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A DIOPHANTINE INEQUALITY WITH
PRIME VARIABLES

S. SRINIVASAN

Let Ai, A2, A3 be non-zero reals, not all of the same sign and such that at least one ratio
AifA; is irrational. Then it is proved that for any given integer & > 1 and real 7, the
inequaltiy

ApL+ Ap2 4 dapk 4] <€

is solvable for every £ > 0. More general and sharper results are also proved.

INTRODUCTION

Here we are concerned with the solvability of the diophantine inequality

]
(1) n+ Z /\j:z:_’; <e&, (7 an arbitrary, but fixed, real number)
i=1

for every € > 0 in primes z;, where k > 2 is any given integer, under the assumption
that s > s(k) is suitably large and A;,...,A, are any non-zero reals, not all of the
same sign and with A;/A; irrational. For details about earlier work in this topic we
refer to Vaughan ([4], [5]), from where we get s(k) < 2* + 1(k = 1,2,3), and smaller
values for s(k) for k > 4 (in fact s(k) < cklogk with a certain constant c); also, we
can impose the condition that ¢ is a negative power of maxz;.

For k = 2, Bambah [1] has shown, combining some ideas of Watson with the
method of Daveport-Heilbronn (when z;’s are natural numbers), that in (1) one can
replace AszZ by Aszf , where K is any given natural number. Here we prove that one
can, analogously, replace any kth power in (1), z¥ say, by zK for any given natural
number K , and also can replace ¢ by a negative power (depending on k, K ) of maxz;
while taking s = s(k), the value given by the results mentioned above. We obtain this
by adding a simple idea to the method of Davenport-Heilbronn as extended by Vaughan
and so avoid the use of Watson’s work. We prove the
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THEOREM. Let k and K be any two given natural numbers and let s = s(k) be
as above. Let Aq,..., A, be any set of non-zero reals, not all of the same sign and with
A1/Az irrational. Fix an i, 1 < i < s. Let 7 be any given real number. Then, for a
suitable § > 0 (depending on 1, k, K and the A’s), the inequaltiy

)
(2) Z )\jp;? + XK+l < (maxp;)~".
J#i
has infinitely many solutions in primes py,...,p,.

In particular, since $(1) £ 3, we have the following extension of a result of Danicic
[2):

THEOREM’. Let k De any given natural number. Let A,p be non-zero reals, not
both negative and at least one of them irrational. Then both the sets of (real) numbers

Ap1 + up%], Mp1 + up2)'’®  (p1, p2 primes)

contain infinitely many primes, where, as usual, [z] denotes the largest integer not

exceeding = .

This result gives immediately the following well-known assertion:
Let o be any (positive) irrational. Then, for every integer &£ > 1, the sequence
[ne], n=1,2,3,..., contains infinitely many kth powers of primes.

2. NOTATION

Symbols with or without suffices have the same connotation. The letter p de-
notes prime numbers. The letters K, b, j, k, m, n, ¢, » and s denote positive integers.
u, 7, x and the A’s are reals. ¢, § denote sufficiently small positive numbers. Like
the implied constants in the ’order notation’ the positive numbers a, ¢, 4, B and C
depend at most on the A’s, §’s, k’s. As usual, e(z) = exp(2miz) and [z] denotes the
integral part of =, L == log X . Set

x1/k
k -1 k
Sk(z) = Z e(xp®), Li(x) =/ - (logu) ™ e(zu")du,

6Xl/k<p<X1/" 56X
and K.(z) = 72z~ %sin’ (emz) for ¢ # 0; K.(z) = €% for z = 0. For any function
®(z) of a real variable we write ®(;)(z) to mean ®();z).

3. SOME LEMMAS

We shall prove completely the case k < 3 of the Theorem and conclude its proof by
indicating how to adapt the argument in the remaining case. However, we have freely
referred to results from [4] and [3]. We begin by noting two lemmas.
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LEMMA 1. Let A be any non-zero real number and let 0 < ¢ < |A|. Then, for

every m > 1, we have

(3) /: 1Sk(Az)]>™ K. (z)de .—.e/o |Sk(z))*™ de.

PROOF: By Lemma 1 of [4], the lefthand-side of (3) is equal to

m

Z max | 0,6 — |A Z(p;?—p'_’;)

6X1/"<p,p'<xllk j=1

Since |A} > € > 0 the non-zero terms here correspond to the solutions of p’f +-- -+pf‘n =

p'f R p'fn and then each such term = e¢. Thus this quantity is precisely the

expression on the right in (3). ]
LEMMA 2. For every integer k > 1 we have

2k

(4) /0 l 3 e(an*)| de =0(X,2"-’°(1ogxl)3)

ﬂSXl
for some B, depending only on k.

PRroOF: This is a special case of Theorem 4 of Hua {3]. n

k
REMARK: For our purposes the easier estimate 0O (X12 _k+6), é > 0, suffices, but
we use (4) instead to avoid some minor complications in details.
4. PROOF OF THE THEOREM
We divide this section into four parts.
4.1. The neighbourhood of the origin. .
The results of this sub-section are derived, analogously to those in Section 5 of [4],

by the method of Vaughan (particularly Lemma 3 below). The proofs are included only

for completeness.

LEMMA 3. Let n > 3 and let k, K be any two natural numbers. Fix an i,
1<i< n. Let Ay,..., A, be a set of non-zero reals (not necessarily distinct). Then,
there exists & 8 = 8¢(k, K) > 0 such that for all sufficiently large X

/||<x-l+6o Sk (®) [ Sinal@) = Loie(@) [] Ly w(2)| da

i i

(5)

<< X(n—l)/k+K'l—lL—n—l.
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(Here, and in the sequel, n will be bounded in terms of k, K and the A’s).

PROOF: Introducing the functions J, B of (5.11), (5.12) of {5] and making their
dependence on the degree (k) explicit we see that the integrand in (5) is

n

=12 I St (@) | (Biiywn(®) — Tk @) | T Zmeem(2) )|

J=1 \ h<j j<h
where k(b) = K or k according as b =1 or not. Obviously,
|Sem ()] < XEB, Ey iy (2)] < XVEEL 1< <

Using this estimate to replace all but one of S or I corresponding to a h ;é i (possible

since n 2 3) we get the last sum in absolute value

<< ZZX By ki) (®) = Ty k) (@) (IS eem (@)] + ey reny(2)]),
j=1 h#i

where o(j) = (n—2)k~* + K~ — k(j)"'. Now we note that if 6, is small enough,
depending on k and K , then the bounds (5.15)—(5.18) of [5] with 7 replaced by X ~1+%
are available to us, for the given values of k, K. Hence integrating the double sum above
over |z| € X~1*% | applying Schwarz’s inequality and using the above bounds we see

that the integral in (5) is

n
<< ZXa(J)-%h‘%ﬁ exp (—(logX)ﬁ’)X_%'*'%
Jj=1
<< X(n—l)/k-{-[(-l—lL—-n—l.
This proves the lemma. ]

LEMMA 4. Under the conditions of Lemma 3, for any &, > 0

. I.’ T I . T I(; ; d;c
'/|.=|>X"+5o .k )H k() (z)

J#i

(6)

<< EZX(n—l)k"l-O-K—l—lL—n—l.

Further supposing that A’s are not all of the same sign we have. for any given real 7,
g g Y &

_/ I,k (=) [[ Loy (@) K e(2)e(2n)da
(7) s i
>> €2X(n—l)k_l+1(—l—-lL—n'
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PROOF: We have K,(z) < €% for all = and, by partial intergration, also
Ii(z) << X* min (1, (X |w|)_l).

These give (6). By Lemma 1 of (4], the integral in (7) can be written as

X X —~1+k(1) 7! —1+k(n)~!

Uy S T

/ / (*)dus . .. dun
§k(1) X sk(n) x logus...loguy,

with (%) = max (0,6 - ), where k(h) = K or k according as h =1

n
N+ 2 ujA;
=1
or not. Since A’s are not all of the same sign Ay > 0 > A; for some h,j. Now for
(1,--.,1,) with 6X < up < 26X(1<b< n,b#h, b#7), and for a suitably chosen

A
nASX |An/A;] < u; < 2nASX |An/ A

we see that, when § is sufficiently small,

1 _ . 1 .
6X+§e)\h1<— "+,,¢Zh>\b% z\hlsX~—2-s)\hl.

This shows that the box éX < u; < X (1< j < n) contains a region with volume
>>eX™ ! such that for each (u;,...,u,) in it

n+ Z)\juj < ef2.

i=1
So the multiple integral above is

>> EZX(n—-l)+(n—l)(—1+k_l)+K"1-—lL—n,

because min k() > 1. This proves (7). ]

The next lemma follows immediately from Lemmas 3 and 4.

LEMMA 5. Under the hypotheses of Lemmas 3 and 4 we have for any 8y, 0 < § <
bo(k, K),

I /|:|<X-1+Go 5(.1).1((3?)£Ii Sgiyul(z)e(zn) K (z)dz]
>> 2 X (VR KT 1 on

(8)

We also require
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LEMMA 6. Let n > 2*¥ +1 and let 6§ > 0. Then, under the hypotheses of Lemma
3, we have

/ , 1S,k (2) [ [ Siiya(2)| Ke(z)dz
jz| 2 X% i
<< X(n—l)k_l+K_1-l-61 LB

(9)

with B = B(k), provided 4X % < ¢ <min|),|, for all sufficiently large X .

PROOF: Obviously IS(J-)',,(:B)I < X% for all z,j,k. So it suffices to prove (9)
with n = 2*¥ 4 1 and further assuming (permuting A’s if necessary) i = 2¥ + 1. Thus
we need to show that

/ 51 H IS(J)k w)l'K (2} de << YZ S 61LB
|z|2X°1

By Holder’s inequality (with respect to many factors), Lemmas 1, 2, and Lemma 13 of
[5], we get the integral here as

2 k -
< SGi z : Ke z)dz
J.=Hl (/,;I?ml k@) Ke(z) )

2k 2
i k
<<]] (le_&l S (2)]” Ke(w)d$>
=1 Biad

k

—k

1
<< X4 / 1Sk(z)|? de << X(2*~K)k" =61 B
0

This proves the assertion made above, and hence also (9). B |
4.2 The Intermediate Region.

LEMMA 7. Let A, u be two non-zero reals with A/n irrational. Let C > 1 be any
fixed number. Let positive 8y, §; be such that §g +8; < 1. Set §; = (1 — 8§ — 6,)/6
and for sufficiently large Y define X = Y1/(3%+81)  Suppose that h/q is a convergent
to the continued fraction of A/p satisfiying (h,q) =1 and ¥ < ¢ < CY . Then for
every z in the intervals X ~'*% < |¢| < X% one has the approximations

LA GRREL

/\z———. gt X1,

10 e —

(10) pe = —

with (hj,q;) =1(; = 1,2) and

(11) X% gma.x(ql,qz)gXl_%%.

https://doi.org/10.1017/5S0004972700027234 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700027234

[7] A Diophantine inequality 63

PROOF: By Dirichlet’s approximation theorem, we have integers hj,q;(7 = 1,2),
for any given z, such that (10) holds with (%;,¢;) =1 and 1 < ¢; < Xl_’llﬁo(j =1,2).
For |z] > X 't% we see easily that hjhy # 0; otherwise, |z > X '*% >
max (I/\I_l ;|P»|_])X_l+§6° leads to a contradiction. Now it suffices to show that
max (q;,¢2) < X% gives a contradiction. Under this assumption we will have (using
hyhs #0)

(12) { |grh2An™" — g2hq| = lha(g2p2) " q102(Az — hig™?)
+ hi(g1pz) g1z (hagy} — pz)| < 4XFIIHN/,
X being sufficiently large. Further Y1 = X~3%2-61 5 120 X% ~1+360/4 since 46, +
81 + 38p/4 < 1. So (12) implies
larhadp™ ~ g2ha| < (2€Y) 7' < (29)7

This implies, by Legendre’s law of best approximation, that (since hik; # 0)q < q1 |ha2|.
But, on the other hand, using |z| < X% one has

a1 k2] <10 |p| X% g1g2 < 10|u| X1+2% < ¥ <,

a contradiction. Hence max(q1,¢2) > X % and the Lemma is proved. |

Let b and m be two given natural numbers, and &y satisfy, in the notation of
Lemma 3, 0 < § < &(b,m). Now, with the notation and definitions of Lemma 7,
denote by J; the part of the interval X ~1+¥% < |z] < X% corresponding (via Lemma
7) to ¢¢ = max(q1,qz), and by J, the remaining part. Then we prove

LEMMA 8. We have

(13) Sp(Az) = o(xb“—fsi),z € J1; Sm(uz) = o(xm“—oin), z€Jy,

where 8}, = (22¥+2(k + 1)) " min (1/3k, 63, 80/2), for k > 1.

PRrOOF: We prove only the first part of (13), the other part being obtained likewise.
We have, by Lemma 7, for z € J4

e —higr!| < g% X < < X1TE
From this it easily follows that
log (min ((6"X)

and hence by Lemma 10 of [5] (twice)

1/3b
P, q, 8Xq")) > (27326 + 1)) loglog X,

Sp(Az) = O(Xb-‘ '6{’),

with &, as defined in the statement of the lemma. |
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4.3 Proof of the Theorem (k < 3).

We have s = 2¥ + 1. We treat the cases i < 2 and ¢ > 2 separately. Let
0 < & <min|Aj|.

(a) ¢ < 2. Without loss of generality we can assume ¢ = 2. Taking, in Section 4.2,
A=A, p=A2; b=k, m=K and ¢=Y we get, by Lemma 8, for X = ¢!/(3%+é1)
(where ¢ is a sufficiently large denominator of a convergent to the continued fraction

of A/p)

-1 1] -
(14)  Smu(@) =0(X*" %), o € i; S () = o(X¥7' k), s € 1.

We use these bounds to estimate

x4
(15) / S@),x(@) [] Siya(@)| Ke(z)de

~146 ;
XmThe 2

By (14), the part of the integral over J; is
K—I_JI o
<< X x/ I Siya()| Ke(z)dz
T |i#2

which, by Holder’s inequality, Lemmas 1 and 2 (as in the proof of Lemuma 6) is <<
eX* LB, where ay = (2% —k)k—? + K~1 — §,.
Again, by (14), the part of (15) over J; is, with ¢ = 2¥(max (Zk,ZK))_l

-1 t\ ¢ had —e
< (X" "6*) / S2),x(2) (Say (=)'~ I Sciy ()| Ke(z)da.
—o0 i>3

By Holder’s inequality, Lemmas 1 and 2, this expression is

92—k

<<xC (T ( [ 5@ Kuteyie)

723
2—1:

2—k

<< (eB) " xon ( /_ : |s(,),,((z)s(11)°k(z)| )dm) ,
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where oy = c(k™! - &) + (l - 2"‘)(2" — k)k~!. The integral here is by Holder’s
inequaltiy,

<< (/: |3(z).1<(=°)|2kc—l Ke(‘c)d’«'Y(/:: |5(1).k(z)|2k Ke(w)dw)

1—c

Noting that 2*¥¢=! > 2K and using Lemmas 1 and 2, we see that this quan-
tity is << eLP1X?? for some B; = Bj(k,K), where o; = c(2’°c"l —K)K‘1 +
(1 —¢)(2* — k)k~!. Hence the part of the integral (15) over J; is << eLB2X°2 for
some B; = By(k,K) and a; =1 + 2 kg, = 2%k 1 4 K1 1 by, .

Thus the integral (15) is

(14)... << eLBYFHFTI 14K "

where B = B(k,K) and §" = min (8}, cd;).

(b) ¢ > 2. In this case we take A = Ay, g = Az, and b = m = k in Section 4.2
and argue as in the case (a) for the part of (15) over J; there. This leads again to a
similar bound for (15).

To complete the proof of the Theorem in this case (.9 =2F4 1) we need, for given
61 < 1, only to show that ¢ satisfies

"
AX7% e <min| N LBX T < 2L LBX Y el

These conditions are satisfied by ¢ = X~%, where o = min (%61,%’-) (say). Thus,
with this choice of ¢, we get, using Lemmas 5 and 6, (14) that under the hypotheses
of the theorem, for a seuence of X — o0,

| sou@ L Sorale)een.(2)ds
m j#i
s X ) (0

Since, by Lemma 1, the left-side here is < ¢ times the number of solutions of (with
k(j) = K or =k, according as j =7 or not)

P Y Ak 4 depl | < X%, gy < XVHO) < a7y,
J#

1 < j < 2% +1. Hence this inequality has >> Xor-(2"+1) ,a=2kk"1 L K1 _1_q,

solutions in prime p;, for a suitable sequence of X — oco. This completes the proof of
the theorem for k < 3.
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4.4 Proof of the Theorem (k > 3).
Here we indicate the changes required to deal with this case using the results of
[8]. We have s = 2r + 2m + 1. Analogously we work with the product

2r+1

Ik (2) ] Iiyw(@) FP(2)F¥ (=)
7=1
JF#E

(since one can assume ¢ < 2r + 1), where Ft(k)(:c) are exponential sums Fy(z)(t =1,2)
of [5]. It is apparent from earlier considerations, in view of Theorem 1 of [5] and its
analogue in Section 6 of [5], that the problem is to estimate on the intermediate range
only; that is we are to estimate the integrals, for ¢ = 1,2,

S z S e(@)| |FE(2)| Ko (z)dz.
St cpapes [ S0t L) | 2 et

This can be done as in Section 4.3 above with ¢ = m%{_j , using Theorem 1 of {5]

for £ > 4 and its analogue in Section 6 for k = 4.
Thus the Theorem is completely proved. Theorem’ is an iminediate consequence

from it.
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