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On the Injectivity of C' Maps
of the Real Plane

Milton Cobo, Carlos Gutierrez and Jaume Llibre

Abstract. Let X: R — R? be a C! map. Denote by Spec(X) the set of (complex) eigenvalues of DX
when p varies in R?. If there exists € > 0 such that Spec(X) N (—¢, €) = @, then X is injective. Some
applications of this result to the real Keller Jacobian conjecture are discussed.

1 Introduction

Let X: R? — R? be a map of class C!. We shall denote by Spec(X) the set of
(complex) eigenvalues of the derivative DX, when p varies in R*. We will refer to
X: R? — R? as a Keller map if X is a polynomial map and the Jacobian determinant
of X is identically equal to one in R2. It is important to observe that if X: R? — R? is
a Keller map, then Spec(X) C S' U (R \ {0}). The bidimensional Real Keller Conjec-
ture claims that if X: R? — R? is a Keller map, then X is injective. For more details
about Keller maps and the Jacobian conjecture see the recent book of van den Essen
[5].

Our main result is the following:

Theorem A Let X: R* — R? be a C' map. Suppose that, for some € > 0, Spec(X) N
(—€,€) = @. Then X is injective.

Relevant to this theorem, we may say:

(1) Tt is optimal because if the assumptions are relaxed to 0 ¢ Spec(X), the
conclusion—even for a polynomial map X—is not true anymore, as shown by Pin-
chuck’s counterexample [15] (See also [5], page 241).

(2) It confirms in a stronger way, the following Chamberland’s conjecture [3] in
dimension 2: Let Y: R" — R" be a C' map. Suppose that there exists an € > 0 such
that, for all X € Spec(Y), |\| > e. ThenY is injective.

(3) It does not imply the bidimensional real Keller Conjecture because, given n
an even natural, the polynomial Keller map

X(x,p) = (=p,x+y")

satisfies Spec(X) = S$' U (R \ {0}) (that is, Spec(X) is the biggest possible for Keller
maps). This example will be studied in Section 8.

(4) Campbell [2] classified the two-dimensional C! maps whose eigenvalues are
both 1. All such maps have an explicit inverse. The class of functions considered in
Theorem A is much broader, but no explicit inverse is given.
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Theorem A is proved in Section 3. A key point in its proof is notion of half-Reeb
components which will be introduced in Section 2.

The next result is for C'-maps having at least one component polynomial of the
form p(x)q(y).

Theorem B Letg: R?> — RbeaC'-map, let p,q: R — R be polynomial maps and let

X, y) = (f(x,9),8(x9) = (p(x)q(y),g(x, ).

Then if 0 ¢ Spec(X), X is injective.

Theorem B is proved in Section 4.
For polynomial maps we have the following results.

Theorem C Let X: R> — R? be a polynomial map. Suppose that, for some € > 0,
either Spec(X) N (—¢,0] = @ or Spec(X) N [0, €) = @. Then X is injective.

This is a sharper version of Theorem A in the case of polynomial maps.
Theorem D Let X = (f,g): R* — R? be a polynomial map such that Spec(X) N
{0} = @ and denote

I = {(x,y) € R*: Trace(DX)(x, y) = 0}.

Then the following statements hold.

(@) If fIr or g|r is a proper map, then X is injective.
(b) X is injective if and only if (f* + ¢*)|r is a proper map.

Theorems C and D are proved in Section 7. Their proof uses the notion of pair of
aligned half-Reeb components which will be introduced in Section 5.
In Section 8 we will give some examples and applications of the results above.

2 Half-Reeb Components and Injectivity

Let f: R? — R be a C' submersion. For ¢ € R? we denote by X;(q) = (—f,(q),
fi(q)) the planar Hamiltonian vector field with Hamiltonian f. As usual Vf(p) =
(fe(p), f,(p)) denotes the gradient of f. Let g(x, y) = xy and consider the set

B={(x,y) €[0,2] x [0,2] : x+y <2} \ {(0,0)}.

Definition 1 We will say that A C R? is a half-Reeb component for X¢ (or simply a
hRc for Xy) if there is a homeomorphism h: B — A which is a topological equiva-
lence between X| 4 and X, |p and such that

(1) The segment {(x,y) € B:x+ y = 2} is sent by h onto a transversal section
for the flow of X in the complement of k(1, 1); this section is called the compact edge
of A.
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Figure I: A half-Reeb component.

(2) Both segments {(x,y) € B: x = 0} and {(x,y) € B: y = 0} are sent by
h onto full half-trajectories of Xy. These two semi-trajectories of Xy are called the
non-compact edges of A.

The connection between half-Reeb components and injectivity is given by the fol-
lowing result.

Proposition 1~ Suppose that X = (f,g): R* — R? is a C' map such that 0 ¢
Spec(X). If X is not injective, then both Xy and X, have hRc’s.

Proof Suppose by contradiction that X has no half-Reeb components. By assump-
tion, the Hamiltonian vector field Xy, induced by f, has no singularities. Hence,
by Kaplan’s classification of planar foliations [11], we obtain that X is topologically
equivalent to the horizontal foliation of R?. This and the fact that f is a submersion
imply that each nonempty level curve of f must have exactly one connected compo-
nent. As g restricted to each level curve of f is strictly monotone, we arrive at the
contradiction that X is injective. This finishes the proof of the proposition. ]

For each 6 € R let Ry denote the linear rotation
cosf —sinf
sin 0 cos 0
We will use in the sequel the following proposition.
Proposition2  Let X = (f,g): R* — R? be a non-injective C'-map such that 0 ¢
Spec(X). Let A be a hRc of Xy and let (fp,g9) = Rp o X o R_g, 0 € R. Then there is

an € > 0 such that for all 6 € (—¢,0) U (0, €), Xy, has a hRc whose projection on the
x-axis is an interval of infinite length.

The proof of this proposition is contained in [10, Lemma 2.5].
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3 Proof of Theorem A

Suppose by contradiction that X = (f, g) is not injective. Hereafter we will use the
fact that non-injectivity and the assumptions of Theorem A are open in the Whitney
C! topology; in particular we shall assume, from now on, that X is smooth.

By Proposition 1, Xy has a half-Reeb component A. Let IT: R* — R be the pro-
jection on the first coordinate. By composing with a rotation if necessary, in the way
stated in Proposition 2, we may assume that II(A) is an interval of infinite length. To
simplify matters, let us suppose that [b, c0) C II(A).

By Thom’s Transversality Theorem for jets [7], we can assume the following:

(al) the set

T={(x,y) € R*: fy(x,y) =0}

is made up of regular curves;

(a2) There is a discrete subset A of T such thatif p € T\ A (resp. p € A), Xy
has quadratic contact (resp. cubic contact) with the vertical foliation of R2.

Then, if a > b is large enough,

(b) foranyx > a, the vertical line II~!(x) intersects exactly one trajectory o, C A
of X¢| 4 such that II(ay) N (x,00) = @ in other words, x is the maximum for the
restriction I1|,, .

It follows that

(c) ifx>aandp € a, NI (x) thenp € TN A\ A.

Let T, be the set of p € A such that p € a, NTI7!(x), x > a. Notice that, for
every x > a, a, N II7!(x) is a finite set; nevertheless, by (b), (c) and by using Thom’s
Transversality Theorem for jets, we may get the following stronger statement:

(d) There is a sequence F = {aj, ay,...,4d;,...} in [a,00), which may be either
empty or finite or else countable, such that if x € F (resp. x € [a,00) \ F), then
II~!(x) N Ty is a two-point-set (resp. a one-point-set).

If x € [a,00) \ F, define n(x) = (x, nz(x)) = II"'(x) N T,,. Observe that
n: [a,00) \ F — T, is a smooth embedding. As f| 4 is bounded,

(e) F omn extends continuously to a strictly increasing bounded map defined in
[a, 00) such that, for all x € [a,00) \ F, fx(n(x)) has constant sign.

Therefore, there exists a real constant K such that

K_/m = f () dx—Z/aM f(n) d
- ;/ AE)

This and (e) imply that, for some sequence x,, — 00, lim,—, fx(7(x,)) = 0. This is
a contradiction with the assumption Spec(X)N(—¢, €) = &. In short we have proved
Theorem A. [ ]

4 Proof of Theorem B

By the assumptions we have that
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(@) filx,y) = p'(x)q(y) and f,(x, y) = p(x)q’(y).

As 0 ¢ Spec(X), we obtain that

(b) forall y € IR, either g(y) # 0 or q’'(y) # 0.

Now we assume, by contradiction, that X is not injective; then, by Proposition 1,
there is a half-Reeb component A for X;. As 0 ¢ Spec(X), f is a submersion and so
the non-compact edges of A must accumulate at infinity. This implies that the pro-
jection of A on at least one of the coordinate axis has infinite length; let us consider
only the case in which this happens for the x-axis. Let T = {w € R* : f,(w) = 0}.
Similarly to the proof of Theorem A, we obtain that the projection of T N A on the
x-axis is an interval of infinite length, say [a,00). Let G = {y1,¥2,...,¥m} and
F = {x1,x,...,x,} be all the real roots of the polynomials q’(y) and p(x) respec-
tively. Under these conditions, using (a) and (b), we obtain,

(c) if(x,y) e TN Aandx ¢ F, then y € Gand q(y) # 0.

Since f restricted to A is bounded, there is a constant M > 0 such that, for all
(x,7) € A, |f(x,y) = p(x)q(y)] < M. Therefore, by (c), if (x, y) € TN A, and
x ¢ F, we have that

lp(x)] <

miny,ec |q(yi)|’

which implies that p(x) is identically constant. Hence, for all (x,y) € R x G,
felx,y) = fy(x,y) = 0,and so 0 € Spec(X). This contradiction proves that X is
injective.

5 Aligned and Adjacent Half-Reeb Components

Definition 2 Lety = (y1,7;): [0,3] — R? be a compact edge of a half-Reeb com-
ponent A for X; and let y(#y) be the unique point where the curve vy is tangent to
the flow X;. Consider the vector 7(f))" = (—%2(t))%1(ty)) and the straight line
r(s) = sy(te)~ + ¥(to), s € R, passing through ~(ty) with direction (ty)*. We will
say that A is on the left (resp. on the right) of ~, if there is an interval [0,d) (resp.
(=4, 0]) such that r( [0, 6)) C A (resp. r((—é, 0]) C A) ).

In order to prove Theorems C and D, we need to introduce some definitions and
state some results. First at all we introduce the notion of aligned half-Reeb compo-
nents.

Definition 3 Let f: R2 — R be a C! submersion and let A and B be disjoint half-
Reeb components for X;. We say that A and B are aligned and denote {A, B}, if
there is a smooth embedded curve 7: [1,2] — R? such that the following properties
are satisfied:

(al) Forsome 1 < sy < 79 < 2, 7|[s,r,] is transversal to X;

(a2) v([1,s0]) and ([ro, 2]) are the compact edges for A and B, respectively, and
v((s0,70)) is disjoint of A and B;

(a3) A and B are both either on the left or on the right of the curve ~.
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The curve 7 will be said to be an aligning path for the pair { A, B} with connecting
interval [so, 79]. See Figure 2. Let a; (resp. a, ) denote the positive (resp. negative)

half-trajectory of Xy starting at p € R%. If oz, and i, (resp. o, and a )
are non-compact edges of A and B, respectively, then +, as right above, will be said
to be a positive (resp. negative) aligning path for the pair A and B.

Figure 2: A pair of aligned half Reeb components

We shall need the following result of Gutierrez (see [10, Theorem D]):

Proposition 3 Suppose that X: R* — R? is a C' map such that 0 ¢ Spec(X) and,
forall € R, Xy, has no pair of aligned hRc’s, where (fy, g9) = Rg o X o R_g. Then, X
15 1njective.

To introduce the notion of adjacent half-Reeb components we will consider the
following compactification of the plane.

LetS* = {(x,5,2) ER*: 2+ ¥’ + (z—1)> =1}, $% = {(x,0,2) €$°:0<z <
1},and S' = {(x, y,1) € $*}. Let : $* \ S — R? be the 2-to-1 map given by

X y

M <'D(X’y’z)i(l—z’l—z)'
We shall denote by CI(R?) the compact disc made up of the union of R? and S! by
identifying (x, y,z) € $2 with ¢(x, y, z) and by borrowing from $? = $* U S! its
topology.

If f: R* — R is a submersion then given a half trajectory a of Xy, it follows from
the arguments of the Poincaré-Bendixson Theorem and from the fact that X has no
singularities, that the limit set

(2) L(a):=a\«a

of a—as a subset of CI(R?)—, is either S! or a nonempty closed sub-interval of it.
Also if A is a half-Reeb component of Xy, the difference L(A) := A\ A (in CI(R?)) is
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a compact connected subset of CI(R?) which may or may not be properly contained
in S'.

Given p € R?* we will denote by «,, the trajectory of Xy passing through p. Also,
o, and o, will denote the positive and negative half-trajectories of X, respectively,
starting at p. If v: [a,b] — R? is an embedded smooth curve transversal to X; and
anda < t; <t, <b, wewill denote

R (y(Ut,0)) = | ol R (vn,0)) = | o

1 <s<t, Hh<s<t

Definition 4 Let A and B be a pair of aligned hRc’s for X and let y: [1,2] — R?
be an aligning path for the pair {A, B} with connecting interval [sy, ry]. We say that
A and Bare adjacent half-Reeb components for X if the set

L(fRJr(’Y([So,ro]))) = U O‘;(S)\ U i

s0<s<rp s<s<rg

is contained in the unit circle S! at infinity (resp. £ (R‘ (7([50, ro])) ) C SY). Set
Q= AUR (y[s0,70]) UB (resp. @ = AU R (v[s0,70]) U B). Notice that A and
B are adjacent if and only if the subset Q U £(£2) of CI(R?) is homeomorphic to a
bidimensional compact disc.

6 Polynomial Maps

Hereafter we will consider only polynomial maps of the plane. If f: R? — Risa
polynomial submersion, then it may be seen that

(a) L(R*(y[s0,70])) is just one point of S'; in fact, otherwise, L (R*(v[so, 70]))
would contain an open subinterval I C $! which in turn would imply the contradic-
tion that f is bounded along every ray approaching I (see Figure 3).

we St

Figure 3: A pair of adjacent half Reeb components
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(b) There exists a finite set Sy = {zy,..., 2} of points in the unit circle S! at in-
finity such that if o is a half-trajectory of X¢ then L(a) = z; forsome i € {1,...,k}.

(c) If AisahRc of Xy then L(A) N S' ¢ Sy. Each point z; € Sy will be called a
limit point for X;.

Furthermore, if ¢: $? \ S' — R? is the map defined by equation (1), by studying
the Poincaré compactification X /—via o—of the polynomial vector field X r, we may
conclude, using Dumortier’s work [4], that

(d) Xy has finitely many hRc’s.

Within the proof of next result we will use the following notation. If v C CI(R?)
is an arc and p,q € y we denote by [p, gq], (resp. (p,q),) the closed (resp. open)
sub-interval of v with endpoints p and g.

Proposition4  Let X = (f,g): R* — R? be a non-injective polynomial map such
that 0 ¢ Spec(X). Then there exists 0 € R such that X, has a pair {A, B} of adjacent
half-Reeb components such that et i ¢ L(A)UL(B), where (fp,g9) = Rgo X o R_,.

Proof By Proposition 3 there exists 1 € R such that Xy, has a pair of aligned hRc’s.
Proceed assuming that f = f,, and consider the case in which the limit set of one of
the hRc’s of X contains e*3'.

By [10, Lemma 2.5], we may find € > 0 small, such that if § € (—e¢, +¢), then X,
has a pair {Ag, By} of aligned hRc’s. We claim that

(a) if e > 01is small enough, for all # € (—¢,0) U (0, €) the limit set of both Ay
and By is disjoint of e* 37,

In fact, let f, and g be the highest degree homogeneous part of f and g re-
spectively and let Ly denote the straight line passing through the origin with slope
tan(7 /2 + ). The assumptions imply that f,(Ly) = gi(Ly) = 0. Also, it may be seen
that

(b) ife > Oissmalland € (—e, 0)U(0, €), then both, f,(Ly\{0}) and gc(Ls\{0})
are disjoint of {0}.

To fix ideas, suppose that n > k. In this way, if @ # 0 is small and (fy), and (gg),
denote the highest degree homogeneous part of fy and gy, respectively, then

(fo)n = (cos ) fy 0 R_g — [k/n](sin)gr o R_g
(g0)n = (sin@) f, o R_g + [k/n](cos 0)gr o R_g

where [k/n] denotes the integer part of k/n. If we assumed that for some 6 €
(—¢,0)U(0, €) Ap accumulated at infinity at a direction corresponding to Ly, then we
would conclude that (fy),(Lo) = 0. As gp, restricted to A, is bounded, (gp),(Lo) = 0.
Therefore, we would obtain

fn(L—G) = fn o R—G(LO)) =0= 8n © R—G(LO) = gn(L—(i)'

This contradiction with (b) proves (a).

Let 0 € (u — €, u + €) be such that Xy, has a pair A, and A, of aligned hRc’s with
et ¢ L(A]) UL(A,). Lety: [1,2] — R? be a smooth aligning path for A, and
A,, with connecting interval [so.r], which we shall assume to be positive.
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We will prove that if A; and A, are not already adjacent, then we can construct
a new pair {B,, B,} of aligned half-Reeb components for Xy, such that B, is either
equal to A; or A, and the interior of B, is contained in R (y[so, 10]), i.e., B is
different from A, and A,. As fy is polynomial, there are only a finitely many hRc’s
for X, and so, proceeding inductively, we will, eventually, arrive to a pair of adjacent
hRc’s for X,.

Let p € R2 N L(R*(y[s0,70])) and let : [—1,1] — IR? be a regular curve satis-

fying
n(0) =p and #(0) = Vf(p).

We may assume that f|, is strictly monotone and that R*(y[so, ro]) intersects 7 but
a;; and a;:) do not intersect 7. Let sp < #; < f, < fy be numbers such that a;(tl)
and 04%2) intersect the curve 7 at points p; and p, respectively. As f restricted
to [p1, p2ly and [y(t1),v(t2)], is strictly monotonous, there is a flow box between
the trajectories o and o and the arcs [pi, ps], and [y(t1),¥(t2)],. In particular,
[p1, P21y C R¥(v[s0,10]) and all the semi-trajectories a:;(s) with s € [t1, 1] intersect
(only) once the curve 7 inside the arc [py, p,],. Therefore p ¢ [py, p2],. Con-
sider only the case in which p, € [p,, pl, (resp. p> € [p1,ply)s pr = n(di) and
p2 = n(dy) with —1 < d, < d; < 0. See Figure 4.

It is easy to see that we can construct a smooth curve 7, linking the points y(#;)
and p; (resp. ¥(t,) and p,) and having only one quadratic tangency with the foliation
of Xy,. Moreover, 7y can be chosen in such a way that the curve ¢ = [v(0), y(t;)], U
M0 U [p1, ply (resp. ¢ = [v(t2),v(3)], Uno U [p2, ply) is smooth. Observe that ¢
has exactly two (quadratic) tangency points with the foliation of Xy, one inside the
arc [7(0),y(t1)], (resp. [y(t2),v(3)],) corresponding to A; (resp. A,) and the other
inside the curve 7. Let #5 be the supremum of the number s, < t < #; such that afy(t)
intersect the curve 7. By the assumptions sp < fp < #; and oz;r(to) nn=ga.

Let

dy = sup{d; <d < 0:n(d) € R"(v[s,70])}

Clearly the trajectory ay4,) does not intersect the arc [y(so), ( ro)],y.

It is easy to see there is a new hRc B, of X, whose compact edge is the arc
[v(t0),n(do)]; and whose non-compact edges are af/(to) and - Clearly the pair
{A1,B,} (resp. {A,, B,}) is aligned in the sense defined before. This concludes the
proof of the proposition. ]

We shall need the following well known result essentially due to Hadamard (see
for more details [5]).

Proposition5 Let X = (f,g): R? — R? be a polynomial map such that Spec(X) N
{0} = @. Then X is a diffeomorphism if and only if f* + g%: R*> — R is a proper map.

We will see in Section 8, that Theorem D give us a better criterium, than that of
Proposition 5 to find out whether a polynomial map such that Spec(X) N {0} = &
is injective.
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A,

V) A(B)

Figure 4: The curve .

7 Proof of Theorems C and D

Let us set up the preliminaries for the proof of Theorems C and D. First of all, if X is a
non-injective polynomial map then, by Proposition 4, there exists # € R such that if
Xo = (fs,g9) = Ry o X oR_y, the flow Xy, has a pair {A,, A,} of adjacent hRc’s such
that e*3 ¢ L(A,) U L(A,). Notice that Spec(Xg) = Spec(X). As fy is polynomial
and A, and A, are adjacent, L(A;)NL(A,) = {w} C S!, with w # 37, Therefore,
Proposition 2 implies II(A;) N II(A;) contains an interval of infinite length, where
II: R? — R is the projection on the first coordinate. To fix ideas, let us suppose that
II(A;) NII(A,) contains the interval [b, 00), see figure 5.

As fy is a polynomial map,

(a) the algebraic curve

Ty ={p € R?: (fy),(p) = 0}

is made up of finitely many regular curves and finitely many singular points.

Similarly to the proof of Theorem A, if a > b is large enough, we have that

(b) Forany x > a, the vertical line I ™! (x) intersects exactly one trajectory o, C
Aj of Xg,| 4,5 i = 1,2, such that H(afc) N (x,00) = &, i = 1,2; in other words, x is
the maximum for the restriction I, i = 1, 2.

It follows that

(¢) If x > aand p; € ozi N II~!(x), for i = 1,2, then there is a “parabolic”
tangency between X, and II~!'(x) at p;. In particular, p; € T, i.e., %—f(pi) = 0.

Let T)"c, i = 1,2 bethesetof p € A, such that p € ai NI~ !(x), x > a. Notice
that, for every x > a, T is a finite set. By using (a) we may define analytic functions
n;: [a,00) = A;,i = 1,2 in such a way that n;(x) € Tj; and there are no other points
of T,’; inside the arc of I (x) connecting 7, (x) and 7,(x). In this way, as the flow X f
is continuous (see Figure 5)
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(d) The collinear vectors V fe(m (x)) and V fg(’l]z(x)) have opposed orienta-

tions; i.e., %(m(x)) . %(nz(x)) < 0.

Figure 5: [b,00) C II(A1) NII(A,).

7.1 Proof of Theorem C

If X is a non-injective polynomial map, proceeding as in the proof of Theorem A, we
obtain that

d
OO>/ d—fa(ni(S)) ds:/ (f0)e(mi(s)) ds, i=1,2,
[a,00) S [a,00)

which implies that lim,,_, oo (fg)x(m (xn)) = 0 and lim,_, (fg)x(nz(yn)) =0, for
some sequences x,, ¥, — 00. This fact together with (d) imply that there are positive
and negative values of Spec(Xy) (= Spec(X)) arbitrarily close to zero. Therefore
if—for some € > 0—either (—¢,0] N Spec(X) = @ or Spec(X) N [0,¢) = &, X is
injective.

7.2 Proof of Theorem D

If X is a non-injective polynomial map such that Spec(X) N {0} = & then the map
Xp = Ry o X o R_y is also a non-injective polynomial map such that Spec(X) N

{0} = @ and the condition (d) implies that the signs of Trace (DXg (m(x)) ) and

Trace(DXg(nz(x))) are opposed. Henceforth, for each x > a there is a point
(x, q(x)) in the arc joining 7, (x) and 7, (x) which belongs to the set

Iy = {p € R?: Trace(DXy)(p) = 0}.
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Let v: [1,2] — R? be an aligning path for A; and A, as in Definition 3. To fix ideas
let us suppose that Xy, is oriented in such a way that .  and o7, ) belong to A; and
A, respectively. In this way, the curve 3y = { (x, q(x)) x> a} C I'y accumulates
at infinity inside the region Q = A; U R (7y[so,70]) U A,. We observe that all of
fola, gola and (ff + g3)|q are bounded maps. Therefore, X4(3y) is a bounded subset
of R%.

On the other hand, the relation DXy(q) = Ry - DX(R_g(q)) - R_g, implies that

(3) Iy = Ry(T) where T = {p € R*: Trace(DX)(p) = 0}.

Let us prove item (a) of Theorem D. Suppose that X is a non-injective polynomial
map such that Spec(X) N {0} = @ andlet ¥ = R_y(3y) C T'. Since ¥y is non-
compact, X is non-compact. On the other hand, X(3) = R_y (Xg(Zg)) isabounded
subset of R? which implies that all f|r, g|r and (f* + g*)|r are not proper maps
(because ¥ C I'). Therefore if one of f|r or g|r is a proper map, X is injective.

Let us prove item (b) of Theorem D. By Proposition 5 if X is an injective polyno-
mial map such that Spec(X) N {0} = &, then (f? + g*)|r is a proper map. On the
other hand, if X is a non-injective polynomial map such that Spec(X) N {0} = &,
proceeding as in item (a) we conclude that (f? + ¢*)|r is a not proper map.

8 Examples and Applications. Keller Maps

Example 1 Let X = (f, f,): R* — R? be the gradient of a polynomial map
f: R?* — R. If X is an orientation preserving and locally diffeomorphic map, then
Theorem C implies that X is injective.

Indeed, as the matrix DX(p) is non-singular and symmetric for all p € IR2, its
eigenvalues are real and non-null. As X preserves orientation, Spec(X) C (—o0,0)
or Spec(X) C (0, 400). Therefore, by Theorem C, X is injective.

Example 2 Letn > 1 be a natural number and let

f=x=2y+y",
g=x—y+y".
Then X = (f,g): R? — R? is an injective Keller map. Moreover, if n is even,

Spec(X) = S' U (R \ {0}). That is, Spec(X) is the biggest possible for Keller maps
Notice that Trace(DX)(x, y) = ny"~!. This means that

' ={(x,y) : Trace(DX)(x,y) =0} = {(x, ) : y = 0}.
We check that both f|r and g|r are proper maps, then by Theorem D, X is injective.
The characteristic polynomial of DX (x, y) is A2 — ny"~! X + 1. Therefore Spec(X) is

given by all the numbers 1/2 - (ny"~! + \/n?y?"=2 — 4), y € R. It is easy to see that
R\ {0} C Spec(X) if nis even and then Spec(X) = S' U (R \ {0}) (because Spec(X)
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is a connected set of R?). By taking an odd natural n > 3, in this example, we get that
Spec(X) is made up of the union of the sets S! N {(x, ) : x > 0} and (0, c0).

The following example (see [3]) shows the existence of analytic non-injective
Keller maps.

Example 3 Let
— x/2 Z
f=2¢"%cos ( - )
— x/2 o Z
(4) g V2e sm( ex) .

Then X = (f,g): R* — R? is a non-injective analytic Keller map.

It is easy to check that X is a Keller map. It is also non-injective, for instance,
observe that for all k € Zand all y € R, X(0, y + 2km) = v/2(cos(y), sin(y)) .

Let us proceed to describe the adjacent half-Reeb components of X¢ and X,. In
fact, both X and X, have infinitely many adjacent half-Reeb components (see Defi-
nition 4). In fact, observe that f vanishes along all curves of the form

C@t) ={(x,y):x=t,y=(w/2+7k)-€'}, teR, ke
Also f(0,y) = \/fcos(y) and then %f(o, y) vanishes only once in the segment
Ski={(,y):x=0,72+7k <y <7m/2+mk+1)}

that connects C¢(0) and Cy41(0). We observe that f is bounded in the semi-plane
{(x,y) + x < 0} and unbounded in {(x, ) : x > 0}. In this way, for all k € Z,
Xy has a half-Reeb component Ay bounded its non-compact edges {Ci(t),t < 0}
and {Cy41 (1), < 0} and its compact edge Sx. All consecutive pairs { A, A1} are
adjacent. Similarly, X, has a Half-Reeb component B between consecutive curves of
the form

D(t) ={(x,y):x=t,y=(r+7k)-e'}, teR keZ
and the segment
Ty :={(x,y):x=0,m+7k <y <7w/2+7m(k+1)},

and all consecutive pairs { By, Bi.1} are adjacent. Observe that the curve Di(t), t <
0 is the only semi-trajectory of X, which is completely contained in the half-Reeb
component Ay of X;.

Example 4 1fX = (f,g): R> — R? is the Pinchuck non-injective polynomial map
(see [15]), then, by Theorem C, Spec(X) meets the real line at arbitrarily small posi-

tive and negative numbers.
Let us see this by directly describing the foliation induced by X7, where

f=xy— 1)(x(xy— 1)+ 1) + (x(xy— 1) + 1)2((xy— 1)2+y)
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After an extensive use of symbolic computation, one may see that:

(4,1) foreveryc < 0,{f = c} is connected;

(4,2) foreveryc > 0, {f = c} has 3 connected components;

(4,3) the set {f < 0} is usually known as a Reeb component of X and the set
{f < 0} is homeomorphic to a disc;

(4,4) foreveryc € R, aconnected component of { f = ¢} can approach to infinity,
only at one of the following directions: the positive x-axis, the negative x-axis and the
negative y—axis.

(4,5) {f = 0} consists of 3 connected components Aj, A,, A3 such that

e A, is contained in {(x, y) : xy > 0} U {(0,0} and approaches infinity in the
directions of the positive x—axis and the negative x—axis.

e A, is contained in {(x,y) : x < 0,y < 0} and approaches infinity in the
directions of the negative x—axis and the negative y—axis.

e Aj; is contained in {(x,y) : y > 0} meeting the x—axis exactly at (1,0); it
approaches infinity in the directions of the positive x—axis and the negative y—axis.

(4,5) the Reeb component {f < 0} contains 2 half-Reeb components, one of
which approaches the positive x—axis and the other the negative x—axis. By observ-
ing, as in the proof of Theorem C, the gradient vector field (f, f,) along this half-
Reeb components, it can be seen that there are sequences {a,} and {b,} such that,
forall n, fi(a,) > 0, f,(a,) = 0 = f,(by), fx(b,) < 0 and moreover f,(a,) — 0and
fx(b,) — 0. In other words, Spec(X) meets the real line at arbitrarily small positive
and negative numbers.

Example 5 Let X = (f,g): R®> — R? be an orientation preserving and locally
diffeomorphic polynomial map. If X is injective then it follows, from the main result
of either of the papers [1] and [12], that X is a diffeomorphism. Therefore, X and
X; have no Reeb components.

In fact, if X has a hRc, say A, then, we may see that X(A) is bounded. This is not
possible because A is unbounded and X is a diffeomorphism.
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