) - €44 — Py oy (e U¥ (@ — £))(D} .
By (6.7), (6.8) and (6.9), it follows from Theorems 3.1 and 3.2 that

(6.9) {

Di(t, D) + +/2x f : e- (¢, 9Dz (s, Dds

= V2a{b;lpn (DNt — Poy(e- UZ(E + a)D}
D;(t,2) + v2x j 0 e- £(t, Dz (s, Dds

= v2a{b;20a,(— D(—iDe! " — Pyy, (e U¥ (@ — )} .

In [6] we have introduced the function P(1, ¢)(2 € C, ¢ € 0({0})) defined
by

6.11) PUg) = @07 %, (3 Corsnp O )(—id"

(6.10)

We then define N functions P, 0 <n <N — 1) by
(6.12) P, = @) 'PQ,2") .
Firstly we shall prove
LEMMA 6.1. ¢, =P, for any ne{n,n, +1,---,N — 1}.
Proof. We define N real L’-functions F, (0 <n < N — 1) by
1
(6.13) Fot) = V22 1y, @®)] et4 ?
0//n
By Lemma 8.2 in [6] and (2.8), (6.8) in [7], we have
(6.14) F,=@®)DYP(—-,2"-P(— )" = (P,P-H".

Since P, (n, <n <N —1), P and @ are polynomials of at most order
N — n,— 1, N and n,, respectively, we see from (2.7) in [7] and Lemma
4.1 in [7] that

(6.15) E,=@,QPY=CP, i) m<n<N-=1).

This implies Lemma 6.1 by (6.3) and (6.5). (Q.E.D.)
Noting that Py_, = —(2n)"'cy, we note by (6.11), (6.12) and Lemma
6.1 that
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e (P - -Py_,()* if n,>1,

6.16 b20n (iR = . .
(6.16) on(Di (2rby)~! f} ci(—1iA)* if n,=0.
k=1

Moreover, by Theorem 3.1 and (6.6),

(6.17) Pz UZ(E + a))(2) = ete- 4T - (0 (D) -+ - on_1(D)* .
Therefore, defining functions (¢, 1) by

(6.18) W(t, ) = v/2x{b;letp, ()id — e-et4T (pn(A)- - - o1 ()*}

we find from (6.10) that

(6.19) Di(t,2) + V2 || e £(t, OD:(s, Dis = ey, 1) .

By the uniqueness of solution of Volterra equation (6.19), we have

(6.20) Di(t, ) = et Di (¢, 2) .
Similarly, by Theorem 3.2, (6.6) and (6.10),

(6.21) Dzt D) + V2r j e f(t,9)Dz(s, Dds = e'y(t, —2)
and
(6.22) D;(t, 2) = e**Dy(t, 1) .

In particular, we see from (6.19) and (6.21) that
(6.23) Di(t, A = Dy (t, —2) .

Next we shall obtain explicit representations of functions f(¢,s)
and g(t,s) in (3.2) and (4.1), respectively.

LEMMA 6.2. (i) f(t,8) = (Di(s, -), € )y
(ii) g(t, S) = R(t)@*(S)e* = (Do_(s; '), e“"¢)49
where ¢ = (¢q - - on_D*.

Proof. By (6.7), (6.8) and (6.9),
(6.24) Vi@ = £ [ Dixl— @), )d:
Therefore it follows from Lemma 3.1 and (6.6) that

£t ) = %E(us(s)-ﬂr(t)) = (Di(s, ), €t ), .
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Similarly we find from Lemmas 4.1, 4.3 and (6.6) that
8t 9) = ROD*@e* = 2 BGrP) = (D5(s, ), ¢, .
(Q.E.D.)
LEMMA 6.3. S.(#)f(a,s) = (Dg(s, -), eiero),.
Proof. By (5.3), (6.4), Theorems 2.1 (ix) and 2.3 (ix),
(6.25) S.#) =(0--.0 (—cy)2m)e4 .
Therefore it follows from (3.2) and Lemma 6.2 that

S. A f(@,8) =0---0(—cy)2n) f(a + ¢,8)
= (0---0 (—cy)2n)(D; (s, +), €% ), .

Noting that ¢y_, = Py_, = —(2n)~'cy, we have Lemma 6.3. (Q.E.D.)
LEMMA 6.4. r()@*(s)e* = (D;(s, -), €),.
Proof. By (4.3), (4.7) and Lemma 6.2,

r@)0*(8)e* = (0- -0 (—cy) 2r)R(E)D*(s)e*
=(0---0(—cyn)2m)(D5 (8, ), ),
= (D5 (s, -), €, . (Q.E.D.)

Now we shall obtain explicit integral representations of prediction
errors.

THEOREM 6.1. For any aeR, te(0, ) and T € (0, o),

[X(@ + 8 — EX(a + 0| Fx((@ — T, ) |P
= [X(e —?) — E(X(a — ?)|Fx((@,0 + )|

- j (Di (s, -), e*)ids — j (D (s, ), et)ds .

Proof. Using Lemmas 6.4 and 6.2, we see from Theorems 4.3 and
3.4 that

X+ 8 — EX(a + )| Fx((@ — T,0) P
=[|X(@ + DI — |EX(@ + )| Fx((e — T, o))"

= | X(@ + DI — |EX(a + t)|oFz@)| — I: D5 (s, +), €*)ids

= ”X(a + t) i E(X(a/ + t)lan(a))Hz — J:' (DO-(S, .), it st
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= [[Dits, ), erds — [ (Dsts, ), e ds
0 0
The rest is similarly proved. (Q.E.D.)
THEOREM 6.2. For any ac (0, ) and &< (0, o0),
[ X(+(a + 1) — E(X((a + )| Fx((—a, )|}
= [ @i, ), e ods — [ (D565, ), eds
Proof. Using Lemmas 6.3, 6.4 and 6.2, we find from Theorems
5.3 and 3.4 that

1 X(£(@ + 1) — EX(x(a + )| Fx(—a, a))|?
= | X(x(@ + N — |[EX(=(a + t) | Fx((—a, a)) |}
= [|X(£(@ + D — |EX(*(a + 1)) |0F(0)]?

—~ j (Di (s, ), e1aroryids — j (Di (s, -), €)eds
= [ X(+(@ + 8) — BEX(+(a + ))|aFO)|?
- f " (Di(s, ), et Yids — f (Ds (s, ), et )ds

= r” (Di (s, -), eet)ids — Jm D5 (s, -),e)ids . (Q.E.D.)

§7. Integral representations of the predictors (IV)

In this section we shall give explicit integral representations of
prediction formulas in §3, §4 and §5 using the section of the previous
section. By Theorem 3.3 and Lemma 6.2,

THEOREM 7.1. For any acR, te(0,) and T € (0, c0),
(i) EX(a + T + t)|Fx((a,a + T)))

T
= BX(a + T + 8)[0Fx(@) + [ Di(s, ), e“T+),ds)
(i) EX(a—t—D)|Fx((a — T, a))
= EX(a — T — t)|9Fx(a)) + j: (D (s, ), 7*) dy; (8).
Similarly, we see from Theorem 3.4 and Lemma 6.2 that

THEOREM 7.2." For any ae R and t e (0, c0),

X(@ + t) = B(X(a + 8)|Fx(0)) + j (Di (s, ), € ,dvi(s) .

https://doi.org/10.1017/50027763000021796 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000021796

INNOVATION PROCESSES 103

By Theorem 4.3 and Lemma 6.4,

THEOREM 7.3. For any ae R, tc(0,c0) and T € (0, ),
(i) EX(a + )| Fx((a — T,a)))

= EX(@ + 8)|0Fx(@) + [ D56, ), ),
(i) EX( —)|Fx(@,e + 1))
= E(X(@ — D]oFz@) + [ Di(s, ), 60,2 ®).
From Theorem 5.3, Lemmas 6.3 and 6.4, it follows that
THEOREM 7.4. For any aec (0, ) and te (0, ),
EX(£(a + )| Fx((—a,a)))
= E(X(x(a¢ + 1)) |0Fx(0)) + j: (D5 (8, +), €497 07) 4duis (8)

+ jza (.DE(S, ')y e“.)Ad"’:a(s) .
By (6.6), (6.20), (6.22) and (6.24), we have

@) L B@@+ i) = LE@ @ — () = Dits, ), ),
Therefore, similarly as in Lemma 3.2, we obtain the following Theorem
7.5 as a supplement of Theorems 4.1 and 4.2.

THEOREM 7.5. For any ac R, te(0,c0) and T € (0, ),
(i) E@@+ v)|Fzx((a —T,a))

— B@(a + )|0Fx(@) + f (Di (s, -), €4) vz (8),
() E@(@— )| Fx(@ o + )
— E(@(a — t)|oFx(@) + j (Di (s, ), €9) vz (s) .

Furthermore, as a supplement of Theorems 5.1 and 5.2, we shall prove

THEOREM 7.6. For any ac (0, o) and te (0, co),
(i) E@&Z(a + )| Fx(—a,a)))

— E@(a + )|aFx(0) + f (Di (s, -, €4¢+0"p) i (5)
+ j (Di (s, -, €°),dvi (s),

(i) E@(—a — ) |Fx(—a,a))
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= BE@(—a — £)|3Fx(0)) + j (D (s, -), €42+ 0"0) i ()
+ j “(Di(s, -, €) vt ofs) -

Proof. By Theorems 7.5 (i), 2.1 (ix), 3.1 and Lemma 6.2,
E@(a + t)|Fe((—a, a)))
— E@(a + 1)|F3(@) + j (Di(s, ), €0) vz ()

= E@ (@ + O)|Fx(0, ) + j (Di (s, -), €*¢p) vz (5)
— B(Z(@ + £)|F5(0) + j (Di (s, -), €9+0"0) i (s) .

Similarly, we have (ii) from Theorems 7.5 (ii), 2.3 (ix), 3.2 and Lemma
6.2. (Q.E.D.)

Remark 7.1. Theorem 7.3 (resp. Theorem 7.4) follows immediately
from Theorem 7.5 (resp. Theorem 7.6).

Remark 7.2. The decompositions in Theorems 7.4 and 7.6 are
orthogonal.
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