REPRESENTATIONS OF ALGEBRAIC GROUPS

ROBERT STEINBERG*

To Professor Ricuarp BrAUER on the occasion of his 60th birthday

§ 1. Introduction

Our purpose here is to study the irreducible representations of semisimple
algebraic groups of characteristic = 0, in particular the rational representations,
and to determine all of the representations of corresponding finite simple
groups. (Each algebraic group is assumed to be defined over a universal field
which is algebraically closed and of infinite degree of transcendence over the
prime field, and all of its representations are assumed to take place on vector
spaces over this field.)

To state our first principal result, we observe that relative to a Cartan
decomposition of a semisimple algebraic group, there is described in §5 below
(in a somewhat more general context) a standard way of converting an iso-
morphism on the universal field into one on the group, and that relative to a
choice of a set S of simple roots, an irreducible rational projective representation
of the group is characterized by a function from S to the nonnegative integers,
to be called, together with the corresponding function on the Cartan subgroup

of the decomposition, the high weight of the representation [13, Exp. 14 and 15].

1.1 TueoreM. Let G be a semisimple algebraic group of characteristic p=0
and rank I, and let N denote the set of p’ irreducible rational projective repre-
sentations of G in each of which the high weight ) satisfies 0< (@) < (p—1)
(ae S). Let a; denote the automorphism £ 7' of the universal field as well as
the corresponding automorphism (see §5) of G, and for R R let R* denote
the composition of ai and R. Then every irreducible rational projective repre-

sentation of G can be written uniquely as I1;7-,R{* (weak tensor product, Ri< NR).
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Conoersely, every such product vields an irreducible rational projective repre-

sentation of G.

This follows from 6.1 below. We need only remark here that there is no
corresponding phenomenon for groups of characteristic 0, since then the identity
is the only rational field automorphism and the tensor product of two rational
representations is never irreducible unless one of them is one-dimensional.
Related to 1.1 is the following conjecture for which there is much evidence

and for which a proof for the group of type A; would go a long way.

1.2 CoNJECTURE. If G and N are as in 1.1 and R is an irreducible, not
necessarily rational, projective representation of G, there exist distinct isomorphisms
Bi of the universal field into itself and corresponding representations R; in R
such that R=TIR} (see §5 for the definition of RY).

That the above product is always irreducible follows from 5.1 below.

Our second main result applies to naturally defined finite simple subgroups
of the groups considered above. These include all the “finite simple algebraic
groups” (those made up of the rational points of simple algebraic groups
suitably defined over finite fields), that is (see Hertzig [8]), the groups
considered by Chevalley [3] and those considered by Hertzig [8], Tits [24, 25]
and the author [19, 201, and also include the nonalgebraic groups considered
by Suzuki [22] and Ree [11], all the known finite simple groups other than

the cyclic, alternating and Mathieu groups.

1.3 TaeoreM. If G is a finite simple algebraic group and the rational field
has q=7p" elements, then every irreducible projective representation is the
restriction of a rational representation of the corresponding infinite algebraic
group. If the rank is I, the number of such representations is ¢'. FEach has a
high weight X for which 0<i(a)<g—1 (e S).

Here we also have the product representation of 1.1 with the upper limit
n in place of = (see 7.4 and 9.3). For the nonalgebraic finite groups men-
tioned above there is a corresponding result (12.2 below), but the relevant
representations of the containing infinite algebraic groups are those that satisfy
the further condition: i(a)=0 if @ is long; hence their number is ¢"%. A gap

in our development is that for finite odd-dimensional unitary groups and finite
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Ree groups of type G. we have established these results, and also the following
(see 8.1, 8.2, 9.6 and 12.5) only for ordinary representations, not for projective

representations.

1.4 THEOREM. Each of the finite groups above, algebraic or mot, has an
irreducible (ordinary) representation of dimension equal to the order of a p-
Sylow subgroup. No other irreducible (projective or ordinary) representation

has as high a dimension.

Among the subsidiary results below, we consider the character of this
highest representation (8.4, 9.6, 11.3), and present in § §10 and 11 some results
related to those rather special isogenies which give rise to the existence of the
groups of Suzuki and Ree.

In addition to [13], to which frequent references will be made, earlier
work related to our results is as follows. In [2] Brauer and Nesbitt determine
the irreducible representations of finite groups of type SL(2) and prove the
appropriate tensor product theorem, while in [13, Exp. 20] Chevalley does the
same for rational representations of the corresponding infinite groups. In [10]
Mark considers the finite groups of type SL(3), while in [27] Wong considers
groups of type SL(I/+1) and Sp(l) and proves 1.1, 1.3 and 1.4 for ordinary
representations. His methods, however, are quite different from ours, and are
not readily extendable to the other types of groups. Our methods are closely
related to those of Curtis in [4] where the representations of f in 1.1 are
constructed by infinitesimal methods and in [5] where they are shown to
remain irreducible on restriction to the corresponding finite Chevalley groups

(under the assumption p>7, which can easily be removed).

§ 2. Classical Lie algebras

Let 8. be a simple Lie algebra over the complex field C, ) a Cartan
subalgebra, >) the (ordered) system of roots relative to fc, S the set of simple
positive roots, and for each pair 7, s of roots, set ¢,s = 2(z, s)/(s, s), and define
Prs to be 0 if » +s is not a root, otherwise to be the least positive integer p
for which » — ps is not a root. Then Chevalley [3, p. 241 has shown that there
exists a generating set {X,, H,|r< >)} such that the equations of structure

of g; are:
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2.1. H-»= — H, (re>)).

2.2. Hyris=Hr+Hs if 7 is a positive integer and r+1is and r have the
maximum root length.

2.3. [H,, H]=0 (r, s€>)).

2.4. [Hy, Xl=coXs (7, s€2).

2.5. [X, X,1=H, (re).

2.6. [ Xy, Xsl= =+ prsXrss (r, s€>), r+s*0).

Let ¢ and §) denote the algebras obtained by shifting the coefficients to an
arbitrary field K of characteristic . Then X, and H, shall be considered to
belong to 8 but the subscript r shall continue to denote an element of >
For the algebras just constructed, Curtis [4] has developed a theory of irre-
ducible representations quite analogous to the classical theory in characteristic
0. Although he states and proves his results under the assumption that K is
algebraically closed and »>7, his proofs can be modified to apply to the
present situation. We recall that a representation o of ¢ is restricted if
o(X,)? =0 and o(H,)? = o(H,) for each root 7.

2.7 CurTis. With @ as above, every irreducible restricted @-module M
contains a nonzero element vy, uniquely determined to within multiplication by
a scalar, such that X,v+=0 if r is positive, and there exist integers i(a),
0<ia)<p—1, such that Huw+ = Ma)vi(a<sS). Inequivalent wmodules yield
distinct sequences i(a), and all sequences are realized. Thus there are pl

modules for an algebra of rank l.

Here and elsewhere in the paper, “g-module” means vector space over
the algebraic closure X of K on which K and 8 act according to the usual
rules, “irreducible” means absolutely irreducible, and T denotes the j)l modules
given by 2.7. As is easily seen, the modules of M (8x) may be viewed as
extensions of those of M(dx), or equivalently, the latter as restrictions of the
former. For each MM, v; is called a high vector and the linear function 4
on §) defined by A(H,) = i(a) the high weight of M. Further for a positive
root 7= 2>m(a)a (@< S), we set htr = >n(a), the height of 7, then order the
positive roots 7, 73, . . ., #m in a manner consistent with heights (if ht»; <ht

7;, then £<j), and for the monomial

(2.8 v=Xmo e X, X 0, O<ie<p—1)
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set ht v = — >4 ht 7, and finally call w homogeneous of height # if it is a
linear combination of monomials of height ». We recall that a basis for M

can be selected from the monomials.

2.9 LemMmA. Nonzero vectors of different heights are linearly independent.

Proof. Given a relation v+ v+ + - +24=0 with v; of height —17, we
prove by induction on d that each »; is 0. If d =0, this is clear.
Assume d>0. If 7 is any positive root, X;vo+ X,v1+ * - + X,04 =0, and since
X,v; is higher than »;, the induction assumption yields X;vqs=0. Thus by 2.7,
va € Kv+, and since the algebra generated by those X., for which >0 acts
nilpotently on M because M is restricted, v4=0. Then each v; is 0 by the

induction assumption.

§ 3. Classical algebraic groups

Now set x(t)=expadtX, t=K, r&>)), and let G (this is G in [3])
denote the group generated by all of these automorphisms. With 4 exceptions
[3, p. 631, which we henceforth exclude, G is simple. In G there are com-

mutator relations [3, p. 36]1:
3.1. (2(1), x(20)) = M ir+js(Cij,rs t9’) (r, s€X, 74+ 5%0).

Here the product is taken over all positive integers #, 7 for which ir+js is a
root, the terms being arranged in some fixed, but arbitrary, order, and the
Cij,rs are integers that depend on the order, but not on # x or the field K.
We also have from [3, p. 36]1:

3.2. For each positive root r there is a homomorphism ¢, of SL(2, K) into
G such that %-((1) 1t> =x,(1) and %(} (1)> =x_,(%).

Together with G, we consider a covering group I, the abstract group
generated by a set of elements x,(#)(t € K, r< >)) subject to the relations 3.1
and those implied by 3.2 with I in place of G. That these relations define
SL(I+1, K) and Sp(l, K) for >, of type A; and C; respectively was already
known to Dickson [7]. The properities of I that we require, 3.3 to 3.6 below,

are taken from [21].

3.3. Each ¢r is an isomorphism.

3.4. I' is equal lo ils commutator subgroup.
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3.5. If ha(t) = ©.(diag(t, t™")) and ha = {hu(t)it € K*}, the ha (a € S) generate

a subgroup H as a direct product.

For each r€>) the symbol 7 is also used to denote the root on H:
I1ha(ta) - T1E7* (see 2.4).

3.6. The center C of I consists of those h € H for which all r(h) are 1; C
is the kernel of the natural projection of I’ on G; I'/C is isomorphic to G.

Thus I acts naturally on G-modules, in particular on 8. Let I'(K), G K),
etc. denote the dependence of I, G etc. on K.

3.7. Let K be algebraically closed and of infinite degree of itranscendence
over the prime field. Then G and I' may be identified, via isomorphisms, with
a sitmple algebraic group and its simply connected covering group, and both may
be defined over the prime field. It is then true that (a) the pth power auto-
morphism of T is given by x(t)- x.(t?), (b) if k is a subfield of K. T is
naturally isomorphic to I'(k), and (c¢) H is a Cartan subgroup of T.

These results, which cover all simple algebraic groups because of the
classification in [13], are proved at the end of §4.

We use ws (a=S) to denote the function (fundamental weight) on H
defined by IIhs(ts) > s, and set o = Iwa.

3.8. ﬂ)2= Hr>of.

For a proof of the additive version of this result see [14, p. 19-01].
Finally to close this section we prove a result of fundamental importance
in our later discussion of the representations of finite groups. We are indebted

to T. A. Springer for the main ideas of the proof.

3.9 LemMmaA. Assume that K is algebraically closed and of infinite trans-
cendence degree over its prime field Fp, that © is a rational avtomorphism of I’
such that H™ = H, that ¢ is the composition of t with the pth power automorphism,
and that T, is the subgroup of fixed points of o. Then (a) the semisimple
classes of conjugate elements of I's are in natural one-one correspondence with
those orbits of H under W, the Weyl group, that are invariant under o, and
(b) if for each a< S, 7a is the sum of the distinct images of w. under W, the
orbit space H/W is an affine variety with coordinates v. (a< S).
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The proof proceeds in several steps.

(1) Assume that B is a (connected) algebraic subgroup of I and that B’ = B.
Then for each % in B there is a y in B such that x =y~'y". This result is quite
close to one of Lang [9], and it does not depend on the simple-connectedness

or semisimplicity of 7. The proof, a straightforward modification of Lang’s,
is omitted.

(2) The centralizer of a semisimple element of a simply-connected semisimple
algebraic group is connected. Here are the main steps in a proof due to
Springer (unpublished). The semisimple element % is put in a Cartan subgroup
H, and then by the Bruhat decomposition [13, p. 13-11], the problem is reduced
to showing that an element of the Weyl group that leaves & fixed is a product
of reflections (corresponding to roots) that also do. After the problem is shifted
from H to an ordinary torus T and then to the covering space of T, the proof

is completed by geometric means.

(3) Two semisimple elements of I's which are conjugate in I' are also con-

o

jugate in [s. Assume x=zwz ' (x, we s, z&€T). Then x =2"wz"°, whence
2z 2% is in B, the centralizer of w. By 3.7 and (2), B is connected if w is
semisimple, and because w=I's, B°=B. Thus by (1) we can write z27'2° =y’

(ye B). Then zy'eT,, and since x = (zy ) w(zy™")~}, we have (3).

(4) An element of I is conjugate to an element of I's if and only if it is
conjugate to its image under . For if z€ I, then z=x2"x"" for some x& I if
and only if z=y""%"2%° for some ye I, by (1) with B =T, thdt is, if and
only if yzy™'e T, for some y&TI.

(5) Two elements of H are conjugate in I' if and only if they are conjugate

under W. This easily comes from the uniqueness in the Bruhat decomposition.

Since an element of I' is semisimple if and only if it is conjugate to an
element of A [13, p. 6-13], we may combine (3), (4) and (5) to get (a). In
[15, p. 57-8] it is proved that H/W is an affine algebraic variety whose coordi-
nate ring is got from that of H by selecting the invariants under W. This
means the polynomials in ws, wz' (@& S) that are symmetric relative to W.
Thus to complete the proof of (b) we need only establish the following result,
which in case W is of type A; reduces to the fundamental theorem for sym-
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metric functions.

(6) Every polynomial in wa, wz' (@€ S) that is symmetric relative to W is
a polynomial in the elementary symmetric polynomials r. (a< S). Partially
order the monomials Ilw;* so that each is higher than those obtained by
multiplying it by a product of negative (multiplicative) roots. Thus if 8 is a
nonzero symmetric polynomial and c¢Ilwz® is one of its highest terms, each
7¢>0 because 8 is symmetric. Then B - cIIrz* does not contain this term,

and the proof of (6) may be completed by induction.

§ 4. Lifting representations from algebras to groups

The notations p, K, >, S, H, wa, etc. introduced in §§2 and 3 in connection
with the algebra ¢ and corresponding groups G and I" will be used throughout
the paper. By a module (or representation) for these groups we mean one
over K, the algebraic closure of K. Following Curtis [4], we first convert each
M <M into a projective I"module. For x< T, let M* be the irreducible g8-module

obtained by defining the action of 8 on M by the rule:
4.1 (M%) Xov=X% (Xes, veM).

Here X”* is the image of X under x and we use the convention (X¥)”= X%
The module M7 is equivalent to M [4]. Thus there is a §-module isomorphism
T(x), uniquely determined to within a scalar multiple by Schur’s lemma, of M
on M* This satisfies:

4.2 T(x) Xv=X*T(x)v (¥eT, X8, ve M).

The map x - T(x) is a projective representation of I' (or G) on M, again by
Schur’s lemma. For each positive root » we may (and do) normalize all
T(x,(t)) to keep v+ fixed (see 2.7); since 4.1 and 4.2 imply that T(x,(¢))v =
v + higher terms, for each monomial v, this amounts to making each T'(x,(¢))
unipotent.  After treating negative roots in a similar way, we want to show
that the normalization can be extended to yield an ordinary (not just a pro-

jective) representation of I. When it is convenient, we write x» for 7(x)v.

4.3 Lemma. Let MW have high weight 2(a) (@€ S), fix a< S and set
Ma)=n. Then (a) v+, X-aqv+, ..., X2+ are lincarly independent and

n+1

Zhtve =05 (b) the mormalized action of the %.(t) and x-.(t) on M can be
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extended to an ordinary representation of Za., the group generated by these

elements; we then have (c) ha(t) vy =t"v..

Proof. By induction, X, Xi_av+ =iln—i+ 1) X0, (=1), whence the vectors
X'+ (0<i<n) are nonzero and then linearly independent by 2.9. Further
X X2 ve =0, and clearly X, X"5'v+ =0 for >0, rxa. Thus X%3'v.=0 by
2.7 and 2.9. Now set vo=0v+, tvi=X_qvi-; (1<i<m), so that also (n—1%)v;
= Xavi+;. From %,8)vs =v+, %) Xoo=X-o+1tH,—1*X, and 4.2, we see by
induction that x,( t)t’i=2;=o(::'§)ti_j vj. Now interchanging the roles of X,
and X-4 and also of v, and v,, that is, replacihg M by M" with w an element
of Z, corresponding to the Weyl reflection relative to @, we get x-4(2)v;
= ’}2,-( f )tj “y;.  Introducing a space with coordinates x and y and setting
vi=x"""y, we see that in the space of polynomials of degree » exactly the
same equations hold for the transformations x,(¢): x, y—» % v-+ix and ' ,(¢):
X, ¥y->%+ty, y. We thus see that the relations on the x,(#) and x_.(¢) (e S)
implied by 3.2 also hold for the T(x,(#)) and T(x-,(#)). Further the relations
3.1 with 7, s>0 are also preserved, as we see by applying both sides to v+
and noting that every term leaves v+ fixed. Since we may choose an element
w in I" corresponding to an arbitrary element of the Weyl group and apply
the above considerations to M, we see that all of the relations of 3.1 and 3.2

are preserved. We thus get 4.3(b), 4.3(c) and also:

4.4. The projective representation of I' on M can be lifted in a unique way

to an ordinary representation.

The uniqueness comes from 3.4, which implies that I' has no nontrivial
one-dimensional representation.

From the definitions we see that if v has height » in M then
4.5 (%,(t) = 1)v = tX,v + higher (lower) terms, when r>0 (r<0).
By 2.7 this yields:

4.6. The vectors Kv, are the only ones fixed by all x.(t) (r>0).

From this and 4.3, we see that the I“module M determines Kv., which in
turn determines (@) (a=S) since 1(a@) +1 is the dimension of the subspace
generated by the elements x_.(¢) (t€ K) acting on Kv:. Thus using also
4.3 (c),
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4.7. If My and M, in M are distinct as 9-modules, they are distinct as
I-modules. If M has high weight 1 as S8-module, it has high weight Tlw;'® as
I'module.

In order to pass to projective G-modules, we use:

4.8. Under the matural projection from I’ to G, each trreducible I-module
leads to an irreducible projective G-module. Distinct Imodules yield distinct

G-modules.

We need only observe that the center C of I” must act via scalars in any
irreducible representation of I, and then use 3.4.

Now I acts faithfully on It as a set: since //C is simple, the kernel is
contained in C and consists of those % for which all w.(h) (a€S) are 1.
Further, relative to monomial bases, the group {x,(#), t € K} acts via matrices
that are polynomials in # with coefficients in Fp, thus acts as an algebraic
group defined over Fp with the pth power map given by x,(#) > x.(¢?). The
same is thus true of the group I Comparing the structure just put on I" with
the one put on G by 7. Ono [J. Math. Soc. Japan 10 (1958)], and using his
results and methods and those of [13, Exp. 23], we easily get the assertions

of 3.7 and also

4.9. I (hence also G) acts rationally on each M in M.

§ 5. Tensor product theorem

Each isomorphism « of K into K gives rise to an isomorphism of I'(K)
into I'(X), defined by x,(¢) - x-(#*), and can thus be used to convert each I
module MM into another I-module, denoted M° by the rule x+v=x"v
(xeI(K), ve M).

5.1 TueorEM. (a) If My, M, ... , My are in M and ai, az, ..., ar are
distinct isomorphisms of K into K, then M= MM - - M (tensor product)
is an irreducible I'-module. (b) For a fixed sequence of «'s, two I'-modules M
constructed in this way are equivalent if and only if the sequences of Mis are
the same. Or, equivalently, if N= NP N3« - - N with the N; in W and the B;
distinct isomorphisms of K into K, then M is equivalent to N if and only if,
after the deletion of all one-dimensional factors, k=1 and, for some permutation
mof 1,2 ...,k M is equivalent to N5 and «i=B for i=1,2, ..., k.
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(c) If the modules in (a) and (b) are taken to be projective G-modules, the
modified statements are also true.

Proof. Let X% be the transformation that is X, on M and the identity
on the other components of M, let v, = v be the product of the high vectors
in the separate components, and let the height of a product of monomials be

defined as the sum of the heights of its terms.

(1) The set of vectors of M annihilated by all X (r>0,i=1,2, ..., k)
is Kv+. Nonzero vectors of distinct heights are linearly independent. For k=1,
this follows from 2.7 and 2.9. If £>1, we can write any v in M as v = > uw;
(yje M- - - M3, w; € M%) with the #; and also the wj linearly independent.
Then X¥p = SWu;(X,w;), which is 0 only if all X,w; are 0, because the u; are
linearly independent. Thus X» =0 for all »>0 only if all w; are in Ko,
whence the first part of (1) follows by induction. This implies the second

part (see the proof of 2.9) and also:

(2) If v is a homogeneous vector of M and r>0 (resp. r<0), then
(%,(2) = Do = 4% X0 + higher (resp. lower) terms.

(3) Irreducibility. Let M' be a I'-submodule of M and v a nonzero vector
of M'. Write v=vy4v;+ ** - + vz, vax0, height v;= —j. The «; are distinct,
thus linearly independent. By (2) this implies that for every >0 and every
i=1,2, ...,k there is a vector X\va+ higher terms in M', whence by (1)
and induction on d the vector v. is also in M'. Then using negative roots,
we see by (downward) induction on the height that for every monomial v of
M there is a vector v+ lower terms in M. By induction on the height this
implies that M’ contains all monomials, that M’ = M, that M is irreducible.

(4) Uniqueness. Let 2; be the high weight of M; as g-module. We must
show that M as Imodule intrinsically determines the numbers Ai(a) (i=1, 2,

.,k; a=S). First note that M determines Kv: by (1). Fix a and set
Ala) =a;. If all x-o(t) (t€ K) fix v+, then the a; are certainly determined by
M—they must all be 0 by 4.3(a) and 4.5. Assume henceforth that this is not
the case. Then h.(¢) acts on Kv, with the characteristic value %, a = >\aiai,
some a; %0, by 4.3(c). Assuming that M does not determine the a; uniquely,
we are thus led to the existence of a nontrivial identical relation t*=#" (g =

SWiai, some b;%0, some bjxaj, t<K). Among all such relations on the
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monomials ¢ (r = >ciai, 0<c;i<p—1), ordered lexicographically, we choose
one of minimum degree. The substitution ¢- ¢tz shows that this relation has
the form £ =t (0>¢ 0 = >\diai, €= >.¢;a;). Then using the minimality of
the degree and the substitution ¢—¢+ %, we get in turn dr=0 (whence we
may assume er =0 since otherwise the proof is completed by induction), £>1,
d=ai, e=ar, and a;= ak, a contradiction. This proves the first statement of
(b). The second follows immediately.

(5) G-modules. By 4.8 the results we have proved for I~modules are equally
valid for G-modules, which is (c).

We remark that considering g as Lie ring rather than Lie algebra we can
interpret M{* above as ¢-module and then prove a theorem entirely analogous

to 5.1 with ¢ in place of I.

§ 6. Rational representations
As a first application of 5.1 we have:

6.1 TaeoreEM. If K is infinite and perfect and «; denotes the automorphism
¢ttt of K, then every irreducible rational I-module or irreductble rational
projective G-module can be expressed uniquely as a tensor product M = I17-.M7*

(M; €W, almost all M; trivial).

Proof. By 4.8 we need only consider Imodules, and by the density
theorem of Rosenlicht [12, p. 44] we may assume that K is algebraically closed
and of infinite transcendence degree over its prime field. For given, but
arbitrary, nonnegative integers 1(a) (a=S), we can uniquely write i(aq)=
SWia) (0< ifa)<p—1), choose M; in M as the Imodule with high weight
IHwy® (see 4.7), and thus construct a Imodule IIM{¢ which is rational by
4.9, irreducible by 5.1, and has high weight ITw,®. Using the classification
[13, Exp. 14 and 15] of irreducible representations of semisimple algebraic
groups in terms of high weights, we see that this construction yields a complete
set of irreducible rational -modules, whence 6. 1.

By now we have also shown that if K is infinite and perfect every irreducible
rational projective representation of I" or G comes in a unique way from an

ordinary representation of I
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§ 7. Finite groups, normal forms

If K is finite with g elements, we write I';, G, for I, G. The following
fact, not used here, is proved in [21].

7.1. If the rank is at least 2, the relations 3.1 alone are enough to define I,.
What is required here from [21] is:

7.2. Every irreducible projective Gqmodule can be lifted uniquely to a I,

module.

Now by 3.9 with ¢ the gth power mapping, the semisimple classes of
conjugate elements of I, are characterized by coordinates 7(a) subject to the

condition r(a)? =7r(a) (see also 3.7(a)). This yields:

7.3 LEMMA. [f the rank is I, the number of semisimple classes of conjugate

elements of 1, is q’.

We can now prove one of the main results of this paper. Observe that

the modules considered are not assumed to be rational, throughout this section.

7.4 TreEOREM. Let q=p" and let a; denote the field automorphism t—t?".
Then every irreducible I'q-module, also every irreducible projective Gy module,
can be expressed uniquely as a tensor product M=T1'2/M¥ (M;eW). If the

rank of Iy is I, there are ql such modules.

Proof. Again we need only consider I';-modules, this time by 7.2. By 7.3
and a theorem of Brauer and Nesbitt [1, p. 14] the number of inequivalent
irreducible I';modules is ¢'. Since the ¢’ modules T1 M are inequivalent and

irreducible by 5.1, they thus form a complete set, as required.

7.5 CoroLLARY. If L is an infinite field containing the finite field K, every
irreducible representation of 1'(K) can be extended to I'(L). Every trreducible
representation of I'(K) can be realized over K. The corresponding statements

for projective representations of G are also true.

The first statement is clear. For the second we need only observe that
relative to a monomial basis 2.8 for M; € M each generator x,(¢) is represented
by a matrix which is a polynomial in ¢ with coefficients in the prime field.

The modules of 7.4 have high weights ITw;'” with 0 <A(a) <q—1. Those

in which the center C of I" (see 3.6) acts trivially, or what is equivalent, fixes
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v+, yield all of the irreducible G,-modules. Thus

7.6 CoroLLARY. Every trreducible G,module is obtained from a I',-module
for which the high weight T1wh'® is 1 on the center of T.

In individual cases, when the root system >) is specfied, more detailed
results can be given. Thus if >} is of type Es, F; or G, (and K is arbitrary),
I'=G, so that 7.6 is superfluous, while, for example, if >, is of type A; (so
that I'; and G, are respectively isomorphic to SL(I+1, q) and PSL(I+1, q)),
the irreducible G, modules correspond to the sequences (4, 4, ..., 4;) for
which 0<1;<qg—1 and >4 is divisible by the greates common divisor of
I+1and ¢g—1.

Dually, one can make similar statements concerning the classes of conjugate
elements of G in terms of those of I

Finally, we remark that there are results analogous to 7.4 and 7.5 with
the finite Lie ring 8, in place of I';. The proof of completenteness of the
modified 7.4 can be given along the lines of [14; p. 22-11, 22-12].

§ 8. Prime power representations

A general formula in characteristic p, comparable to Weyl's formula in
characteristic 0 (cf. [6]), for the characters or dimensions of the above modules
does not yet exist (except for groups of type 4, and A, [13, p. 5881, [14]).
However, for the irreducible I'j-module with the greatest of all possible high
weights, »?"' (recall that o = [Tw.), that is, the module M,=TIIM{ of 7.4 in
which each M; is equivalent to the module M} of M with high weight A(a) =p -1
(ae S) as 3-module, the situation can be described rather completely and is

very much as in characteristic 0. The following result is proved in [17].

8.1 LeMMA. If m is the number of positive roots in >, there is an irreducible

TI'y-module M, of dimension q™, that is, the order of .a p-Sylow subgroup of T,.

8.2 TuEOorREM. The I'y-modules M, of 8.1 and M, of high weight «°' are

eqnivalent. All other irreducible I'y-modules have smaller dimensions than M,.

Proof. Because each module of M is spanned by the monomials 2.8, the
only one that could have a dimension as large as p™ is M, by 4.3(a), and

hence by 7.4 the only possible irreducible 7~module of dimension as large as
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g™ is M,. From the existence of the module 37, with dimension ¢™, it follows
that M, is equivalent to A4, and that the other irreducible I';;modules have
smaller dimensions.

In the course of the argument, we have proved:

8.3 CororLarY. The irreducible module My with high weight o™ has

dimension p™ and a basis consisting of all the monomials 2. 8.

A direct proof of this result, within the framework of ¢-modules, also
exists. Using 8.3 we can compute the (Brauer) character of M,. To define
this we write the order g of I'; as g=p°g", (p, &) =1, choose an isomorphism
6 of the group of g'th roots of 1 in K onto the corresponding group in the
complex field, and then for any semisimple element x of I, and any module
M for I';, define X(x), the character of x on M, to be >)0(c;), the sum to be
taken over the characteristic roots ¢; of x on M. Generally ¥ depends on the
choice of 6, but not on M, where it turns out to be rational.

The following result has been proved previously only for groups of type
A; [16, p. 2811 and in somewhat different terms.

8.4 THEOREM. If Iy is of rank I, and x is a semisimple element whose
centralizer in the correpsonding algebraic group has dimension [+2d(x), or
equivalently, whose action on 8 has fixed point set of dimension I+ 2d(x), the

character of % on M, is given by 1(x) = +¢?®.

Proof. In I'(K), x is conjugate to an k in H(K). Now since k acts on the
monomial 2.8 of M, by multiplication by «? (%) II7x( k)™, we see by 8.3 that
the character of & on Mj is

8.5 o(h) =0 (W) L= 220 0(r(R) ),

and then using 3.8, that the character X(%) on M, satisfies X(h)’ = I1,>\{2¢
0(7(B)@17202) the product over all roots. Since % is conjugate to an element
of I, and the roots are permuted by the Weyl group, it follows from (4) and
(5) of the proof of 3.9 that the numbers 6(»(%))? form a permutation of the
numbers 6(7(%)). Thus the roots can be arranged in cycles (of various lengths)
(7172+ + - 7%) such that 6(7:(h))? =6(7ir1(R)), 0(re(R))"=0(r(R)). If 7(Rh) %1,
the cycle containing 7 telescopically contributes 1 to the product for X(%)? since

the term for  may be written, subject to a consistent choice of square roots,
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as (¢"?— ¢ ") /(> —¢™™?) with ¢=0(r(k)). The terms for which r(k)=1
contribute g each to the product, ¢>**' together. Thus 1(2)*=¢**®. Since h

is conjugate to x, we have 8. 4.
8.6 CoroLLarY. If I, is replaced by G,, 8.2 and 8.4 remain valid.

We need only remark that M, hence M,, is an ordinary (not just projective)
Gymodule: if ¢ is in the center of I, w*(¢) = I17(¢) =1 by 3.6 and 3.8, whence
o?}c) =1, even if p is 2.

Finally we remark that for semisimple algebraic groups over an algebraically
closed field of characteristic 0, results analogous to 8.3 to 8.6, in which p need
not be a prime nor q a prime power are true. Here we content ourselves
with showing that the formula 8.5 for the character on the irreducible module
with high weight «®™' is essentially unchanged. With 4(j) = 3}(det w)(wo),
the sum over the Weyl group, Weyl's formula for the character [26, p. 389]
yields 4(p)/4(1), that is, 8.5 with § =1 because of the basic factorization
4(j) = o' Tr=o(1—77) [26, p. 3861.

§9. Finite groups, nonnormal forms

In this section we treat the simple groups denoted as A} (a projective
unitary group in /41 dimensions), Dj (a second projective orthogonal group
in 21 dimensions), E; (a nonnormal “real” form of E;) and Dj (a “triality”
form of D) in [19], and their covering groups. Each of the latter groups can
be defined in terms of generators and relations derived from the structure of
the corresponding simple group, just as I' is in terms of G in §3; however, it
is more convenient to define them directly as subgroups of the groups I.
Starting with an automorphism ¢, other than the identity, of the root system
> such that ¢S=S, and an automorphism ¢ of the same period on the field K,
we can construct an automorphism, also called 4, of the corresponding group
I" such that x4(#)° = %,4(¢°) for all e + S and all t< K, and then define I to
be the group of fixed points of ¢. Comparing this definition with the one given

in [19] for the corresponding simple groups, and using 3.6, we easily get:

9.1. Let C" be the center of I''.  Then C'=CNT", and I''/C' is naturally
isomorphic to the corresponding simple group of [19].

We write G' for I'"/C', K, for the fixed field under ¢, and I'}, etc. when K,

https://doi.org/10.1017/5S0027763000011016 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011016

REPRESENTATIONS OF ALGEBRAIC GROUPS 49

has g elements. As a subgroup of I', I'" acts naturally on each Imodule.

9.2 THEOREM. If the M; are in M, and the a; are isomorphisms of K into
K which are distinct on K,, them M=MM3- - - M is an irreducible I''-
module, and there is uniqueness in this product representation in the sense of
the second sentence of 5.1(b).

Proof. We use the notations of the proof of 5.1 and assume that ¢ above
has period 2. If the period is 3, as it is for one of the groups of type Ds, the
argument is similar. If 7 is a root such that o7 =7 and there is no root s
such that 7 = s+ ¢gs, then we may assume x,(¢) € I'* for all ¢t € K, [19, p. 8791,
and we have 5.1(2) holding. If 7 is such that sr=# and r+ ¢» is not a root,
then (see [191) =x,(t)x..(¢°) e I'* for all ¢+ in K, and we have instead
(2 (1) %6r (£°) = Do = 45Xy + %X Py + -+ - . If 7, or and 7+ or are all
roots, the situation is similar. Since the a; act distinctly on K, and the a; and
oa; together act distinctly on K, the proofs of irreducibility and uniqueness in
9.2 are from this point on straightforward modifications of those in 5. 1.

For finite groups, we have:

9.3 TueoreM. If K, has q=p" elements and «ai denotes the field auto-
morphism t— z‘"i, then every irreducible I'j-module can be written uniquely as a
tensor product M=TIIZi M (M; €W). If the rank is 1, the number of such

modules is ¢

Thus every irreducible I';-module is the restriction of some I'(K)-module,
and the largest high weight that occurs is ©?~*. Again, by 9.2, we are reduced
to showing that the number of semisimple classes of conjugate elements is 4.
By 3.9, these are characterized by coordinates 7(a) (e=S) subject to the
condition y(a)?=71(sa). Whatever permutation ¢ effects on S, the number of
solutions is ¢' (the contribution for each cycle of length d is q*), as required.

Turning again to [21], we have:

9.4. If the type A; (I even) is excluded, every irreducible projective Gy
module can be lifted uniquely to a I'y-module.

Quite likely this exclusion is unnecessary, but we have not yet shown this.

From 9.3 and 9.4 we get:

9.5 CoroLLARY. If the type A; (I even) is excluded, 9.3 also holds jfor
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‘projective Gj-modules.

Here also one can get the irreducible G,-modules as those of I'y in which
the center acts trivially. Since 8.1 is true with I'y in place of Iy [17, 19], the
same is true of 8.2. Also if % in H(K) is conjugate to an element of I, then
by (4) and (5) of the proof of 3.9, it is conjugate under the Weyl group to
h°, so that the numbers »(%)? again form a permutation of the numbers r(h)
(see the definition of ¢ at the beginning of this section). Thus the proof 8.4

carries over as is.

9.6 THeorEM. The statements 8 1, 8.2 and 8.4 are true with I'; in place
of Iy.

§10. Special isogenies, infinitesimal and global

In this section we present a discussion of the rather special isogenies that
exist for simple groups of type B;, C: and F; and characteristic 2, and type G:
and characteristic 3 (cf. [23, p. 282], [13, Exp. 21-24]). The results will be used
in the next sections, where we return to group representations.

In what follows we identify two root systems that are related by a scalar
multiplication.  Associated with each system >, there is a dual system >)*
and a map of >} onto >,* such that 7*=2#/(r, #) (r&€>)). When roots of
unequal lengths occur, this map preserves angles, sends short roots to long
roots and vice versa, maps the simple set S onto another, and puts types B;
and C; in duality with each other and types C., F; and G, with copies of
themselves.

The pair (3, p) will be called special if >, contains roots » and s such
that (s, s)/(», ) =p. The possibilities are those listed in the first paragraph
of this section. In the corresponding algebra ¢ of §2, those X, and H, for
which 7 is short span an ideal, denoted 8, in what follows. To see this, observe
that if » is short and s is long c¢s = pcrs, and that if 7, s and r+s are roots
with 7 short and 7+ s long then s is short and p,s=p (check for >} of type
C; and G,). Observe also that in the present case I'=G, I" maps ¢; onto itself
(because each x,(#) does), and, being simple, I" acts faithfully on each of ¢;

and 8/6;. To indicate the dependence of g, etc. on >, we write 4(>)), etc.

10.1 (Existence of isogenies). If (2], p) is special, it is possible to normalize
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equations 2.6 for 8(>)) and 8(>*) so that the following hold. (a) There exists
a homomorphism 0 of () into 8(>)*) such that 60X, =X, if v is long, 60X,
=pX,+ =0 of 7 is short, and similar equations hold for 6H,. (b) The kernel
of 0in (a) is 8,(D)). Thus G induces an isomorphism, also dented 0, of (8/8,)(>))
onto 6,(X07).  (¢) If I(X)) acts on (8/8)) (X)) and I'(>0*) on 8:(>0%), the
map 0: *=0x0"" (xe1 () is an isomorphism of T'(D)) into I'*) such
that %, (1) = x,.(t) if 7 is long, % (+)° = x,-(#?) if 7 is short, and similar equations
hold for h.(t)".

The proof that we have in mind for (3], p) of type (G., 3) involves many
details and will not be given here. When p =2, however, the situation is quite

simple since —1=1 (mod 2), and no normalization is required.

Proof of 10.1 for p=2. To show that the equations of (a) define a homo-
morphism, we must verify that the relations 2.1 to 2.6 are preserved. For this
the relations 2.2 and 2.6 will suffice since they together with the relations
[H,, X,1=2X,=0 and [ X,, X-,]1= H,, which are clearly preserved, imply all
of the others (cf. [21]). We give details only for 2.6. Now if either » or s is
short, then 2.6 is preserved (both sides go to 0) because £ (>)) is an ideal,
while if » and s are long and linearly independent, then either (7, s) <0, whence

rs= 1= Prese, O (7, s) >0, whence p,s=0 and p, =0 or 2. Since p=2, we
have (a), and then (b). For the proof of (c), we fix a long root s€>). If
rislong,» € X, then either » = — sand %,(¢)* Xs« = Ox, (1) X-r = 0( X_, + tHy — £*X,)
= Xope + tHp — ' Xpe = () Xopr = %e() Xse, or 7% —s and ()" Xe=
0, (1) Xs = 0(Xs + prstXr+s) = Xov + Prost Xpvrse = %+(2) X5+ ; whereas if 7 is short,
r <>, then either »+s& >) in which case 7"+ s*& 30" and % ()" Xoo = Xoe =
%+(t?) Xer, Of 7+s<€>) in which case 27+s€S), (27+s)*=7"+s* and
2 (1) Koo = 0%, (1) Xs = 0 (Xs + t Xy s+ 2 Xorss) = Xov + *Xpesse = 2+(£) Xsv.  Since
the X (s long) generate 6,(3.*), we have (c).

10.2 CororrLarY (well known). Over a perfect field of characteristic 2 the
groups I" of type B, and C; are isomorphic.
§ 11. Special algebraic groups

In case (3, p) is special our previous results on representations can be

refind. In M let M (M) be the subset each of whose elements has, as
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g-module, high weight 2 vanishing on all long (short) roots of S.

11.1 TueoreM. Assume that (2, p) is special and regard the elements of
W esther as 8-modules oy as I'-modules. If M' <M and M" € M, then M'M" = I,

and conversely every element of T can be expressed, uniquely, as such a product.

Proof. Assume M'=M’' and M" <M.

(1) M’ restricted to 8, is irreducible. If M, is the space spanned by those
monomials 2.8 for which all #; are short, we show first that My =M'. Let »
be a long positive root. Then X,M, < M, because ¢; is an ideal and X,v+ =0.
We use induction on the height of 7 to show that X ,M, < M,. This is so if
7 is simple since then X_,v+ =0 because A(r) =0. If 7 is not simple, there is
a simple root a such that (7, @) <0. If a is long, we may write X_, = £ [X_,,
X_r-o] and use induction. If @ is short, and w denotes the corresponding
Weyl reflection and also a corresponding element of I, we may apply the induc-
tion hypothesis to the module M (see 4.1) with high vector X2Jv. (see
4.3(a)) and with MY defined accordingly to get X-u, MY < MY, that is,
X MY<c MY By 4.3(a) we have MY =M,  Thus X-,MyC M, M, is a
g-submodule of M, and since M' is irreducible, My = M'. Next if v =vo+ v+
-+ +wvg with v; of height —7 and »va4=0, we prove by induction on d that
the g8;-module generated by v contains ».. If d>0, X,v=0 for some >0 by
2.7. By the induction hypothesis, X - - X, . X;v =cv+, ¢=x0, for a sequence
71, 72 . . ., 7k of short roots. Thus 2?:1Xr1‘ I X X X+ X X
Xnv=cv,. If aterm in the sum is nonzero we are done, while if the last
term on the left is nonzero we may finish by imitating the last part of the
proof that M,=M' to show that if >0 and X,v' = v+ then v: is in the g;-
module generated by ¢'. By the two parts above, an arbitrary nonzero element

of M' generates M' as 9;-module, which is (1).

(2) M" yestricted to 8; is 0. Let M™ be the §(3)%)-module in T/(>)*)
with high weight 1% given in terms of the high weight 1 of M" by 1*(a*) = i(a).
We may convert M* into a 8(>))-module by the rule X.» = (§X)v (X=8(>)),
ve M?*). As such it is irreducible by (1) and the definition of 7, is restricted,
and has high weight 2. Thus by 2.7 it is equivalent to M". From the defini-
tion of ¥, X,.v=0 if  is short, which is (2).
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"

(3) Proof of 11.1 for 8-modules. Choose a nonzero # = S>\wu; with the u;
linearly independent in M’ and the #z; in M”. By (1) and (2) we can multiply
% by a sequence of X, (r short, »>>0) to get a nonzero » = v’2", and then v by
a sequence of X, (r long, »>0) to get a nonzero multiple of »,2). Using
negative roots instead, first short ones and then long ones, we see that this
last vector generates M'M!": we first get all v'») (v’ monomial in M'), and
then using induction on the height of ¢', all »'M", hence M'M", which is thus
irreducible. Since it is also restricted, it is in M. Since the high weight of
M'M" is the sum of those of M’ and M, the uniqueness and completeness in

11.1 follow immediately.

(4) Proof of 11.1 for Imodules. As is easily verified, the process 4.2 of
lifting the modules of M from g to I' is consistent with the two types of tensor

products—for algebras and for groups. Thus (4) follows from (3).

11.2 CoroLrary. If (3, p) is special, the map § (resp. 6) futs the algebra

modules (resp. group modules) of M"(S)) in one-one correspondence with those

of M(ZH).

In case (2], p) is special, 11.1 and 11.2 lead to corresponding refinements
of 5.1, 6.1 and 7.4 with M replaced by M’ and M"”. However, there does not
seem to be a refinement of the semisimple classes of elements in 7.3. Passing
on to 8.2, 8.3 and 8.4, we have:

11.8 CoroLLARY. Assume that (), p) is special. Let o (0'") = Ilwa, the
product over the short (long) simple roots, let I' (I') be the number of short
(long) simple roots, and let m' (m'") be the uumber of short (long) positive
roots. Then (a) the I'ymodule My (M) with high weight o' %" (0"%") has
dimension q" (¢™') and character at a semisimple element h given by /(h)
= = ¢ with 2d(x) + 1 (I") the dimension of the set of fixed points of x on
8 (8/8). (b) The Tymodule M) (MY) has dimension p™ (p™') and a basis

consisting of all monomials 2.8 corresponding to short (long) roots 7i.

The proofs are as in §8 and will be omitted. To supplement 11.3 we
remark that M, = M,M,, that M, is quite similar to the corresponding module
for the group I' of characteristic 0 (it is of the same dimension, by Weyl's

formula), that My in contrast has lower dimension, that M} for > of type B,

https://doi.org/10.1017/50027763000011016 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000011016

54 ROBERT STEINBERG

and g=2 is just the spin module [13, p. 20-04] of dimension 2!, and that
w!/m! =0/1" in all cases [18, p. 501].

§ 12. Twisted groups

In this, the last, section we extend our results to the finite simple groups
associated with the names of Suzuki [22] and Ree [11]. These are defined as
follows. A system >, of type C:, Fy or G, may be identified with its dual >}*
in such a way that the map »—#»* of > on >)* (see §10) yields an involutary
map, g, on > such that positivity and simplicity of roots is preserved, angles
are preserved, but short and long roots are interchanged. If also (3, p) is
special, K is algebraically closed, and 4=>1, the isomorphism 6 of 10.1(c)
accordingly yields an automorphism of I" which combines with the p*th power

map to produce an automorphism, also denoted 4, such that
12.1 % (£)° = 20 (%), %0 (1)° = %,(£°) (7 short, s=p").

If now n=2%2+1 and ¢g=5" the fixed points of s form the sought simple
1

group, to be denoted I'y, a subgroup of I';. Observe (see 11.3) that I =1" and

m! = m'" here.

12.2 TueEOREM. If ai denotes the pith power map, every irreducible I j-module
can be written uniquely as TII-oM¥ (M;eW').  If the rank of > is 1, there

are ¢ such modules. Each can be realized over Fy.

Proof. If r>0 and t< F,, I'j contains an element of the form x=
(1) %or (£*$) TT %, ('), the product over roots #' which are positive integral linear
combinations of # and o7 (proof by downward induction on the height of 7).

Thus if ve MMM and v is homogeneous,
12.8 (x — Do = tXyv + #° X, + higher terms.

If we refine the notion of height so that a positive linear combination of
simple roots is taken to be lower than another one of the same height as
previously defined if fewer short simple roots are used, then 7 is lower than o7.
In fact, if » = >[c(a)a+ d(a)sal, the sum over the short simple roots a. then

-1/2
Id

or = >\ pd(a)a—+c(a)sal: since o preserves angles, the map »' —p~ "or!, or' -

"% (7 short) comes from an isometry, which maps 7 to S\[p "*c(@)oa +

p7d@)a] = p™"*S[pd(a)a+c(a)sal. With a corresponding refinement in the
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notion of homogeneity, we thus get 12.3 with the second term of the right
missing, and a similar equation for negative roots. Combining these equations
with the key fact, proved as 11.1(1), that each MM is irreducible as §;-
module, we can now prove, almost exactly as in 5.1, that [IM{ (MeM) is
irreducible. The proof that this product determines its components M; can
also be taken from 5.1. As for completeness of the set of ¢”* product modules,
the semisimple classes of I'y are characterized by coordinates y(az) and r(sa)
(a8, a short) for which 7(a)?® = y(sa) and 7(sa)’=7(a) (see 3.9 and 12.1);
their number is thus ¢'?, as required. Finally, as the restriction of a TI'»-module,

each irreducible I';-module can be realized over F, by 7.5.

As a supplement to 12.2 we have:

12.4. For >) of type C, or Fy and p =2, every irreducible projective repre-

sentation of I'y can be lifted to an ordinary one.

This result, proved in [21], quite likely also holds for the remaining case,
> of type G: and p = 3.

Also since the axioms of [17] are easily verified for the groups I'y there is
an analogue of 8.1, and modifying the development of §8, we have no trouble

in proving:

12.5 TueoreM. (a) I'y has an irreducible module M), constructed by the
methods of [17], of dimension g™, the order of a Sylow group in I'y (here m
is the number of positive roots in >)). (b) M} is equivalent to the restriction
to T'y of the I'ymodule M) of 11.8. (c) All other irreducible I'y-modules have

lower dimensions than My.

From 12.2 we know all irreducible I'j-modules (in fact all I';modules also
by 7.4, 11.1 and 11.2) once we know those in M. We consider the individual
cases. For 3 of type Ci, $"?=2, so that the trivial 1-dimensional module and
the 4-dimensional module Mj of 11.3(b), on which I, acts as the symplectic
group, exhaust M. For 3 of type G, p'*=3, we have in M’ the trivial
module, the module 8;, of dimension 7, and the module M} of 11.3(b), of
dimension 3°=27. Finally, for > of type Fi, p"? =4, there are the trivial
module, the module §;, of dimension 26, and the module M}, of dimension

2" = 4096, leaving one module yet to be described.
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