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On the Generalized Marcinkiewicz Integral
Operators with Rough Kernels

Dashan Fan and Huoxiong Wu

Abstract. A class of generalized Marcinkiewicz integral operators is introduced, and, under rather
weak conditions on the integral kernels, the boundedness of such operators on L? and Triebel-Lizorkin
spaces is established.

1 Introduction

As is well known, the Marcinkiewicz integral is an important special case of the Little-
wood-Paley-Stein functions and plays a key role in harmonic analysis. One can con-
sult [1-3,6,12, 14, 16, 17], among numerous references, for its development and ap-
plications.

In this note, we will study a class of generalized Marcinkiewicz integral operators
and we shall be primarily concerned with the two-parameter case. As for the one-
parameter and multiple-parameter cases, we shall only present the corresponding
results, since they can be handled similarly (see Section 5).

Let RN(N = m or n), N > 2, be the N-dimensional Euclidean space and S¥~! be
the unit sphere in RY equipped with the normalized Lebesgue measure do = do (-).
For nonzero points x € RY, we denote x’ = x/|x|. Form > 2, n > 2, let Q be
homogeneous of degree zero, integrable on $"~! x §"~! and satisfy

(1.1) / Qx', y")do(x)) :/ Qx’, y"do(y') = 0.
SM71 SYI*]

We define the convolution operator on R” x R”
Osi * f(x,y) = L // o) f(x—u, y — v)dudv.
N EERT uj<2s, v <2 a7 v 7 '

Then for 1 < g < oo, the integral operators of Marciniewicz type jiq 4 are defined by

1/q
a1y i= [ [ 16 gt yyvasar) .
RZ
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It is well known that pq ; is the Marcinkiewicz integral operator on the product space
R™ x R", which has been studied by many authors. For a sampling of past studies,
see [1,3,4,6,7,16,17] et al. In particular, Al-Qassem, Al-Salman, Cheng, and Pan [1]
established the following theorem.

Theorem A Let1 < p < oo. IfQ € L(log" L)(S™™! x S"7V), then g, is bounded
on LP(S"~1 x §*—1),

It is natural to ask whether Q € L(log" L)¥/(S"~! x §"~') is sufficient to imply
the L?-boundedness of jig, for 1 < g < 0o, 1 < p < oo. The main purpose of
this paper is to address this question. Before stating our main results, we recall the
definitions of Triebel-Lizorkin spaces on R” x R™ (see [5] or [15]).

Let U € C*°(R™) and V € C*°(R") satisfy

supp(U) C {x e R":1/2 < |x| <2}, supp(V)C{yeR":1/2<|y| <2}
and U(x) >c¢>0, V(y)>c>0
if3/5 < |x|, |[y| < 5/3. Let ®, ¥ be the Fourier transform of U and V, respec-

tively. For 1 < p, g < 00, the Triebel-Lizorkin space Fg’q(Rm x R") is the set of all
distribution f on R” x R" such that

< 00,
L (R™ xR")

120 Wl = || ([ 160 w0 ppasar) ™

where O4(x) = 27™P(27x), U, (y) = 27" ¥(27"y). Employing the ideas in [13],
we know that (also see [15]):

(EJIR™ x R") " = F?;,q'(Rm xR"), 1/q'+1/q=1=1/p'+1/p,
E*(R™ x R") = LF(R™ x R").
Now we can formulate our main results as follows.
Theorem 1.1 Let2 < q<o00,1< p<oc. IfQ € Llog" L)¥4(S"~! x §"~'), then
H /JLQ,q(f)H Lr(Rm xR") S Cp.,q”f”LP(]R’"X]R”)-

Theorem 1.2 Let1 < q<2,1< p < oo IfQ € L(log" L)¥7*(S"~ x $"~1) for
any e > 0, then

I MQ,q(f)HLP(Rmen) < CpﬂquHp'g-q(Rmen)'

To prove Theorem[I.Z] we will use the following theorem, which is itself interest-
ing.

Theorem 1.3 Let1 <g<oo,1<p<oc.IfQ e Lllog" L)>(S"~! x S"~1), then

HMQ-ﬂ(f)HLP(R"‘XR”) < Cf”quHFg'q(R"’XR”)'
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Remark 1.4 Obviously, Theorem [Alis the special case of Theorem [l for g = 2.
It is an interesting problem whether the ¢ in Theorem [L2] can be removed, or the
condition € L(log" L)*(S"~! x $"~!) in Theorem [[3] can be replaced by Q €
L(log" L)¥1(s™=1 x §" 1),

This paper is organized as follows. The proof of Theorem [[1] will be given in
Section 2. After proving Theorem [[3]in Section 3, we will prove Theorem in
Section 4. Finally, some concluding remarks will be given in Section 5.

Throughout this paper, we always use the letter C to denote positive constants that
may vary at each occurrence but are independent of the essential variables.

2 Proof of Theorem 1.1]
Following the proofin [1], for k € N, let

Ep:={(x, y) € " x s < Q)| < 2R,

and

Qk(x’,y’)=Q(x',y’)xEk(x’,y’)—/ Q' y")xe (', y")do(x")
Smfl

— / Qs y xe (', ydo(y") + // Q' y")do(x"do(y').
gn—1 Ex

Denote D = {k € N : |E;| > 27%}, where |E| is the Lebesgue measure of E; for
k € N. Set

Q') = Q" y") = 3 ', y).
keD
It is easy to see that for each k € DU{0}, () satisfies (LI and 2y € L*(S" ! x §"~1).
Thus
Gs * [, y) = b f0, 1)+ X0 bsrx f(x,9),
keD

where

1 Qu(x', y")
Gspk* f(x,9) = — // ——= f(x —u,y — v)dudv
ok Sy 2% ) <z, v <2 |M|’"—1|V|"_1f Y

for k € DU {0}. Consequently,

H MQ,q(f)H LP(Rm xR™) < H ”¢s,t,0*f||Lq(R2)H Lp(R™ ><]R”)+k%H ||¢s,t,k*f||Lq(R2)H LP(RmxR)*

Note that g € L*(S™~! x §"71), it is easy to treat ¢, * f. Thus, without loss of
generality, we write

(2.1 H l’[’Qﬁq(f)HLp(RmXRn) < k%:DH ||¢s,t,k * f”Lq(Rz)HLp(Rmen)a 1 <p<oo.
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Let Ax = [|QxE, || 12 (sm—1 xsn—1). Then

(2.2) kE 1AL < (19| 1qog pyagsn-1 xs5-1)-
€D

By [1, (3.11)], we have
(2.3) | llbs.e. f||L2(R2)HLP(Rmen) < CAk|| fll o @ xRy
On the other hand, we have

| Gurk Fx )| s(//m % V)M (), y)dor (Yo (v,
Sn—1xgn-1

where

| R R
M, (f)(x,y) = sup / / |f(x—ru', y —rv")|drydr,.
o Jo

Ri.R>0 RiR;
Applying [11, Proposition 2, pp. 477-478] iteratively (also see [3,9]), we know that
| Mur (D] Ly ey < Clfllrmxrny, 1< p < oo,
where C is independent of u” and v'. Then it is easy to see that
(2.4) || llbs.e e f||L°°(R2)HLp(Rm><]Rn) < CAx| flle @mxrry-

Thus Theorem [[1lfollows from 2.1)), (Z.2)), and an interpolation between (2.3)) and
4.

3 Proof of Theorem[1.3]

Choose two radial functions ® € §(R™), ¥ € S(R") as in the definition of the
Triebel-Lizorkin spaces such that the values of their Fourier transforms ® and ¥ are
between 0 and 1 and satisfy

/ O(2)ds =1 = / T2Yd, ®(x), U(y)>c>0if5/3<|x], |yl <5/3
R R
supp(®) C {x € R": 1/2 < |x| <2}, supp(¥) C {y € R": 1/2 < |y| <2}.
It is easy to check that for any test function f € §(R™ x R"),
(3.1) f= // (O, @ W,) * fdsdt = k* // (Prs @ Uy) * fdsdt, VkeN,
R? R2

where ®,(x) = 27" ®(2°x), U, (y) = 27"V (27" y). And then by (L2]), we have

LP(RMmx R")

62 Wl = ([ 1@um w0« prasar) ™
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Let Eg, Q, Ag, D be the same as in the proof of Theorem [LI} For each k € D,
define the family of measures 0 = {Vsyk:s,t € R} by

1 Q(x, ")
dvsek = o // ———22 " f(x, y)dxdy,
//mxsznf 2 oy < ey

which implies

(3.3) v flx,y) = ﬁ //| Mf(x —u, y — v)dudv.

u| <2k, |v| <2k |u|m71 ‘V‘nil

Following the same arguments as in [1], it is not difficult to show that ||v, k|| < CAy,
and

(3.4) ’/V\s,t,k(fﬂ’])‘ < CA; min{ ‘2k5£‘1/6k|2kt,'7|1/6k7 |2k5€‘1/6k|2kt77|_1/6ka

|2k55|—1/6k|2kt,q|1/6k’ |2k5é~|—1/6k|2kt77|—1/6k} ,

33 [ D g < CANflir@nxmn, 1< p < oo,
where ||, x| denotes the total variation of v &, and

WY (f)(x, ) = sup |verx] * fx, p).
steER

Also, by (3.3)) and the Minkowski inequality, we have

1/q
o) < ([ o sy asar)
/a
C WM// ot ,qdml,
+ Z ( 322|1/”k>kf(xy)| s)

keD

where
1 Qo(u',v")
Vsro * f(x, )27// —— 2 f(x —u,y — v)dudv.
s,t,0 f Y s+t | <25, |v] <2 ‘u|m71|v|n71f Y
Set Fx(f)(x, y,5,t) = vss i * f(x, y) for k € DU {0}. Then, we have

(36) Mﬂ,q(f)(xay) S HFO(f)(x7y7 T .)HLq(fRz)

+C Y R F(H@ s )| ey
keD
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It is easy to treat Fo(f)(x, y,s,t). Thus, we first consider Fx(f)(x, y,s,t) for k € D.
By (B1)), we can write

Fk(f)(xv VS, t) = K // ((I)k(s+s/) & qjk(t+[/)) * Vs gk % f(x, y)ds'dt’.
:RZ
Consequently,
1A 3, ] ey < R // Lo o (f)(x, y)ds'dt’,
RZ
where
q 1/q
Is’,t’(f)(x, }’) = (// ’ (q)k(sﬂl) [024] \I/k(,ﬂl)) * Usy k% f(x, )/)‘ dsdt) .
RZ

Let Ly o+ (f) (%, p,5,1) = (Prisrst) @ Wigrarry) * Vsrp * f(x, y). Then
Loy (), y) = || Lo (N, p, - -)HMW}.

Therefore, it follows from the generalized Minkowski inequality that

G| HFk(f)HLq(RZ)HLP(Rme) <K //WHIS'J’(f)HLp(gzmxgmds/dtl

=K //RzH ||LS,’t/(f)”Lq(RZ)HLP(QQngQn)dS/dt’.

In what follows, we estimate ||||Ls/ ¢/ ()]
00

19(R2) || Lo (R x mey for different 1 < p, g <
By (B.3) and (3.2), it is easy to see that

(38) Lo (Dl ||y

= || 1L ¢ (D] am xmn)

L1(R?)

1/q
< CAkH (// "bk(ﬁs/) (029] \IJk(tH') * f’ qudt) ‘
RZ

< Ck*Z/QAkHfHFfI)'q(R'"xR")'

LI(Rmx R™)

On the other hand, the Plancherel theorem gives
2
|| HLS’,t/(f)”LZ(RZ) H L2(Rmx Rn)

~ =R 2 R
= // // P55 (E) Wi(rre1y () |Ds,t,k(£a 77)‘2 [f(E, 77)|2d£d')7dsdt
R2 R Rn

s¢ / /j2 / / P& ) (&, P dedndsat,
P SIB
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where

B = {(&,m) € R x R 1 27Kl g

< 2—k(s+5')+172—k(t+t’)—1 < |77| < 2—k(t+t’)+1} )

And it follows from (B4) that, for (£, 7) € B

stk

‘i/\s,t,k(fa T])| < CAk min{ |2k55|1/6k|2ktn|1/6k’ |2ks§|1/6k|2kt77|—1/6k7
‘2k55‘71/6k|2ktn|1/6k, |2k55|71/6k‘2ktm71/6k}
< CAx mln{ 27(s’+t')/6’ 27(5'71")/6’ 2(5'71")/6’ 2(s+t')/6} )
Thus
(3.9
e ez sty < CAR 270 f g
< CAkkflf(S'”%||f|\F3'2<9zmxazﬂ>7 s'>0,t" >0

(3.10)

||HLS’,t’(f)HLz(iRZ)||L2(ggm><gzn) S CAkk_lz_(s -t )/6||fHF2=2(Rm><Ru)7 5/ > 07 t/ < 0
(3.11)

L7 (O 22 | 2 om e ey < CAk— 12t )/GHfHFQ'Z(iR”’XiR”)? s'<0,t' >0

(3.12)
||HLSlytl(f)HLz(:Rz)||L2(:Rm><jzn) S CAkk_12(5 * )/6HfHF22(R"Y><R")7 5’ < 07 t/ < 0.

Ifp > g letr = (p/q) = p/(p — q). By duality, we can take a nonnegative
h e L'(R™ x R") with ||h||r(rmx &+ = 1 such that

[/ e p] ey
N // / | Lo er()(x, y)| "dsdth(x, y)dxdy
R Rn R?

- // // |Ls’,t’(f)(x, )’)|qh(X, y)dxdydsdt
w2 J S

< / / / / [Voric* (Bigsssty © W) * £, )| "hx, y)ddadydsde
R J Jjm xR

< Cll”s,t,kllq/q, // // ‘Vs,t,k‘ * } ((I)k(s+s’) & ‘I’k(Ht’)) * f‘ !
R mx R
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X (x, y)h(x, y)dxdydsdt

<cap” //:R // ijQ,1| (Prisrsn) @ Treaen)) * f(x, )]

x (WY (h)(—x, —y)dxdydsdt

= cal/t / / / / | (Digsrsn ® Wiiearry) * f(x, )| "dsdt
Rmx R1 R2

x (V)" (h)(—x, — y)dxdy,
where E(x, y) = h(—x, —y). By (B.35), we know that

(| @ ®)*(h)|

ranxgn < CAlhllr@nxgn < CAk|h]|@mxzn = CAr.

Thus by Holder’s inequality, we get

(3.13)
|| HLs’,t’(f)”L’i(Rz)H LP(Rmx R")

1/q
Lr(j{mfon)

q 1/q
x H ( | @iisrsr) © W) * f| dsdt) ‘
R2

§ CAkk_z/qHf”)‘:g,q(ggmxgzn)-

<A/ || Wy ()]

LP(R™M X R™)

Note that g > p implies p’ > q’, by duality, for all g(x, y, s, t) satisfying

H ”gHIﬁ/(RZ)||LP'(iR”'><iR”) =1L

we have

LP (R x R

619 |0 < | ( / /R [ (B @ Wigren) = 1| dsar) |

X @07 e ] 1o s

= H ”F;(g)HLq/(RZ)HLp’(ggmngn)k_Z/q”f”Fg‘q(R"’XR”)’

where

Fi(9)(x,y,s,t) = // Vs k(u, V)g(x +u, y + v, s, t)dudv.
mszll

Lety = p’/q’ > 1 and let 4’ be the dual exponent of 4. Then there is a positive
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function h € L7 (R™ x R") with 5l 1>7 @rm ey = 1, such that

HHFk(g)”Lq RZ)HLp (R R

S L.
< C||V5‘t7qul/q // sup // Vs ek — x,v — y)|h(x, y)dxdy)
mx R NsteR myx Rn
x// |g(u,v,s,t)|q/dsdtdudv
RZ
<call // WY () (u, v) // g(u, v,5,0)|9 dsdtdudyv
R R R2

’ ’ 1/
< CAL M O )] - e / / R( / /R gl s )l dsd ”dudv) ’

< CAL 1A ll 2 (o e

// Vs k(t, V)g(x +u, y +v,s t)dudv‘ dsdt h(x, y)dxdy
meﬂ

/
q
||gHLq’(3€2)|| Lp' (Rmx Rm)

—cayh,
This together with (3.14) shows that, for all ¢ > p,

(3.15) H||LS/1,,(f)||M(RZ) .

< 24| £l .04
LR X RS — CAkk HfHFgI(RmxiR"

Applying an interpolation theorem to (B.8)—(3.13) and (B.15]), we obtain a § > 0
such that

(3.16) HHLS,J/(f)HM(RZ)

8(s" 1+t D —2/q
LP (R R =C2” k™ Ak”f”l:oq (RMx R1)*

Thus by (3.7) and (B.18)), for any k € D,

li /
L1(R?) H Lp(j{mxiRn)dS dt

BN ey < [ [ L)

< Ck2—2/qu // Z_J(W‘Htl‘)dsldt,“f”]bo-'i(gzmijn)
R !

< Cszz/qu||f||Fg~q(gzmxgzn)-

On the other hand, notice that ||Qg || 2(gn—1xs—1) < 00, by the similar and simpler
arguments, we can get

H ||F0(f)HM(iRZ)HLp(jzmxgzn) < CHfHF;"‘*(R’"xR")'
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Therefore, by (3.8)) and (2.2)

2
I Mﬂ,q(f)HLp(w,Xy”) < C<1 + k%)k Ak) 11l s

< C(1+ 1 Laogr s x50-1)) ||f||Fg~‘1(gzm><jzn)

< C”f”pg‘q(:}zmxw)'

This completes the proof of Theorem[T.3] [ |

4 Proof of Theorem
Following the same proof as in Theorem[I.1] we have
D) ([ Dok * Fllize| Lo igoscey < CRARfllowmsrn) = CRAK f1l 22 o e -
On the other hand, it follows from Theorem[I3|that for 1 < g < 2,1 < p < o0,
[ 1sk * fllzawe || pognscmny < CIllzgogr ryasm—r x50 | fll 22 gy
By the definition of (), it is easy to see that
1% o0g 25— 50-1) < CR*Ag,

which implies

(4.2) | 165k * fllzacwe || LR xRy = Cszka||Fg-P(ﬂzmxw)'
Taking g in (£2)) sufficiently close to 1 and interpolating between (4.1 and (@.2]), we
obtain the desired result and complete the proof of Theorem[I.2} ]

5 Concluding Remarks

We remark that our method also works for the one-parameter case. Precisely, let €2
denote a homogeneous function of degree zero on R”, which is integrable on the unit
sphere S"~! and satisfies

| 20dst) <o

where do represents the normalized measure on $"~!. For n > 2, we define the
generalized Marcinkiewicz integral operator on R" as follows

1o () (x) = || * £ || ac.an) s

where
Qy)

1
o105 [

Obviously, pq , is the classical Marcinkiewicz integral operator, which was first in-
troduced and studied by Stein [12] and subsequently received the most attention (see
[2,8,10,14,18,19] among others for examples). In particular, the following theorem
can be found in [2].

fx—y)dy.
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Theorem B Let1 < p < oco. IfQ € L(log" L)/2(S"™"), then pq , is bounded on
LP(R).

By similar arguments as in the proofs of Theorem[[.Tland [[.2] we have the follow-
ing generalization of Theorem Bl

Theorem 5.1 Let2 < q< oo, 1< p < oo IfQ2 € Llog" L)V/4(S"1), then yuq 4 is

bounded on L (R™).
Theorem 5.2 Let1l < q < 2,1 < p < oo. IfQ € L(log" L)"/4*<(S"") for any
€ > 0, then

||MQ,q(f)||LP(92”) < CHfHFg”(:Rn)a

where Fg‘q(fR”) is the Triebel-Lizorkin spaces on R" (see [13] for the definition).

Remark 5.3 We remark that the result of Theorem [5.1] is also valid for Q €
H'(S"~!), which is the Hardy space on $"~!, by similar arguments as in the proof
of Theorem[T.Tland using the result in [8]. But we do not know whether the result of
Theorem is also available for Q € H'(S"~!), and whether the € in Theorem
can be removed.

On the other hand, Theorems[[T] to [I.3] can also be extended to the multiple pa-
rameter cases. Letk € N, ny,...,m > 2and Q(x{, . .., x/) be an integrable function
on S~ x -+ x §%~1 Suppose that ) satisfies the following cancellation condition

/ Qxq, ..., xp)do(x)) = 0, i=1,2,...k
S”}'71

The corresponding generalized Marcinkiewicz integral operator on R™ x - - x R™
is defined by

1/q
MQ,q(f)(xh"')xk) = (/ / |¢t1,m7tk *f(xla"'vxk)|thl dtk) 9
R R

where

1 Q1,00
¢t..4.7t,*f(xl,...,xk)=7/ /
1 k Dttty Iyi|<2n Iyl <2 |y1|n171 |)’k|"k71

X flx1 = y1, 0%k — yo)dyr - - dy.

Also, following the definition of (L.2)) we can define the Triebel-Lizorkin spaces on
RM X x R™. Let Uj € C*°(R™) satisfy supp(U;) C {x; € R" : 1/2 < |xj] < 2}
and Uj(x;) > ¢ > 0if3/5 < |xj| < 5/3for j € {1,2,...,k}. Let ®; be the Fourier
transform of U, j = 1,2,. .., k. The Triebel-Lizorkin spaces Fg’q(fR”I X -0 X R
is the set of all distributions f on R™ x - - x R™ such that

Hf”Fg-q(gznl X X RU) T

([ et

< 00,
LP(R"M X+ X R")
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where ®;; (x;) = 27" ®(27"x;) for j € {1,2,...,k}. Employing the ideas in [13],
it is not difficult to show

(EYI@R™ x - x R™)) :Fgﬂ'(ﬂzm XX R, 1/p+1/p' =1=1/q+1/q’,

In

FQAR™ xR = LR % o X R™), 1< p < o0,

[1], Al-Qassem, Al-Salman, Cheng, and Pan showed the following result.

Theorem C Let1 < p < oc. IfQ € L(log" L)¥/2(S"~1 x -+ x §%~1), then pgq, is
bounded on LF (R™ x - .- x R™),

Here, we have the following generalization of Theorem[Cl

Theorem 5.4 Let2 < q<o00,1< p <oo. IfQ € Llog" L)¥a(§m~1x ... x 1),
then piq 4 is bounded on LP(R™M x - -+ x R™),

Theorem 5.5 Letl < q<2,1<p<oc.IfQ € L(log" LK (§m—1x...x g%~y
forany € > 0, then

H/'LQ-,q(f)HLP(:R”l X e X RIK) = C”f”Fg“](R"l X X R)

Theorem 5.6 Let1 < q<oo,1< p<oo IfQ € Llog" L)F(S"~! x - x §™1)
for any € > 0, then

H,UQ,q(f)HLP(RnI X +ee X RIK) < C”f”Fg’q(R”l><~--><1R”k)'

Obviously, Theorems[T.IHI 3| treat the special case k = 2. The proofs of Theorems
[LIHI 3l easily extend to the case k > 2. We omit the details.
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