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Nonparametric Unfolding of Binary
Choice Data

Keith T. Poole
Carnegie-Mellon University

This paper shows a general nonparametric unfolding technique for maximizing the correct
classification of binary choice or two-category data. The motivation for and the primary
focus of the unfolding technique are parliamentary roll call voting data. However, the
procedures that implement the unfolding also can be applied to the problem of unfolding
rank order data as well as analyzing a data set that would normally be the subject of
a probit, logit, or linear probability analysis. One aspect of the scaling method greatly
improves Manski’s “maximum score estimator” technique for estimating limited dependent
variable models. To unfold binary choice data two subproblems must be solved. First,
given a set of chooser or legislator points, a cutting plane must be found such that it
divides the legislators/choosers into two sets that reproduce the actual choices as closely
as possible. Second, given a set of cutting planes for the binary choices, a point for each
chooser or legislator must be found which reproduces the actual choices as closely as
possible. Solutions for these two problems are shown in this paper. Monte Carlo tests of the
procedure show it to be highly accurate in the presence of voting error and missing data.

1 Introduction

THE PURPOSE OF this paper is to show a new scaling method for analyzing parliamentary
roll call data. The scaling method employs the same spatial model used by Poole and
Rosenthal (1997) in their NOMINATE procedure and the scaling method is “NOMINATE-
like” in structure. However, rather than maximizing the likelihood of the legislators’ choices,
the scaling method developed belowmaximizes correct classificationof the legislators’
choices. The scaling method isnonparametricbecause no assumptions are made about the
probability distribution of the legislators’ errors in making choices. The only assumptions
made are that the choice space is Euclidean and that individuals making choices behave as
if they utilize symmetric, single-peaked preferences. Strictly speaking, the scaling method
presented here isnot a statistical model. However, standard errors can be estimated via
bootstrapping for the legislator coordinates.

The remainder of this introduction is devoted to the geometric intuition behind the scaling
procedure and where the scaling method fits in the existing literature in psychometrics. With

Author’s note:I would like to thank Howard Rosenthal, Nolan McCarty, Larry Rothenberg, Tim Groseclose, Tom
Romer, and three anonymous referees for their comments on various drafts of this paper. The programs that perform
the analyses shown in the paper and detailed examples are available athttp://k7moa.gsia.cmu.edu/dwnl.htmand
the Appendix to the paper can be found at thePolitical Analysiswebsite. This paper is dedicated to the memory
of Jerry Salancik, who gave me invaluable comments just prior to his untimely death.
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respect to econometrics, one aspect of the scaling method—thecutting plane procedure—
greatly improves Manski’s “maximum score estimator” technique (Manski 1975, 1985;
Manski and Thompson 1986) for estimating limited dependent variable (LDV) models.
This is discussed in Section 3. Readers interested in only this aspect of the paper should
read the notational definitions below and then skip to Sections 2 and 3.

The spatial model estimated by the scaling method assumes that legislators have Eu-
clidean preferences defined over some ideological/policy space and that they vote sincerely
for the alternative closest to their ideal point. Each roll call vote has two policy points in the
space corresponding to the policy consequences of a Yes (Yea) or No (Nay) vote on
the roll call.1 In the perfect case a plane can be placed in the space such that it sepa-
rates the legislators voting Yea from the legislators voting Nay. Geometrically, thiscutting
planeboth is perpendicular to the line joining the Yea and Nay policy points and passes
through the midpoint of the Yea and Nay policy points. Thenormal vectorto this cutting
plane is parallel to the line joining the Yea and Nay policy points.

The scaling method finds estimates of the legislator ideal points and cutting planes for
the roll calls that maximize the number of votes classified correctly. The program has two
phases. Given the legislator ideal points, for each roll call a cutting plane is found that
maximizes correct classification of legislators’ votes on that roll call. Thecutting plane
proceduredeveloped in Section 2 shows how this is done. In the second phase, given the
cutting planes for the roll calls, for each legislator a point is found in the space vis a vis the
cutting planes that maximizes the correct classification of the legislator’s votes across the roll
calls. Thelegislative proceduredeveloped in Section 4 shows how this is done. The output
of the cutting plane procedure is a new set of cutting planes that are passed to the legislative
procedure to obtain a new set of legislator ideal points, and so on. The correct classification
can never decreasegoing from one phase to the next. These two phases can be repeated in
sequence until no further improvement in correct classification occurs.

In one dimension the scaling problem consists of finding a joint rank ordering of the
legislators and roll call midpoints (ties are permitted; an example is shown in Table 6) that
maximizes correct classification. Given a rank order of legislators, the global maximum in
correct classification can be found for every roll call. Similarly, given a rank order of the
roll call midpoints, the global maximum in correct classification can be found for every
legislator. The two are symmetric in one dimension. The one-dimensional scaling method
resembles classical Guttman scaling (see Fig. 2). However, the assumptions underlying
the two are fundamentally different. Guttman scaling is based upon acumulativeresponse
function, that is, a utility function that is always monotonically increasing over the relevant
dimension or space. In contrast, the spatial model employed here is based upon aproximity
response function (legislators vote for the option closest to their ideal points—symmetric
utility). Weisberg (1968) shows that these two models correspond to two very different
substantive processes underlying roll call voting. The proximity response function is clearly
more realistic in a legislative context.2

In two or more dimensions this symmetry disappears—points must be estimated for
the legislators and cutting planes must be estimated for roll calls. For example, in two
dimensions, suppose that there areq roll calls so that there areq cutting lines. If a va-

1This model was first proposed by MacRae (1958) and later developed by Poole and Rosenthal (1997) in their
NOMINATE procedure.

2See van Schuur (1992) for a discussion of some Guttman-like models. The multidimensional generalization of
Guttman scaling is known as Multidimensional Scalogram Analysis (Lingoes, 1963). For a survey see Shye
(1978, Chaps. 9–11).
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riety of voting coalitions forms among the legislators, then these cutting lines will criss-
cross one another in a myriad of directions, creating a very large number of regions in
the plane (see Fig. 4). Indeed, Coombs (1964, p. 262) shows thatq binary choices (roll
calls) create a maximum of

∑s
k=0

(q
k

)
regions wheres is the number of dimensions. For

two dimensions, 1+ q+ q(q− 1)/2 regions are possible, with each region corresponding
to a voting pattern on theq roll calls, e.g., yynnynynnny. . . . There are 2q possible vot-
ing patterns and in practical applications this number will greatly exceed the maximum
number of regions in the space. Hence, the problem is to find the region that best matches
the legislator’s observed pattern of roll call votes. This is what the legislative procedure
does.

Let s denote the number of policy dimensions, which are indexed byk = 1, . . . , s; let
p denote the number of legislators (i = 1, . . . , p) andq denote the number of roll call
votes (j = 1, . . . ,q). Let T be thep × q matrix of observed choices. The choices are
simply Yea or Nay and are represented as “y” or “n,” respectively.T can contain missing
entries. LetX be thep × s matrix of legislator coordinates. The roll call cutting planes
are defined in terms of theirnormal vectors. Specifically, letnj be thes× 1 normal vector
for the j th roll call and letN be theq × s matrix of normal vectors for theq cutting
planes. A plane is defined as the vector equation,z′nj = v′nj , wherez, nj , andv ares× 1
vectors and the plane consists of all pointsz such that (z−v) is perpendicular to the normal
vector,nj , andv is aspecificpoint in the plane.3 Note that ifv1 andv2 are both points in
the plane, thenv′1nj = v′2nj = mj , wheremj is a scalar constant. Geometrically, every
point in the plane projects onto the same point on the line defined by the normal vector.
By definition, the normal vector for a roll call cutting plane is parallel to the line joining
the Yea and Nay policy points and passes through the midpoint of the Yea and Nay policy
points. Because the midpoint of the Yea and Nay policy points is on the cutting plane, it
too projects to the pointmj on the line defined by the normal vector,nj . Let zjy andzjn

be the Yea and Nay policy points, and letzmj = (zjy + zjn )/2 be the midpoint. Hence,
z′mj nj = mj .

Given this geometry, the rule for a correct classification is the following. Letxi be thei th
legislator’s ideal point, letc denote the legislator’s chosen outcome, and let the projection
of the i th legislator’s ideal point onto the projection line bewi = x′inj . Then the rule for a
correct classification is as follows.

If legislator i votesc:

δi j = 1 if wi ≥ mj andz′jcnj > mj , orwi < mj andz′jcnj < mj ;

δi j = 0 if wi < mj andz′jcnj > mj , orwi > mj andz′jcnj < mj .

In other words, if the legislator votes “Yea”/“Nay” and her ideal point is on the Yea/Nay
side of the plane, the legislator’s vote is correctly classified. Note that the assumption of
symmetricsingle-peaked preferences means that if a legislator votes “Yea” and her ideal
point isanywhere on the Yea side of the plane, then that counts as a correct classification.
If preferences arenot symmetric, then this might not be true.

3In many vector calculus textbooks this is taught in terms of the general expression (in three dimensions)A(x −
x0)+ B(y− y0)+C(z− z0) = 0, whereA, B, andC are the components of the normal vector and (x0, y0, z0)
is a point in the plane. If the normal vector is (3,−2, 1) and the point in the plane is (1, 0, 2), then this produces
the equation 3x − 2y + z = 5. See Salas and Hille (1974, Chap. 12) and Lang (1979, Chap. 1) for standard
treatments of the topic.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
81

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029814


P1: FIC/FHV/FCI

WV003-04 March 23, 2000 16:40

214 Keith T. Poole

The total correct classification is therefore

δ(X,N) =
p∑

i=1

q∑
j=1

δi j (1)

In sum, given the number of dimensions,s, the classification problem consists of finding
estimates ofX andN, denotedX∗ andN∗, respectively, which maximize Eq. (1).

The scaling method developed below findsX∗ andN∗ that maximize Eq. (1). It isnot a
statistical model because no error process is incorporated into Eq. (1). However, standard
errors for the legislator ideal points and the roll call normal vectors can be estimated via
bootstrapping.

Within the psychometrics field, the scaling method developed here is anonmetric un-
folding procedure. It is an “unfolding” because the roll calls are treated as preferential
choice data and parameters for individuals (legislators) and stimuli (roll calls) are being
estimated. It is “nonmetric” because no assumptions are made about the parametric form of
the individuals’ “true” preference functions other than that they are symmetric and single
peaked.

Unfolding was developed for the one-dimensional case by Coombs (1950) and gener-
alized to the multidimensional case by Bennett and Hays (1960). The original unfolding
model—later dubbed theideal-point model—represented individuals and stimuli as points
and was originally developed to analyze rank orderings of stimuli by individuals. Later,
Tucker (1960) developed thevector modelof unfolding in which the individuals are treated
as vectors and the stimuli as points. The vector model is a special case of the unfolding model
where the individual’s ideal point goes off to infinity (Carroll 1980; Borg and Groenen 1997,
Chap. 15). This model is much like Guttman scaling in that the individual utility rises/falls
monotonically from the center of the space off to infinity along the individual’s vector. The
projections of the stimuli onto the individual’s vector reproduce the observed rank ordering.
The vector model is the basis of the MDPREF program developed by Chang and Carroll
(1969).

With respect to the roll call voting problem, the ideal point and vector unfolding models
are closely related. If the individuals are treated as roll calls and the roll calls are treated
as individuals, then the individual becomes a cutting plane through the space and the point
where the cutting plane passes through the normal (individual) vector is theindividual’s
threshold. That is, the individual approves/accepts the stimuli on one side of the plane and
disapproves/does not accept the stimuli on the other side of the plane. “Pick Any/N” data
that are widely used in marketing applications (DeSarbo and Cho 1989) have this form. For
example, respondents are given a list of soda pops and asked if they drink/not drink each
soda. The soda pops are then displayed as points in a space and the individuals as cutting
lines that divide the soda pops into drink/not drink.

Psychometricians have largely abandoned the nonmetric approach in the past fifteen
years “because they suspected instability and identification problems” and have focused
their efforts on probabilistic and metric alternatives.4 The most important recent work along
these lines is by Londregan (2000). Londregan links the psychometrics testing literature
with the spatial theory of legislative voting and derives important statistical results about the

4Personal communication to the author from Willem J. Heiser, 27 March 1998. Some recent examples of proba-
bilistic/metric models within the psychometrics tradition are Heiser (1981), DeSarbo and Hoffman (1987), Gifi
(1990), Blokland-Vogelesang (1991), Hojo (1994), and Andrich (1995).
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parameters of the spatial model. In particular, when the preferential choices arenominal,
Londregan shows that consistency in its usual statistical sense does not hold. With nominal
choices standard maximum-likelihood estimators that attempt to recoversimultaneously
legislators’ ideal points and roll call parameters inherit the “granularity” of the choice data
and so cannot recapture the underlyingcontinuousparameter space. If legislators could
report continuous “feeling thermometer” scores instead of just Yea/Nay, then this source of
inconsistency would disappear. In addition, note thatas error goes to zero,5 legislators are
only identified up toregionsin the space. Londregan’s work in part inspired the development
of the scaling procedure shown in this paper.

The algorithms that are at the center of the cutting plane procedure and the legislative
procedure are unique and are very stable. In particular, when the number of legislators is 100
or greater and the number of roll calls is on the order of 500—typical of national legislatures,
for example, the U.S. Senate—then the recovery of the legislators and cutting lines is very
precise. With 500 roll calls, there are a maximum 125,251 regions in two dimensions and
a maximum of 20,833,751 in three dimensions. Most of these regions are so small that a
typical legislator’s point is very precisely pinned down. In fact the recovery of the legislator
coordinates is virtually identical to those recovered by parametric procedures that must
make strong assumptions about the interpersonal comparability of individuals’ utility and
the functional form of the error distribution (e.g., Heckman and Snyder 1997; Poole and
Rosenthal 1997).

Sections 2–6 develop the nonparametric unfolding procedure. Section 2 develops the
cutting plane procedure—a method for finding the optimal cutting plane given a configura-
tion of legislators. Section 3 shows the relationship between the cutting plane procedure and
Manski’s “maximum score estimator” technique for estimating limited dependent variable
(LDV) models. Section 4 develops thelegislative procedurethat finds the optimal legislator
point given a set of cutting planes. Section 5 shows Monte Carlo tests of the unfolding pro-
cedure and empirical applications are shown in Section 6. The Appendix contains additional
examples and Monte Carlo tests. It can be found at thePolitical Analysiswebsite.

2 Finding the Optimal Cutting Plane

Given thep× s matrix, X, of legislator coordinates and thep× 1 vector of votes on the
j th roll call, tj , the problem is to find the plane that divides the legislators into two groups
such that the number of correct classifications is maximized. Figure 1 shows an example in
two dimensions.

Figure 1 illustrates the fact that the cutting plane problem is equivalent to finding a
vector—in this case,n—such that when the legislator points are projected onto the vector,
a cutting pointcan be found that maximizes the correct classifications. By definition, all
points in the cutting plane are projected onto this cutting point. The problem has two distinct
parts. First, given an estimated normal vector, the plane perpendicular to the normal vector
that maximizes correct classification must be found; and second, given an estimated cutting
plane, the orientation of the plane in the space must be changed so that a better estimate of
the normal vector is found.

5This is not as far-fetched as it sounds. Several European parliaments classify at 95% or above in one or two
dimensions. For example, most legislative sessions during the French 4th Republic (personal communication
from Howard Rosenthal and Erik Voeten), recent sessions of the Czech parliament (personal communication from
Abdul Noury), and the 1841 English parliament (personal communication from Cheryl Schonhardt-Bailey).
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(A)

(B)

Fig . 1 (A) Original positions in two dimensions. (B) Points projected onto line.

2.1 Calculating the Correct Classifications

Let the legislator coordinates lie within thes-dimensional unit hypersphere and let the origin
of the space be placed at the centroid of the legislator coordinates; that is, let

s∑
k=1

x2
ik ≤ 1, i = 1, . . . , p, and

p∑
i=1

xik = 0, k = 1, . . . , s
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Actual Voting Pattern

Y Y Y Y Y Y . . . . Y Y * N Y * N Y * N N . . . N N

-1.0 w1 w2 w3 w4 . . . . . . . 0.0 . . . . . . . wp-1 wp +1.0

Perfect Voting Patterns

(-1, w1) produces nnnnnnnnn.....nn or yyyyyyyyy.....yy
(w1, w2) produces ynnnnnnnn.....nn or nyyyyyyyy.....yy
(w2, w3) produces yynnnnnnn.....nn or nnyyyyyyy.....yy
(w3, w4) produces yyynnnnnn.....nn or nnnyyyyyy.....yy

etc.

(wp−1, wp) produces yyyyyyyyy.....yn or nnnnnnnnn.....ny
(wp,+1) produces yyyyyyyyy.....yy or nnnnnnnnn.....nn

Fig . 2 Calculating the correct classification.

In addition, letnj be the normal vector for thej th roll call that maximizes correct classifi-
cations. Without loss of generality,nj can be constrained to be of unit length; i.e.,n′j nj = 1.
The projections (see Fig. 1B) are, therefore,

Xnj = wj (2)

Note that the elements in thep-length vector,wj , range from−1 to+1. The elements inwj

all lie on a line that passes through the origin of thes-dimensional unit hypersphere in the
direction of the normal vector with exit points−nj and+nj , respectively. Hereafter, this is
referred to as theprojection line.

Let n∗j be an estimate ofnj and letw∗j be the corresponding estimate ofwj . The correct
classifications associated withn∗j can be calculated quite easily. Figure 2 illustrates the
method.

In Fig. 2 the indexj has been omitted to reduce clutter. In addition, let the projected
legislator coordinates from left to right be denoted in order asw1 to wp such that−1 ≤
w1 ≤ w2 ≤ w3 ≤ · · · ≤ wp ≤ +1 and the Y’s and N’s above the projection line in the
figure indicate how the corresponding legislators voted on thej th roll call. There arep+ 1
possible regions that the cutting point could be in—(−1, w1), (w1, w2), . . . , (wp,+1)—and
for each region there are exactly two possible perfect voting patterns, for an overall total of
2(p+ 1) possible perfect voting patterns. However, region (wp,+1) is redundant since it
produces the same perfect patterns as the region (−1, w1) so it may be discarded, leaving
2p unique perfect voting patterns to consider.

Since there are only 2p perfect patterns, it is a simple matter to compare each perfect
pattern with the actual pattern of votes,tj . This can be done very efficiently by first assuming
that the cutting point is in the region (−1, w1) and calculating the corresponding number of
correct classifications. Next assume that the cutting point is in the region (w1, w2). Only one
calculation has to be made to get the correct classifications for this cutting point since the
only change is that the cutting point has been moved from the left ofw2 to the right ofw2.
If there is no missing data, the correct classification either increases by 1 or decreases by
1 when the cutting point is moved from the left ofw2 to the right ofw2. Similar reasoning
holds for the remaining points. For each possible cutting point the correct classification
corresponding to the two possible perfect patterns can be calculated. The estimated cutting
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point is set equal to the midpoint of the region for which correct classification is a maximum.
For the example shown in Fig. 2, placing the cutting point at the position of any of the three
asterisks would produce only two classification errors, for a correct classification ofp−2.6

Note that this process is equivalent to moving the cutting plane through the unit hyper-
sphere along the line defined by the estimated normal vector,n∗j , and its reflec-
tion,−n∗j .

2.2 Calculating the Optimal Normal Vector

Let m∗j denote the cutting point that maximizes correct classification on the projection line
formed by the elements ofXn∗j = w∗j . The estimated cutting plane consists of all pointsv
such that

v′n∗j = m∗j (3)

In order to get a new estimate ofnj , the estimated cutting plane given by Eq. (3) must
be moved through the space in a direction that increases correct classification. This is
accomplished by moving the cutting plane toward the legislator points that are classification
errors.

To do this, a matrix is created by projecting all thecorrectly classifiedlegislator points
onto the surface of the cutting plane while leaving the incorrectly classified legislators at
their original positions. In two dimensions this produces a line through the space made up
of correctly classified legislators (the current cutting plane) around which is a scattering
of points corresponding to the incorrectly classified legislators (see Fig. 3). Specifically,
let xi be thes× 1 vector denoting thei th legislator’s point in the space and letwi j be the
corresponding point on the projection line from Eq. (2). Construct ap× s matrix, Ψ, as
follows: if legislator i is correctly classified, then her point is projected onto the cutting
plane and that point becomes thei th row ofΨ; if legislator i is incorrectly classified, then
her point remains at its original position and that point becomes thei th row ofΨ. That is,
on the j th roll call,

ψi = xi + (m∗j − wi )n∗j if correctly classified
ψi = xi if incorrectly classified

(4)

Without loss of generality, the centroid ofΨ can be placed at the origin. That is, letµ
be thes-length vector of the means of the columns ofΨ, and letJp be ap× 1 vector of
ones. DefineΨ∗ as

Ψ∗ = Ψ− Jpµ
′ (5)

Figure 3A shows a vote in two dimensions that would be perfectly classified by the
indicated cutting line. Figure 3B shows theΨ∗ produced by using an initial estimate of
n∗j
′ = (0, 1)—that is, an estimated normal vector perpendicular to the true normal vector.

All the “y” and “n” tokens off the plane are classification errors. Clearly, if the plane were
moved counterclockwise toward the errors, a better fit would be obtained.

6When there are multiple solutions like the example shown in Fig. 2, the cutting point is placed at the midpoint
of the region closest to the center of the space.
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(A)

(B)

Fig . 3 (A) True cutting line. (B) Initial estimate of cutting plane.

This is accomplished by using the Eckart and Young (1936) lower-rank-matrix approx-
imation theorem. Let the singular value decomposition ofΨ∗ be

Ψ∗ = UΛΘ′ (6)

whereU is a p× s orthogonal matrix,Θ is ans× s orthogonal matrix, andΛ is ans× s
diagonal matrix containing the singular values in descending order on the diagonal. By
definition,U′U = Θ′Θ = I s, whereI s is ans× s identity matrix.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
81

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029814


P1: FIC/FHV/FCI

WV003-04 March 23, 2000 16:40

220 Keith T. Poole

(C)

(D)

Fig . 3 (Continued)(C) Second estimate of cutting plane. (D) Thirty-fifth estimate of cutting plane.

By the Eckart–Young theorem, the best-fitting line through the scatterplot shown in
Fig. 3B is found by inserting a zero in place of the second singular value inΛ and remulti-
plying. That is, letΛ# be thes×s diagonal matrix identical toΛ except for the replacement
of thesth singular value by zero; then the estimated hyperplane is

V = UΛ#Θ′ (7)

where thep× s matrixV will have ranks− 1 by construction.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
81

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029814


P1: FIC/FHV/FCI

WV003-04 March 23, 2000 16:40

Nonparametric Unfolding of Binary Choice Data 221

Let n#
j be the normal vector of the hyperplane defined byV, let θs be thesth singular

vector ofΘ, and let0p be a p-length vector of zeroes. It is straightforward to show that
n#

j = θs. This stems from the simple fact that, by construction,

Vθs = 0p

which is identical to Eq. (3) (see Appendix A1 for a simple demonstration).
In sum, calculating the optimalnj consists of the following steps:

1. Obtain a starting estimate ofn∗j using simple OLS (linear probability) or two-group
linear discriminant analysis.

2. Calculate the correct classifications associated withn∗j .

3. ConstructΨ∗ using Eq. (4) and Eq. (5).

4. Perform singular value decomposition ofΨ∗,UΛΘ′.
5. Use thesth singular vector ofΘ, θs, as the new estimate ofnj .

6. Go to step 2.

In an error-free case like that shown in Fig. 3, this cutting plane procedure will almost
always quickly iterate into the true cutting plane. With error-ridden data, the rate of con-
vergence is a function of the number of errors. As the number of errors decreases, the
mass of the correctly classified choices increases, thereby producing very small changes
in the newly estimated normal vectors. The procedure is stopped when the sum of squared
differences inn∗j divided bys changes by less than .0001 between iterations.

Table 1 shows a Monte Carlo study of the cutting plane procedure using perfect data for
100 legislators and 500 roll calls for 2 through 10 dimensions. (A Monte Carlo study of
contaminated data in one to three dimensions with varying error levels and types of error is
shown in Appendix A2.) Results for one dimension are not shown in Table 1 since correct
classification will always be 100% if error-free data are used. The 100 legislators and 500
pairs of policy points were randomly drawn from a uniform distribution through the unit
hypersphere. The policy points were randomly drawn but in such a way so as to produce
an average majority margin of about 67% (typical of U.S. congressional roll call data; see
Table 6). A maximum of 50 iterations through steps 2–5 above was allowed.

The cutting plane procedure performs very well. The number of dimensions does not
appear to play any role in the accuracy of the procedure. For example, for the 10 trials in 10
dimensions, the 5000 total estimatedn∗j ’s correctly classified 499,936 of 500,000 choices
(99.99%). With 100 legislators the recovery of the true normal vectors is quite good. In two
dimensions, the average of the cosines computed between the true normal vectors and the
estimated normal vectors is .998 for all roll calls and .999 for roll calls with at least 10%
in the minority (90–10 or better). This average cosine falls as the number of dimensions is
increased because of the simple fact that there is more space between the legislators so that
the cutting planes can be moved slightly without affecting the classification. Note that, in
four or fewer dimensions—the dimensionality of most practical applications—the recovery
is almost exact.

When error is present the cutting plane procedure is highly accurate and converges very
quickly. Table A1 in the Appendix reports the results of the Monte Carlo study in the
presence of error.
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Table 1 Monte-Carlo tests of cutting plane procedure 100 legislators and
500 votes (perfect data) (each entry average of 10 trials, standard deviations

in parentheses)

Average Average Average
Average Average percent fit with fit with
majority number correctly true normal true normal

S margin of errors classified vectors alla vectors 10% min.b

2 65.6 4.1 99.99 .998 .999
(0.7) (3.4) (0.01) (.001) (.000)

3 66.4 4.9 99.99 .996 .997
(0.5) (2.6) (0.01) (.000) (.000)

4 66.7 4.8 99.99 .992 .995
(1.0) (1.9) (0.00) (.001) (.001)

5 67.3 6.5 99.99 .989 .993
(0.7) (2.3) (0.00) (.001) (.000)

6 66.9 7.2 99.99 .984 .990
(0.7) (1.7) (0.00) (.001) (.000)

7 67.4 5.6 99.99 .979 .987
(0.7) (2.6) (0.01) (.002) (.001)

8 67.4 5.5 99.99 .975 .984
(0.7) (2.4) (0.01) (.001) (.001)

9 67.6 6.5 99.99 .970 .980
(0.5) (2.3) (0.00) (.002) (.001)

10 67.5 6.4 99.99 .964 .976
(0.8) (3.0) (0.01) (.001) (.001)

aAverage cosine computed between true normal vectors and estimated normal vectors.
bAverage cosine computed between true normal vectors and estimated normal vectors
for those roll calls with at least 10 percent or better in the minority.

3 The Relationship of the Cutting Plane Procedure to Manski’s Maximum
Score Estimator for Estimating LDV Models

Given a simple two-category dependent variable and a set of fixed independent variables, the
cutting plane procedure can be used to estimate a vector of coefficients for the independent
variables that maximizes correct classification of the dependent variable. In this instance,
with the independent variables scaled so as to lie within a unit hypersphere, the normal
vector,n∗j , produced by the cutting plane procedure, plays the role of the coefficient vector,
β, in a standard Probit, Logit, or linear probability analysis. For example, in a Probit analysis,
if the estimatedβ ’s for the independent variables,β1, β2, . . . , βs, are normalized so that their
sum of squares is equal to one, then they constitute a normal vector to a plane upon which the
choice probabilities are exactly .5/.5. That is, in terms of Fig. 1, all the points on the cutting
plane have choice probabilities of .5/.5 and are projected onto the projection line at the cutting
point,m∗j , which is determined by the intercept term,β0. In this context, the normal vector
is the direction of maximum increase/decrease in probability and the 1/σ in the standard
Probit expression determines how rapidly the probability rises/falls along the normal vector
from the cutting plane to the rim of the hypersphere, that is, fromm∗j to−nj and+nj .

The cutting plane procedure is a very efficient method for implementing Manski’s max-
imum score estimator (MSE) for limited dependent variable models (Manski 1975, 1985;
Manski and Thompson 1986). In its simplest form the MSE choosesβ to maximize correct
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classification. Part of the MSE process is very similar to the part of the cutting plane pro-
cedure illustrated by Fig. 2. Namely, given a direction, it is easy to find the classification
maximum (Manski and Thompson 1986, pp. 89–90). However, the MSE approach has no
method other than exhaustive search to find a better direction through the space.

Intuitively, in terms of the notation developed above, the MSE algorithm consists of two
phases. First, givenn∗j , the cutpointm∗j is found. Second, letn1

j , n
2
j , n

3
j , . . . ,n

s−1
j , be a set

of normal vectors orthogonal ton∗j . The algorithm then searches along these orthogonal
vectors for a solution better than the current solution. Unlike the cutting plane procedure,
which uses Eq. (3) and Eq. (6) to arrive at a better solution for the normal vector, the MSE
algorithm has no systematic criterion for selecting a better search direction (Greene 1993,
pp. 658–659).

Greene (p. 659) compared the MSE algorithm with Probit using a data set gathered
by Spector and Mazzeo (1980) that studied a new method of teaching economics. Greene
found that Probit correctly classified 26 of the 32 observations, while the MSE algorithm
classified only 22 of the 32 observations. The cutting plane procedure recovers essentially
the same coefficient vector as that shown by Greene (after normalization) for Probit and
correctly classifies 28 of 32 observations. This result, along with an additional empirical
example and a Monte Carlo study of the cutting plane procedure with classification error,
is shown in Appendix A2.

4 Finding the Optimal Legislator Coordinates

Given theq×smatrix,N, of normal vectors and theq×1 vector of votes of thei th legislator,
ti , the problem is to find the legislator point,xi , which maximizes the correct classification.
Figure 4 shows an example in two dimensions.

Figure 4 shows five cutting lines indicated by the numbering at the rim of the circle. The
“Y” or “N” on either side of each cutting line indicates how a legislator on that side of the

Fig . 4
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cutting line should vote—“yea” or “nay,” respectively. The maximum number of regions
created by five cutting lines in two dimensions is 16 and each of these 16 regions can be
characterized by a unique vector of votes. Figure 4 shows only 13 regions to emphasize
the practical issue that in real-world data not all of the theoretically possible regions will
be present. For example, cutting lines 2 and 5 intersect outside the circle so that a legislator
who voted “y” on both cannot be placed inside the circle without a classification error. In
practice, the restriction that the legislator points lay within a unit hypersphere does not pose
a problem since the legislator points and cutting planes are iteratively adjusted to maximize
correct classification. In this case, if the data were perfect (error-free) and two dimensional,
the procedure would move the legislator points in such a way that lines 2 and 5 would
intersect inside the circle.

Given a legislator’s pattern of votes, in this case NNNYN (technically,t′i = [NNNYN]),
the problem is to find the region in Fig. 4 that maximizes the correct classification. In this
example point C is located in the region corresponding to perfect classification. Suppose
the initial estimate of the legislator’s coordinates is at the origin, point A in Fig. 4. This
initial estimate is very poor, as it correctly classifies only one of the five votes. The problem
is to move the point representing the legislator in a direction that increases the number of
correct classifications.

Below a method is shown for finding the maximum classification point along any arbitrary
line passing through the space. This method is used to move the legislator point through the
space in a city-block fashion by searching along a line parallel to the first dimension and
then solving for the point along this line that maximizes classification. Then the legislator
point is moved along a line through this new point but parallel to the second dimension.
This is done for each dimension in turn and can be repeated as many times as desired. This
always converges to a point for which the coordinates are at alocal maximumin terms of
classification. That is, the point cannot be moved parallel to any dimension and have the
correct classifications increase.

Let x(h)
i be the initial estimate for legislatori whereh is the iteration number (1, 2,

3, etc.) and letx(a)
i be a second point. The problem is to find a new estimate,x(h+1)

i , on the
line passing throughx(h)

i andx(a)
i which increases correct classification. Using Eq. (2), the

projection ofx(h)
i onto the j th normal vector is

x(h)
i
′nj = w(h)

i j (8)

Similarly, the projection of the second point onto thej th normal vector isw(a)
i j . These

projections correspond to a correct classification on roll callj depending upon on which
side of the cutpoint,mj , they fall. There are six possible orderings ofw(h)

i j , w(a)
i j , andmj .

For each ordering there are two possible classification outcomes, for a total of 12 cases.
Table 2 shows each case.

For example, in case 1 bothx(h)
i andx(a)

i project to the right ofmj and are on the correct
side of the cutting plane for thej th roll call and are therefore correctly classified. Case 2 is the
same geometrically, only nowx(h)

i andx(a)
i are on the wrong side of the cutting plane and are

therefore projected as classification errors. Cases 1 to 8 represent no change in classification
from moving the legislator point fromx(h)

i to x(a)
i . Forx(a)

i to be an improvement overx(h)
i ,

the number of cases 10 and 12 must be greater than the number of cases 9 and 11.
Consider the effect of movingx(a)

i farther fromx(h)
i . This has no effect on cases 1, 2,

and 7–12. Only those cases wherex(a)
i is betweenx(h)

i andmj —cases 3, 4, 5, and 6—are
affected. Depending upon how farx(a)

i is moved away fromx(h)
i , case 3 could change to case
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Table 2

Classification

Case Ordering h a
Limits ofα that correctly

projectx(h+1)
i

1. −1< mj < w
(h)
i j < w

(a)
i j < +1 C1 C

mj − w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
1− w(h)

i j

w
(a)
i j − w(h)

i j

2. −1< mj < w
(h)
i j < w

(a)
i j < +1 I I

−1− w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
mj − w(h)

i j

w
(a)
i j − w(h)

i j

3. −1< mj < w
(a)
i j < w

(h)
i j < +1 C C

1− w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
mj − w(h)

i j

w
(a)
i j − w(h)

i j

4. −1< mj < w
(a)
i j < w

(h)
i j < +1 I I

mj − w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
−1− w(h)

i j

w
(a)
i j − w(h)

i j

5. −1< w
(h)
i j < w

(a)
i j < mj < +1 C C

−1− w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
mj − w(h)

i j

w
(a)
i j − w(h)

i j

6. −1< w
(h)
i j < w

(a)
i j < mj < +1 I I

mj − w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
1− w(h)

i j

w
(a)
i j − w(h)

i j

7. −1< w
(a)
i j < w

(h)
i j < mj < +1 C C

mj − w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
−1− w(h)

i j

w
(a)
i j − w(h)

i j

8. −1< w
(a)
i j < w

(h)
i j < mj < +1 I I

1− w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
mj − w(h)

i j

w
(a)
i j − w(h)

i j

9. −1< w
(h)
i j < mj < w

(a)
i j < +1 C I

−1− w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
mj − w(h)

i j

w
(a)
i j − w(h)

i j

10. −1< w
(h)
i j < mj < w

(a)
i j < +1 I C

mj − w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
1− w(h)

i j

w
(a)
i j − w(h)

i j

11. −1< w
(a)
i j < mj < w

(h)
i j < +1 C I

1− w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
mj − w(h)

i j

w
(a)
i j − w(h)

i j

12. −1< w
(a)
i j < mj < w

(h)
i j < +1 I C

mj − w(h)
i j

w
(a)
i j − w(h)

i j

< α j <
−1− w(h)

i j

w
(a)
i j − w(h)

i j

1“C” is correctly classified; “I” is incorrectly classified.

11, increasing the error by one; case 5 could change to case 9, also increasing the error by
one; case 4 could change to case 12, decreasing the error by one; and case 6 could change
to case 10, also decreasing the error by one. A similar analysis of the effect of movingx(a)

i

towardx(h)
i can also be done.

More generally, consider the equation of the line

x(h+1)
i = x(h)

i + α
(
x(a)

i − x(h)
i

)
(9)

which, when projected onto thej th normal vector, becomes:

w
(h+1)
i j = w(h)

i j + α
(
w

(a)
i j − w(h)

i j

)
(10)
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For a single roll call, it is easy to solve forα; these are shown in Table 2 for all 12 cases.
For example, for case 2,α must be chosen so that the projection ofx(h+1)

i , w
(h+1)
i j , is in the

region (−1, mj ).
Given x(h)

i andx(a)
i , Table 2 can be used to find the limits ofα for each roll call. Let

the upper and lower limits for thej th roll call beUi j and Li j , respectively. The correct
classification associated withx(h)

i can be obtained by settingα = 0 and counting the number
of roll calls for which 0∈ (Li j ,Ui j ). Similarly, the correct classification associated withx(a)

i
is obtained by settingα= 1 and counting the number of roll calls for which 1∈ (Li j ,Ui j ).
In general, define

δi j = 1 if α ∈ (Li j ,Ui j )

δi j = 0 if α /∈ (Li j ,Ui j )

and the correct classification is simply

δ(α) =
q∑

j=1

δi j (11)

Theα that maximizesδ(α), the number of correct classifications, can be calculated in a
simple manner. First, compute theLi j andUi j for each roll call. Second, rank order theLi j

andUi j and use the classification algorithm described in Section 2 to calculate the optimal
α. Here theLi j play the role of “y” and theUi j play the role of “n.” If there exists anα that
results in perfect classification, the ordering ofL ’s andU ’s will look like (dropping thei
subscript to reduce clutter and numbering left to right for convenience)

L1 < L2 < L3 < · · · < Lq < U1 < U2 < U3 < · · · < Uq

that is, all theL j will be less than all theU j . In this example, perfect classification,δ(α) = q,
results fromα ∈ (Lq,U1).

For example, using the configuration shown in Fig. 4, if the starting estimate (h = 1)x(1)
i ,

is placed at the origin—point A—and the second point,x(a)
i , is placed just to the right of

x(1)
i , then the resulting rank order of the upper and lower limits is

L1 < L5 < L3 < L2 < U3 < U2 < U1 < U5 < L4 < U4

The rank ordering is almost a perfect pattern in that four of the lower limits are below the five
upper limits; onlyL4 is wrongly placed producing one classification error. Consequently, the
point resulting from usingα ∈ (L2,U3), x(2)

i , point B in Fig. 4, has only one classification
error, with four correct classifications. [In practice,α is set equal to the midpoint; in this
case, (L2 + U3)/2.] Note that in Fig. 4 point B is on the wrong side of the cutting line for
roll call 4 in the region associated with the pattern NNNNN.

For the second iteration,h = 2, the starting estimate isx(2)
i and the second point,x(a)

i ,
is placed just belowx(2)

i so that the resulting line is parallel to the second dimension. This
produces the rank ordering

L4 < L2 < L5 < L1 < L3 < U4 < U1 < U3 < U5 < U2

The rank ordering is now a perfect pattern, with all five lower limits below the five upper lim-
its, so that there are no classification errors. The point resulting from usingα ∈ (L3,U4), x(3)

i ,
point C in Fig. 4, has five correct classifications and no classification error.
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The search for the optimalxi is conducted in a city-block manner. If the starting point
is placed at the origin, then in the first iteration the search is along a line through the origin
with all but the first dimension coordinates inx(1)

i andx(a)
i set to zero. In the second iteration,

the first dimension coordinates are all set equal to the value corresponding to the optimal
first dimension value and the 3rd-, 4th-,. . . , sth-dimensional coordinates inx(2)

i andx(a)
i

remain at their original values of zero. The search is along the corresponding line through
x(2)

i andx(a)
i , which is orthogonal to the first dimension. In the third iteration, the first- and

second-dimension coordinates are set equal to the optimal values from the first- and second
iterations respectively, and the 4th-, 5th-,. . . , sth-dimensional coordinates inx(3)

i andx(a)
i

remain at their original values of zero. The search is along the corresponding line through
x(3)

i andx(a)
i , which is orthogonal to the second dimension. This process continues in the

same fashion through thesth dimension. Since the search for the optimalxi is being done
city-block-wise, dimensions1 to s can now be searched again.

In sum, calculating the optimalxi consists of the following steps.

1. Obtain a realistic starting estimate,x(1)
i (or setx(1)

i equal to the origin, that is,
x(1)

i = 0).

2. Setx(a)
i
′ = (0.01, x(1)

i 2 , x(1)
i 3 , x(1)

i 4 , x(1)
i 5 , . . . , x

(1)
is ); find optimalα andx(2)

i = x(1)
i +

α(x(a)
i − x(1)

i ).

3. Setx(a)
i
′ = (x(2)

i 1 , 0.01, x(1)
i 3 , x(1)

i 4 , x(1)
i 5 , . . . , x

(1)
is ); find optimalα andx(3)

i = x(2)
i +

α(x(a)
i − x(2)

i ).

4. Setx(a)
i
′ = (x(2)

i 1 , x(3)
i 2 , 0.01, x(1)

i 4 , x(1)
i 5 , . . . , x

(1)
is ); find optimalα andx(4)

i = x(3)
i +

α(x(a)
i − x(3)

i ).

5. Setx(a)
i
′ = (x(2)

i 1 , x(3)
i 2 , x(4)

i 3 , 0.01, x(1)
i 5 , . . . , x

(1)
is ); find optimalα andx(5)

i = x(4)
i +

α(x(a)
i − x(4)

i ).
Etc.

s+ 1. Set x(a)
i
′ = (

x(2)
i 1 , x(3)

i 2 , x(4)
i 3 , x(5)

i 4 , . . . , x
(s)
is−1, 0.01

)
; find optimalα and x(s+1)

i =
x(s)

i + α(x(a)
i − x(s)

i ).

s+ 2. Go to step 2.

Note that classification errorcan never increase from one step to the next. This is true
because settingα = 0 preserves the current value of classification. This process converges
very quickly (usually fewer than 10 iterations through steps 2 tos+ 1 above) to a vector
of coordinates that is a local maximum in terms of classification. That is, it converges to a
point such thatα = 0 for all s dimensions.

In practice, the starting estimate,x(1)
i , and the second point,xi

(a), could be placed any-
where within thes-dimensional unit hypersphere. In practical applications the starting
estimate is not the origin; rather, realistic starting values for thex(1)

i ’s are obtained from
an eigenvalue/eigenvector decomposition of the double-centered7 agreement score matrix
computed between legislators. The firsts eigenvectors normalized to lie in the unit hyper-
sphere are used as the starts.

7Technically, given a matrix of squared distances, double-centering is subtracting from each entry in the matrix the
mean of the row and the mean of the column and adding the mean of the matrix. This has the effect of removing
the squared terms from the matrix leaving just the cross-product matrix. It also reduces the rank of the matrix by
one (see Young and Householder 1938; Ross and Cliff 1964).
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If the line throughx(h)
i and x(a)

i is parallel to a cutting line then the corresponding
difference betweenw(a)

i j andw(h)
i j , w

(a)
i j − w(h)

i j , which is used in Table 2 to findα j , may be
equal to zero. This presents no problem since if the line throughx(h)

i andx(a)
i is parallel to

a cutting line, then the classification on that roll call is the same no matter where on the
line x(h+1)

i is located. Consequently, the roll call is not used to locatex(h+1)
i . In addition,

if the line throughw(a)
i j andw(h)

i j goes through the hypersphere so that it never intersects
a cutting plane, this can result in a value ofα j that produces a point that lies outside the
unit hypersphere. This is easily handled by computing the upper and lower feasible limits
of x(h+1)

i —that is, the values corresponding to the two exit points of the line from the unit
hypersphere— and discarding all theLi j andUi j outside the hypersphere. This requires
some bookkeeping but it has no effect on the search process. Finally, the search process does
not have to be done by moving orthogonally (i.e., city-block-wise) through the hypersphere.
However, considerable experimentation shows that it is the most efficient way to proceed.

To guard against bad local maxima (α = 0 in s orthogonal directions), multiple starting
points for thex(1)

i ’s are utilized. If different solutions are found (which are rare and almost
always close together), then the lines joining the unique local maxima are searched for the
best solution. After considerable experimentation, three starting points were found to work
very well in practice. One starting point is from the eigenvalue–eigenvector decomposition
of the double-centered agreement score matrix and the other two are randomly generated.
After the first iteration, the legislator point from the previous iteration is used as one of the
starting points.

Table 3 shows a Monte Carlo study of the legislator procedure using perfect data—
the true cutting planes are known—for 100 legislators and 500 roll calls in 2 through 10
dimensions. (Appendix A3 shows results for contaminated data following the same design
as that shown in Appendix A2.) To make the test reasonably stringent, only “unreasonable”
starting points are used—namely, the origin and two randomly generated points. Results
for one dimension are not shown since classification will always be 100% if perfect data are
used. The 100 legislators and pairs of policy points were randomly drawn from a uniform
distribution through the unit hypersphere. The pairs of policy points were drawn in such a
way so as to produce cutting lines with an average majority margin of about 67% (typical
of U.S. congressional roll call data; see Table 6). A maximum of 25 iterations through steps
2 tos+ 1 above were allowed.

The legislator procedure works very well—especially at seven dimensions and below.
There is some deterioration in accuracy at 10 dimensions but it still makes an average of
only about 43 misclassifications of 50,000 total choices. For five dimensions and below it
is practically perfect. Table 3 also shows the average squared Pearson correlations between
the true and the reproduced legislator coordinates. The average of the worst and bestr 2’s
for thes dimensions are shown.

Theser 2’s are very high. Even though the legislator procedure is nonparametric, with
500 roll call cutting planes, the unit hypersphere is chopped up into enough regions that, in
effect, metric (i.e., ratio scale) information is being extracted from the roll call matrix. In
three dimensions with 500 roll calls, there is a theoretical maximum of 20,833,751 regions
created by the 500 cutting planes. Obviously, even if only a fraction of these regions is
present, their average volume must be very small.8

8Actually measuring the volume of these regions is very difficult and is a problem that has not been satisfactorily
solved [see Best et al. (1979) for a discussion]. To gain an idea of their size, an exhaustive search was conducted
on one solution from each row in Table 3 and Table A5 in the Appendix. For each legislator point, the maximum
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Table 3 Monte-Carlo tests of legislator procedure 100 legislators
and 500 votes (perfect data) (each entry average of 10 trials,

standard deviations in parentheses)

Average Average Average
Average Average percent worst best
majority number correctly leg. leg.

S margin of errors classified R-squarea R-squareb

2 65.8 0 100 .941 .998
(1.1) (0.0) (0.000) (.023) (.001)

3 66.6 .4 99.999 .985 .998
(0.8) (0.7) (0.001) (.010) (.000)

4 66.5 1.6 99.997 .992 .998
(0.6) (1.4) (0.002) (.003) (.000)

5 67.4 3.2 99.99 .994 .998
(0.6) (2.2) (0.004) (.002) (.000)

6 67.2 5.7 99.99 .995 .998
(0.4) (3.2) (0.006) (.001) (.000)

7 67.9 13.7 99.98 .992 .998
(0.8) (5.5) (0.01) (.004) (.001)

8 67.4 21.0 99.96 .992 .997
(0.6) (6.2) (0.01) (.002) (.000)

9 67.4 30.7 99.94 .991 .996
(0.7) (6.8) (0.01) (.003) (.001)

10 67.4 42.6 99.91 .990 .996
(0.5) (12.4) (0.02) (.002) (.001)

aR-Squares computed between true and reproduced legislator coordinates.
The number shown is the average of the worst r-squares across the 10 trials.
bR-Squares computed between true and reproduced legislator coordinates.
The number shown is the average of the best r-squares across the 10 trials.

5 Nonparametric Unfolding of Binary Choice Matrices

The nonparametric unfolding algorithm is simply the cutting plane procedure and the leg-
islative procedure chained together. Given starting estimates of the legislator coordinates,
cutting planes are found that maximize correct classification of legislators’ votes. These
cutting planes are passed to the legislative procedure to obtain a new set of legislator points.
The new set of legislator points is passed to the cutting plane procedure to get a new set of
cutting planes, and so on. During this process the correct classificationcan never decrease
from one phase to the next. These two phases can be repeated in sequence until no further
improvement in correct classification occurs. In sum:

1. Generate starting values forX, X∗, from an eigenvalue/eigenvector decomposition of
the legislator by legislator agreement score matrix.

distance to the cutting planes that bound the legislator was found by moving away from the legislator point in 100
random directions until a boundary plane was encountered. The average maximum distance is computed over the
100 legislators. For two dimensions, the average maximum distance of a legislator point to a boundary containing
the legislator point was found to be about .028 with a standard deviation of about .019. For 10 dimensions, the
numbers are about .030 and .012, respectively. These distances are closer to being “diameters” than “radiuses”
because typically the legislator point was very close (less than .004) to a majority of the boundaries.
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Table 4 Monte-Carlo tests: Non-parametric unfolding of binary choice matrices
100 legislators and 500 votes (each entry average of 10 trials, standard deviations

in parentheses)

Average Average
fit with fit with

Average Average Average true true
Average Average percent worst best normal normal
majority number correctly leg. leg. vectors vectors

S margin of errors classified R-square R-squarea all 10% min.

1 68.2 0 100.00 — 1.000 1.000 1.000
(1.3) (0.0) (0.00) (.000) (.000) (.000)

2 65.2 22.5 99.96 .940 .979 .995 .996
(0.8) (10.2) (0.02) (.014) (.005) (.002) (.002)

3 66.0 10.1 99.98 .964 .981 .991 .993
(1.0) (4.0) (0.01) (.016) (.007) (.002) (.002)

4 66.7 6.7 99.99 .967 .983 .987 .990
(1.2) (3.0) (0.01) (.011) (.004) (.003) (.003)

5 66.8 6.5 99.99 .970 .980 .984 .987
(0.6) (3.0) (0.01) (.005) (.003) (.001) (.001)

6 67.0 5.3 99.99 .959 .978 .978 .987
(0.7) (2.5) (0.00) (.006) (.003) (.001) (.001)

7 67.3 6.5 99.99 .961 .977 .972 .979
(0.6) (3.5) (0.01) (.004) (.003) (.002) (.001)

8 67.2 7.5 99.99 .953 .976 .966 .975
(0.5) (2.2) (0.00) (.012) (.003) (.002) (.002)

9 67.8 6.6 99.99 .952 .971 .960 .970
(0.7) (1.3) (0.00) (.008) (.003) (.002) (.003)

10 67.8 6.7 99.99 .943 .972 .957 .966
(0.8) (1.8) (0.00) (.012) (.003) (.002) (.002)

aFor s= 1, the squared Spearman Rank Correlation is computed between the 100 true and reproduced
legislator ranks.

2. GivenX∗, find the optimal estimate ofN, N∗ using the cutting plane procedure.

3. GivenN∗, find the optimalX∗ using the legislative procedure.

4. Go to step 2.

Table 4 shows a Monte Carlo study of the nonparametric unfolding algorithm using
perfect data for 100 legislators and 500 roll calls in 1 through 10 dimensions. Only roll
calls with margins of 97–3 to 50–50 were used because unanimous and near-unanimous
roll calls trivially inflate the number of correct classifications. A maximum of 25 iterations
through steps 2 and 3 above was allowed.

The algorithm works well regardless of the number of dimensions. The worst result is
for two dimensions, where, on average, about 23 of 50,000 choices were misclassified.
The accuracy of the recovery of the true configuration of legislators and the true normal
vectors declines after three dimensions but not very substantially. Even at 10 dimensions
the average worst Pearsonr 2 between the true and the reproduced legislator coordinates is
.943. For four and fewer dimensions, the recovery is very precise.

The algorithm also works reasonably well when the dimensions are not equally salient.
For example, in two dimensions if 85% of the cutting lines are nearly parallel to the second
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dimension, the legislator configuration is recovered with reasonable precision—the average
r 2’s for the first and second dimensions are .94 and .89, respectively. However, in real-world
applications where noise is present, such data will look like they fit a one-dimension model.
Consequently, there is no substitute for the researcher’s substantive understanding of the
data.

Given the history of other multidimensional scaling techniques, most empirical appli-
cations of the nonparametric unfolding technique shown here will be to data matrices with
missing entries and the estimated configurations will be in three or fewer dimensions. Miss-
ing data present no problem for the algorithm. In the cutting plane procedure it simply
means that the total number of legislators may vary from vote to vote. In the legislator
procedure it simply means that the number of cutting lines may vary from legislator to
legislator. Handling missing data requires a little bookkeeping but it has no effect on the
algorithm.

Appendix A4 shows a set of experiments with and without error at various levels of
missing data. The algorithm performs well with real-world data at realistic levels of missing
entries and error levels.

6 Empirical Examples

6.1 Nonparametric Unfolding of U.S. Senate Roll Call Data

Roll call voting in the U.S. Congress has been extensively analyzed by researchers using
a wide variety of techniques. This will facilitate the interpretation of the nonparametric
unfolding results. Two-dimensional senator coordinates from the nonparametric unfoldings
are compared with those produced by KYST, a multidimensional scaling program developed
by Kruskal et al. (1973), and W-NOMINATE, a maximum-likelihood procedure developed
by Poole and Rosenthal (1997).

Table 5 reports the classification results for Senates 80 to 104 in one and two dimensions
for the nonparametric unfolding procedure. These percentages are about 3 to 5% points
better than W-NOMINATE in both one and two dimensions (Poole and Rosenthal 1997,
Chap. 3). This is not surprising given that the W-NOMINATE procedure maximizes a
likelihood function and does not attempt to maximize correct classifications.

Table 5 also shows the squared Pearson correlations between the estimated dimensions of
the nonparametric unfolding and those produced by KYST and NOMINATE, respectively,
in two dimensions. The nonparametric configuration was rotated to best match the NOMI-
NATE and KYST configurations using Schonemann’s (1966) technique. Theser 2’s are for
the most part, very high—most of the first dimensionr 2’s are above .95 and the second-
dimensionr 2’s are mostly above .9.r 2’s were also computed for the Heckman–Snyder
(1997) configurations. These were nearly the same as those reported for W-NOMINATE
because the Heckman–Snyder and NOMINATE configurations are highly correlated (Poole
and Rosenthal 1997, Appendix B). For example, ther 2’s between the Heckman–Snyder
configuration and the nonparametric configuration for the 85th Senate (shown in Fig. 5) are
.973 and .944, respectively.

Table 6 shows the estimated rank order from the one-dimensional scaling of the 104th
Senate. The ordering is from most liberal (1) to most conservative (103) and it correctly
classifies 90.0% of the choices (70,976 of 78,882). Campbell of Colorado switched from
Democrat to Republican in April of 1995 so he appears twice (ranks 48 and 55). If two or
more senators tied in the ranking, the average of the associated ranks was used. For example,
85 senators were more liberal and 15 more conservative than the threesome Mack (R-FL),
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Table 5 U.S. senate: 1947–1996 non-parametric unfolding of roll call data

Roll Total Average Non-P Non-P kyst kyst nom nom
Senate Years Senators calls choices margin one two R 1st R 2nd R 1st R 2nd

104 1995–96 103a 805b 78,882c .637 90.0d 91.3 .985e .656 .980f .785
103 1993–94 101 647 63,023 .672 89.2 90.4 .984 .744 .983 .818
102 1991–92 102 481 46,208 .685 86.9 88.5 .983 .812 .979 .879
101 1989–90 101 499 48,649 .680 85.4 87.1 .990 .860 .985 .884
100 1987–88 101 635 59,631 .709 87.7 89.5 .981 .722 .981 .925
99 1985–86 101 661 63,104 .688 84.7 86.8 .994 .841 .976 .936
98 1983–84 101 578 53,330 .698 84.8 87.3 .990 .900 .979 .954
97 1981–82 101 818 77,672 .682 85.5 88.1 .995 .897 .987 .956
96 1979–80 101 928 82,937 .683 83.5 85.8 .988 .803 .988 .965
95 1977–78 104 1037 92,868 .691 84.5 86.4 .989 .757 .977 .864
94 1975–76 100 1144 100,328 .691 86.3 88.6 .990 .888 .982 .934
93 1973–74 101 983 87,699 .695 85.1 87.5 .993 .908 .991 .961
92 1971–72 102 783 68,588 .676 85.0 88.6 .991 .944 .981 .971
91 1969–70 102 557 49,219 .681 84.5 88.1 .991 .898 .984 .973
90 1967–68 101 518 46,081 .699 83.6 87.2 .988 .899 .988 .949
89 1965–66 102 441 40.618 .681 85.4 88.4 .988 .901 .975 .912
88 1963–64 102 505 47,797 .686 85.0 90.1 .974 .963 .913 .937
87 1961–62 105 400 38,189 .675 87.3 90.6 .947 .960 .963 .933
86 1959–60 103 360 33,855 .686 84.9 89.6 .976 .962 .963 .956
85 1957–58 98 255 23,097 .669 84.7 89.5 .982 .924 .974 .895
84 1955–56 99 184 16,798 .659 85.5 90.4 .980 .927 .975 .925
83 1953–54 103 242 20,991 .672 86.9 90.3 .949 .731 .950 .906
82 1951–52 96 208 17,368 .659 86.0 89.4 .961 .769 .977 .928
81 1949–50 102 447 38,074 .667 85.0 88.6 .969 .862 .957 .955
80 1947–48 97 237 20,321 .665 88.0 90.8 .970 .885 .961 .917

aNumber of Senators may exceed two times the number of States because of within Congress replacements.
bNumber of roll calls with at least 2.5% voting, paired, or announced, on losing side.
cTotal choices may not equal number of Senators times number of roll calls because of non-voting due to
absences, etc.
dClassifications from non-parametric unfolding algorithm.
eSquared Pearson correlation between Senator coordinates from KYST and Senator coordinates from non-
parametric unfolding. Non-parametric unfolding configuration rotated to best match KYST configuration.
fSquared Pearson correlation between Senator coordinates from W-NOMINATE and Senator coordinates from
non-parametric unfolding. Non-parametric unfolding configuration rotated to best match W-NOMINATE
configuration.

Coverdell (R-GA), and Coats (R-IN), who were tied. Consequently they all were assigned
the average rank of 87.

The polarization of American politics (Poole and Rosenthal 1997; King 1998) is evident
from an inspection of the table. There is no overlap of the two parties. Campbell’s voting
record as a Democrat made him the most conservative Democrat in the Senate. His conver-
sion moved him only from 48th to 55th rank—from the right edge of the Democratic Party
to the midst of the moderates of the Republican Party.

Figure 5 shows the two-dimensional configuration of senators for the 85th Senate along
with a histogram of the roll call cutting line angles. The correct classification was 89.5%
(20,679 of 23,097). The two major parties are clearly separated with the Democratic Party
being split into its Northern and Southern wings. The 85th Senate occurred during the
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(A)

(B)

Fig . 5 (A) Senator locations. D, Northern Democrat; S, Southern Democrat; R, Republican. (B)
Eighty-fifth Senate, 1957–1958: cutting line angles.
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Table 6 104th (1995–96) U.S. senate

Name Rank

Simon (D-IL) 1
Wellstone (D-MN) 2
Feingold (D-WI) 3
Wyden (D-OR) 4
Boxer (D-CA) 5
Kennedy (D-MA) 6
Moseley-Braun (D-IL) 7
Levin (D-MI) 8
Bradley (D-NJ) 9
Lautenberg (D-NJ) 10
Leahy (D-VT) 11
Murray (D-WA) 12
Bumpers (D-AR) 13.5
Harkin (D-IA) 13.5
Pell (D-RI) 15
Kerry (D-MA) 16
Pryor (D-AR) 17
Moynihan (D-NY) 18
Kohl (D-WI) 19
Sarbanes (D-MD) 20
Rockefeller (D-WV) 21
Akaka (D-HI) 22
Daschle (D-SD) 23
Dodd (D-CT) 24
Mikulski (D-MD) 25
Glenn (D-OH) 26
Conrad (D-ND) 27
Dorgan (D-ND) 28
Bingaman (D-NM) 29
Biden (D-DE) 30
Byrd (D-WV) 31
Kerrey (D-NE) 32
Bryan (D-NV) 33
Graham (D-FL) 34
Feinstein (D-CA) 35

Name Rank

Hollings (D-SC) 36
Inouye (D-HI) 37
Ford (D-KY) 38
Reid (D-NV) 39
Robb (D-VA) 40
Exon (D-NE) 41

Lieberman (D-CT) 42
Breaux (D-LA) 43

Johnston (D-LA) 44
Baucus (D-MT) 45
Nunn (D-GA) 46
Heflin (D-AL) 47

Campbell (D-CO) 48
Jeffords (R-VT) 49
Cohen (R-ME) 50
Specter (R-PA) 51
Snowe (R-ME) 52
Chafee (R-RI) 53

Hatfield (R-OR) 54
Campbell (R-CO) 55

Kassebaum (R-KS) 56
Packwood (R-OR) 57
Simpson (R-WY) 58

Roth (R-DE) 59
Stevens (R-AK) 60
Gorton (R-WA) 61

D’Amato (R-NY) 62
Dewine (R-OH) 63

Domenici (R-NM) 64
Lugar (R-UT) 65
Bond (R-MO) 66

Cochran (R-MS) 67
Murkowski (R-AK) 68

Warner (R-VA) 69
Pressler (R-SD) 70

Name Rank

Bennett (R-UT) 71
Frist (R-TN) 72

Santorum (R-PA) 73
Shelby (R-AL) 74
Burns (R-MT) 75
Hatch (R-UT) 76

Abraham (R-MI) 77
Gregg (R-NH) 78

Thompson (R-TN) 79
Grassley (R-IA) 80

Thurmond (R-SC) 81
McConnell (R-KY) 82
Hutchison (R-TX) 83.5
Thomas (R-WY) 83.5
Frahm (R-KS) 85
Mack (R-FL) 87

Coverdell (R-GA) 87
Coats (R-IN) 87
Dole (R-KS) 89
Lott (R-MS) 90
Craig (R-ID) 91

Kempthorne (R-ID) 92
Grams (R-MN) 93
Nickles (R-OK) 94
Smith (R-NH) 95

McCain (R-AZ) 96
Ashcroft (R-MO) 97
Inhofe (R-OK) 98
Gramm (R-TX) 99
Helms (R-NC) 100

Faircloth (R-NC) 101
Brown (R-CO) 102

Kyl (R-AZ) 103

height of the three-party system that lasted from the late 1930s to the late 1970s (Cox and
McCubbins 1993; Poole and Rosenthal 1997). The approximate angle of a party-line vote
and the approximate angle of a conservative coalition vote (Northern Democrats versus a
coalition of Southern Democrats and Republicans) are indicated in the histogram of the
cutting line angles. The second dimension picked up the split in the Democratic Party over
race-related issues.

Figure A3 in Appendix A3 shows bootstrapped standard errors for the 98 Senators
shown in Fig. 5. Eighty of 98 Senators have standard deviations of less than .10 on the
first dimension. The standard deviations for the second dimension are larger reflecting the
fact that the bulk of the cutting lines are between 60 and 120◦ (see Fig. 5). Even so, 72 of
98 Senators have standard deviations of less than .15, which is small relative to the 2-unit
diameter of the space. The standard deviations tend to be larger for those Senators near the
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rim of the space. These “standard errors” must be taken with a grain of salt, however. They
reflect both the volume of the polytopes within which the legislator points are placed and
the underlying, unknown, error process. Nevertheless, given the stability of the unfolding
procedure, they are useful descriptive statistics.

6.2 Analyzing Rank-Order Data

The nonparametric unfolding technique developed above can also be used to analyze the
general rank-ordering problem. Suppose we have the rank orders over a set of stimuli from
a group of individuals. For example, for six alternatives:

1. A > B > D > F> C> E

2. B> C> D > A > E> F

3. C> A > B > D > F> E
Etc.

p. D > A > C> F> E> B

The individual rank orders can be converted into roll call data by viewing the stimuli as
“voting” between pairs of individuals. Namely, for each pair of individuals, let the stimulus
vote for the individual who has the stimulus higher in her ordering. For example, consider
individuals 1 and 2 shown above. Let “Yea” be a vote for individual 1 and “Nay” be a vote
for individual 2. Stimulus A would vote Yea, B Nay, C Nay, D would abstain, E Nay, and F
Yea. This produces aq by p(p− 1)/2 matrix of “roll calls.” The unfolding technique will
recover points representing the stimuli and cutting planes between each pair of individuals.
The estimates of the stimuli will be very precise using this technique.

7 Conclusion

This paper shows a general nonparametric unfolding technique for maximizing the correct
classification of binary preferential choice data. The motivation for and the primary focus
of the unfolding technique are parliamentary roll call voting data but the procedures that
implement the unfolding can also be applied to a variety of other problems.

Although neither the cutting plane nor the legislative procedure can be formally shown
to converge to the global classification maximum, Monte Carlo tests show that both in
fact work very well in practice. The Appendix to this paper shows that in the presence
of error, the cutting plane procedure almost certainly passes through or very near to the
classification maximum and the maximum can be recovered from the iteration record. The
legislative procedure is guaranteed to converge to a very strong local maximum. That is,
a local maximum for which the point cannot be moved in any orthogonal direction and
have the correct classifications increase. When the two procedures are used together in an
alternating framework to analyze binary choice matrices, their performance is very good.
The Monte Carlo tests in Section 5 and the empirical applications in Section 6 are testimony
to this fact.

References

Andrich, David. 1995. “Hyperbolic Cosine Latent Trait Models for Unfolding Direct Responses and Pairwise
Preferences.”Applied Psychological Measurement19:269–290.

Bennett, Joseph F., and William L. Hays. 1960. “Multidimensional Unfolding: Determining the Dimensionality
of Ranked Preference Data.”Psychometrika25:27–43.

Best, Alvin M., Forrest W. Young, and Robert G. Hall. 1979. “On the Precision of a Euclidean Structure.”
Psychometrika44:395–408.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
81

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029814


P1: FIC/FHV/FCI

WV003-04 March 23, 2000 16:40

236 Keith T. Poole

van Blokland-Vogelesang, Rian. 1991.Unfolding and Group Consensus Ranking for Individual Preferences.
Leiden: DWSO Press.

Borg, Ingwer, and Patrick Groenen. 1997.Modern Multidimensional Scaling: Theory and Applications. New York:
Springer-Verlag.

Carroll, J. Douglas. 1980. “Models and Methods for Multidimensional Analysis of Preferential Choice (or Other
Dominance) Data.” InSimilarity and Choice, eds. E. D. Lantermann and H. Feger. Bern, Switzerland: Huber.

Chang, J. J., and J. Douglas Carroll. 1969.How to Use MDPREF, a Computer Program for Multidimensional
Analysis of Preference Data, Computer manual. Murray Hill, NJ: Bell Labs.

Coombs, Clyde. 1950. “Psychological Scaling Without a Unit of Measurement.”Psychological Review57:148–
158.

Coombs, Clyde. 1964.A Theory of Data. New York: Wiley.
Cox, Gary, and Mathew D. McCubbins. 1993.Legislative Leviathan: Party Government in the House. Berkeley:

University of California Press.
DeSarbo, Wayne S., and Jaewun Cho. 1989. “A Stochastic Multidimensional Scaling Vector Threshold Model for

the Spatial Representation of ‘Pick Any/N’ Data.”Psychometrika54:105–129.
DeSarbo, Wayne S., and Donna L. Hoffman. 1987. “Constructing MDS Joint Spaces from Binary Choice Data:

A Multidimensional Unfolding Threshold Model for Marketing Research.”Journal of Marketing Research
24:40–54.

Eckart, Carl, and Gale Young. 1936. “The Approximation of One Matrix by Another of Lower Rank.”Psychome-
trika 1:211–218.

Gifi, Albert. 1990.Nonlinear Multivariate Analysis. Chicester, England: Wiley.
Greene, William H. 1993.Econometric Analysis. Englewood Cliffs, NJ: Prentice Hall.
Heckman, James J., and James M. Snyder. 1997. “Linear Probability Models of the Demand for Attributes With an

Empirical Application to Estimating the Preferences of Legislators.”Rand Journal of Economics28:142–189.
Heiser, Willem J. 1981.Unfolding Analysis of Proximity Data. Leiden: University of Leiden.
Hojo, Hiroshi. 1994. “A New Method for Multidimensional Unfolding.”Behaviormetrika21:131–147.
King, David C. 1998. “Party Competition and Polarization in American Politics.” Paper presented at the 1998

Annual Meeting of the Midwest Political Science Association, Chicago.
Kruskal, Joseph B., Forrest W. Young, and Judith B. Seery. 1978. “How to Use KYST-2, a Very Flexible Program

to Do Multidimensional Scaling and Unfolding.” Murray Hill, NJ: Bell Laboratories (unpublished).
Lang, Serge. 1979.Calculus of Several Variables. Reading, MA: Addison Wesley.
Lingoes, James C. 1963. “Multiple Scalogram Analysis: A Set-Theoretic Model for Analyzing Dichotomous

Items.”Education and Psychological Measurement23:501–524.
Londregan, John B. 2000. “Estimating Legislators’ Preferred Points.Political Analysis8(1):35–56.
MacRae, Duncan, Jr. 1958.Dimensions of Congressional Voting. Berkeley: University of California Press.
Manski, Charles F. 1975. “Maximum Score Estimation of the Stochastic Utility Model of Choice.”Journal of

Econometrics3:205–228.
Manski, Charles F. 1985. “Semiparametric Analysis of Discrete Response: Asymptotic Properties of the Maximum

Score Estimator.”Journal of Econometrics27:313–333.
Manski, Charles F., and T. Scott Thompson. 1986. “Operational Characteristics of Maximum Score Estimation.”

Journal of Econometrics32:85–108.
McFadden, Daniel. 1976. “Quantal Choice Analysis: A Survey.”Annals of Economic and Social Measurement

5:363–390.
Poole, Keith T., and Howard Rosenthal. 1997.Congress: A Political-Economic History of Roll Call Voting. New

York: Oxford University Press.
Ross, John, and Norman Cliff. 1964. “A Generalization of the Interpoint Distance Model.”Psychometrika29:167–

176.
Salas, Saturnino L., and Einar Hille. 1974.Calculus: One and Several Variables with Analytic Geometry. New

York: John Wiley & Sons.
Schonemann, Peter H. 1966. “A Generalized Solution of the Orthogonal Procrustes Problem.”Psychometrika

31:1–10.
Shye, Samuel, 1978.Theory Construction and Data Analysis in the Behavioral Sciences. San Francisco: Jossey–

Bass.
Spector, L., and M. Mazzeo. 1980. “Probit Analysis and Economic Education.”Journal of Economic Education

11:37–44.
Tucker, L. R. 1960. “Intra-individual and Inter-individual Multidimensionality.” InPsychological Scaling: Theory

and Applications, eds. H. Gulliksen and S. Messick. New York: Wiley.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
81

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029814


P1: FIC/FHV/FCI

WV003-04 March 23, 2000 16:40

Nonparametric Unfolding of Binary Choice Data 237

Van Schuur, Wijbrandt H. 1992. “Nonparametric Unidimensional Unfolding for Multicategory Data.” InPolitical
Analysis, Vol. 4, ed. John H. Freeman. Ann Arbor: University of Michigan Press.

Weisberg, Herbert F. 1968.Dimensional Analysis of Legislative Roll Calls, Doctoral dissertation. Ann Arbor:
University of Michigan.

Young, Gale, and A. S. Householder. 1938. “Discussion of a Set of Points in Terms of their Mutual Distances.”
Psychometrika3:19–22.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

93
/o

xf
or

dj
ou

rn
al

s.
pa

n.
a0

29
81

4 
Pu

bl
is

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1093/oxfordjournals.pan.a029814

