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TOEPLITZ OPERATORS ON BERGMAN SPACES 

SHELDON AXLER, JOHN B. CONWAY AND GERARD McDONALD 

1. Introduction and definitions. Let G be a bounded, open, con­
nected, non-empty subset of the complex plane C. We put the usual two 
dimensional (Lebesgue) area measure on G and consider the Hilbert 
space L2(G) that consists of the complex-valued, measurable functions 
defined on G that are square integrable. The inner product on L2(G) is 
given by (fe, g) = JGhg; the norm ||fe||2 of a function h in L2(G) is given 

by ||*||* = (SM)1'*-
The Bergman space of G, denoted La

2(G), is the set of functions in 
L2{G) that are analytic on G. The Bergman space La

2(G) is actually a 
closed subspace of L2(G) (see [12, Section 1.4]) and thus it is a Hilbert 
space. 

Let G denote the closure of G and let C(G) denote the set of con­
tinuous, complex-valued functions defined on G. For / £ C(G), the norm 
| | / | | œ is given by 

| | / L = sup{ | / ( s ) | : z£G\. 

Let P denote the orthogonal projection of L2(G) onto La
2(G). For 

/ G C(G) the Toeplitz operator with symbol / , denoted Tf, is the linear 
map from La

2(G) to La
2{G) defined by Tfh = P(fh). It is clear that Tf 

is a bounded operator and \\Tf\\ ^ || / ||œ. For the special case where / is 
the function/(z) = z (we shall call this function z), the Toeplitz operator 
Tz is just multiplication by z on La

2(G). The operator Tz is called the 
Bergman shift on G. (This terminology arises from the special case in 
which G is the open unit disk, because then Tz is unitarily equivalent to 
a unilateral weighted shift.) 

Let SS (La
2 (G)) denote the Banach algebra of bounded linear operators 

from La
2(G) to La

2{G). An operator T G &(La
2(G)) is called Fredholm 

if the range of T is closed, the kernel of T has finite dimension, and the 
range of T has finite codimension. Letting J^(G) denote the ideal of 
compact operators from La

2(G) to La
2(G), it turns out that T is Fredholm 

if and only if T + X(G) is invertible in &(La
2(G))/X(G). The essential 

spectrum of T, denoted <re(T), is defined to be the set of complex numbers 
X such that T — X is not Fredholm. Knowing the essential spectrum of 
an operator often helps give an idea of what the operator looks like; 
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conversely, trying to determine the essential spectrum of a concrete 
operator often leads to interesting problems in analysis. 

This paper is a study of Toeplitz operators whose symbol is in C(G). 
Among other results, we answer the following questions: What is the 
essential spectrum of Tf? When is Tf compact? The answers to these 
questions involve eliminating those boundary points of G at which no 
function in La

2(G) has a singularity. More precisely, a point X ( dG is 
said to be removable with respect to La

2(G) if there exists an open 
neighborhood F of X such that every function in La

2(G) can be extended 
to an analytic function defined on G U V. The set of all points of dG 
which are removable with respect to La

2(G) is denoted by d2-rG. The 
Bergman essential boundary of G, denoted d2-eG, is the set of all points 
of dG which are not removable with respect to La

2(G) ; so 

d2-eG = dG ~ d2-rG. 

If G is finitely connected, then the Bergman essential boundary of G is 
just dG ~ {isolated points of dG] (see Propositions 1 and 14). 

Here is an outline of the main results of the paper: In Theorem 5 we 
determine the essential spectrum of the Bergman shift Tz. (Actually, 
this is a special case of Corollary 10, but Theorem 5 is a key step in the 
chain of results that leads to Corollary 10.) In Theorem 7 we determine 
precisely which Toeplitz operators with symbol in C{G) are compact. 
Theorem 9 gives a description of the C*-algebra generated by 
{Tf: f Ç C(G)}. In Corollary 10 we find the essential spectrum of an 
arbitrary Toeplitz operator with symbol in C{G). Theorem 16 gives a 
description of the Bergman essential boundary d2_eG in terms of logarith­
mic capacity. 

Note that it is easy to determine the spectrum of the Bergman shift 
Tz (it is just G), but that it is hard to determine the essential spectrum 
of the same operator (see Theorem 5). However in studying Tf for an 
arbitrary function/ g C(G), Corollaries 10 and 12, when compared to 
Examples 11 and 13, show that it is far more natural to work in 
^ ( L a

2 ( G ) ) / j f (G) than in ^ (L a
2 (G) ) . 

For the special case where G is the open unit disk, Theorems 7 and 9 
(and their corollaries) were proved by Coburn [10, Lemma 2 and 
Theorem 1]. Coburn's proof uses the explicit orthonormal basis and the 
explicit reproducing kernels that it is possible to write down when G is 
the open unit disk; thus his proofs do not carry over to more general 
regions. Also, when G is the open unit disk, then dG = d2-eG, and thus 
Coburn had no need to define the concept of the Bergman essential 
boundary. For additional results when G is the open unit disk, see [20], 
[21], and [18]. 

For X G C, we will let J5(X; 5) denote the open disk centered at X which 
has radius <5. 
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We would like to thank Carl Cowen, Lars Hedberg, and William 
Ziemer for helpful discussions. 

2. Spectral properties. The main results of the paper are in this 
section. We prove that Tf is compact if and only if/ \d2-eG = 0 (Theorem 
7), that the abelianization of the C*-algebra generated by the Toeplitz 
operators is C(d2-eG) (Theorem 9), and that the essential spectrum of 
Tf is f(d2-eG) (Corollary 10). None of these results is particularly sur­
prising, but the proofs are far from trivial. Part of the difficulty lies in 
proving that the essential spectrum of the Bergman shift Tz is what we 
guess it should be (Theorem 5). We note that the proof of Theorem 9 
depends partly on Theorem 7, and that the proof of Theorem 7 depends 
partly on Theorem 5. 

Before beginning the proof of Theorem 5, we need three propositions 
concerning the Bergman essential boundary d2-eG (or its complement 
d2-rG in dG). A more complete description of the Bergman essential 
boundary is given in Section 3. 

A bounded analytic function cannot have an isolated singularity. The 
following proposition says that the same is true if the analytic function 
is merely square integrable. 

PROPOSITION 1. If X is an isolated point of dG, then X £ d2-rG. 

Proof. If X is an isolated point of dG, then there exists a positive 
number 8 such that B(\\ 8) ~ {X} C G. Suppose that h 6. La

2(G). Then 
h has a Laurent series expansion in B(\; 8) ^ {X} ; 

oo 

M*0 = X)aw(z - X)n. 
—00 

Now 

J rs ri* I 00 
inB 

2 

dddr 

= 2Tr±\an\
2[8r2n+1dr. 
0 

Since j 0 r
2n+1 dr = 00 if n < 0, the above inequality shows that an = 0 

for all n < 0. Thus h has an analytic extension to B(\\ô) and so 
X G d2-TG. 

It is clear from the definition that d2-rG is a relatively open subset of 
dG, and thus d2-eG is compact. In particular, d2-.rG is a measurable 
subset of the plane. It is possible for the boundary of an open set in the 
plane to have positive area. The following proposition shows that the 
removable part of the boundary always has zero area. 

PROPOSITION 2. d2-rG has zero area. 
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Proof. Let K be a compact subset of d2-rG. Suppose that K had 
positive area. Then (see [14, p. 2]) there would exist a non-constant 
bounded analytic function h defined on C ^ K. In particular, 
h\G G La

2(G), and so h would extend to a non-constant bounded analytic 
function defined on all of C. This contradicts Liouville's Theorem, and 
and so K must have zero area. Since every compact subset of d2-TG has 
zero area, we can conclude that d2_r has zero area. 

The following proposition shows that each removable boundary point 
must lie in the interior of the closure of G. 

PROPOSITION 3. dG C d2_6G. Furthermore, G W d2_rG is an open subset 
ofC. 

Proof. Let X Ç dG. Let V be an open neighborhood of X. Then V con­
tains a point 7 which is not in G. The function (z — T ) - 1 ! ^ is in La

2(G) 
but clearly it cannot be analytically extended to G VJ V. Thus X Ç d2-eG 
and so dG C d2_eG. 

Let X £ d2_rG. Since d2_rG is a relatively open subset of dG, there is a 
positive number ô such that 

5(X;<5) H dG C d2_rG. 

Since dG C d2-eG, we know that X is in the interior of G. Thus we can 
assume that 8 was chosen small enough so that we also have 

B(\;ô) CG = G U dG. 

It is now clear that 

B(\;ô) CGVJ a2_rG. 

Thus G VJ d2-rG is an open subset of C. 

Since G W d2-rG is open (Proposition 3), it makes sense to consider 
La

2(G U d2-rG). Proposition 2 and the definition of d2-rG show that 

Ln*(G) = V ( G U a 2 . r G ) ( 

where the equality means that there is an obvious isometry between the 
two spaces. For X Ç G W d2-rG, the linear functional on La

2(G U d2-TG) 
= La

2(G) which takes /* to fe(X) is bounded (see [8, p. 5]). 
The following lemma is used in the proof of Theorem 5. Later, we will 

see that the conclusion of Lemma 4 can be strengthened. In fact, if 
0 G dG and Tz has closed range, then l/z g La

2(G)\ see the remark 
following the proof of Corollary 6 (which depends on Lemma 4). 

LEMMA 4. Suppose that 0 G dG and that Tz has closed range. Then there 
exists a positive integer n such that z~n # La

2(G). 
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Proof. Since Tz is an injective operator which has closed range there 
is a constant c > 0 such tha t 

c||fe||2 S \\Tzh\U for all/> G La
2(G). 

Let g G L2(G) be the function defined on G which is 1 on 5 ( 0 ; c/2) H G 
and 0 elsewThere on G. 

Suppose t h a t z~n Ç La
2(G) for each positive integer w. Then 

|(g, i ) | = |(g, r2»2-»)| 
= |(r2»*g,2-B)l 
^ ll̂ ll* IMk 
^ (c/2)" ||g||2 ||2-»||2. 

No te the definition of c shows tha t 

||z-"||« è c~i\\Tzz-% = c-l\\z-n+%. 

I terat ing this inequality shows t h a t J lz -"^ ^ c_B | | l | |2. Applying this 
est imate for i|z-M||2 to the above est imate for \(g, 1) | shows t ha t 

\{g, i> | <; 2 - \\g\U\\i\U. 

Lett ing n —> oo, we see t ha t (g, 1 ) = 0. However, it is clear from the 
definition of g t h a t (g, 1) equals the area of 5 ( 0 ; c/2) Pi G. But 
5 ( 0 ; c/2) P\ G is a non-empty (because 0 Ç dG) open set and hence 
cannot have zero area. This contradiction completes the proof. 

If T G Sef(La
2(G)) is Fredholm, then the index of T is defined to be 

the dimension of the kernel of T minus the codimension of the range of 
T. In the following theorem we determine the essential spectrum of the 
Bergman shift Tz. 

T H E O R E M 5. The essential spectrum of the Bergman shift on G is the 
Bergman essential boundary of G; that is, ae(Tz) = d2-eG. Furthermore the 
index of Tz_y is —I if y is in G U d2-rG, and Tz_y is invertible if y is in 
C ^ G. 

Proof. First suppose t ha t X £ G VJ d2-rG. Then it is easy to verify 
t ha t the range of Tz^x is equal to the kernel of the linear functional on 
La

2(G) = La
2(G U d2_rG) which sends h to h(\). In part icular , the range 

of Tz-\ is a closed subspace of La
2(G) of codimension 1. Since the kernel 

of Tz-\ is {0}, we conclude t h a t Tz_\ is Fredholm (with index —1) and 
so X (f_ ae(Tz). T h u s 

<re(T,) C C ~ ( G U d 2 _ r G ) . 

If X (? G, then clearly 7\/(2_x) is an inverse for JTZ_X, and so Tz-\ is 
Fredholm. T h u s ae(Tz) C G. Combining the last two inclusions shows 
tha t (je(Tz) C d2-eG. 
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The proof of the inclusion in the opposite direction is more difficult. 
Suppose that X $ ae(Tz). We need to prove that X $ Ô2-eG. For con­
venience, we will assume that X = 0; translations of the complex plane 
show that there is no loss of generality in this assumption. Thus we are 
assuming that Tz is Fredholm. We can also assume that 0 £ dG, because 
if 0 ? dG, then 0 $ d2-eG and we are through. 

Since Tz is Fredholm, the range of Tz, which we will denote by ran T2, 
is closed. Thus by Lemma 4, there exists a smallest non-negative integer 
N such that z~N (f_ ran Tz. (We will see at the end of the proof that 
N = 0.) 

Since z~N+1 £ ran Tz, there exists a function g £ La
2(G) such that 

Z-N+I = T^ clearly g must equal z~N; thus z~N G La
2{G). Let ker T2* 

denote the kernel of T2*. Since 

z~N 0: ran Tz = (ker Te*)±
t 

there exists a function £ G ker T * such that (s~A, fe) = 1. 
For h G La

2(G), let ^(0) = (ft, &). The intuition behind the rest of the 
proof is that if it made any sense to evaluate the function zNh(z) at 
z = 0, the result should be ft(0). (To see where this intuition comes from, 
consider the case where N = 0, so zN = 1, and suppose that 0 were in G, 
rather than in dG. Then the element k of ker T2* which satisfies 
(1, k) = 1 is just the reproducing kernel associated with point evaluation 
at 0; that is, h(0) = (h} k) for all h G La

2(G).) We will use this intuition 
to find a formula which shows that zNh has a Taylor series expansion in a 
neighborhood of 0. 

For h Ç La
2(G), let h be the function in La

2{G) such that 

h - h(0)z~N = zh. 

To see that such a function exists in La
2(G), recall that at the beginning 

of this proof, we showed that T2_x has index — 1 for each X in G. We are 
assuming that 0 G dG and that Tz is Fredholm; since the index of Tz_x 

is a continuous function of X (where defined), we see that the index of Tz 

is also — 1. Thus ker T2* is one dimensional and must consist of scalar 
multiples of k. Since 

(h - h(0)z~N,k) = 0, 

we conclude that 

h - h(0)z~N e (ker Tg*)± = ran Tz. 

Thus there is a function h in La
2(G) such that 

h - h(0)z~N = Tzh, 

as promised. 
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For h G La
2(G), we now inductively define a sequence h0, hi, fe2, . . . in 

La
2(G) by &o = h and hn = hn-i for w = 1 , 2 , . . . . Since T2 has closed 

range and a trivial kernel, there is a constant c such that 

WghS c\\Tzg\\2iora\\ g in La*(G). 

Thus 

HM2 ^ cl l^Alh = c | | rA_i | | 2 = c\\hn-i - hn-i(0)z-N\\2 

^ ||ftw_1||2C(l + | |& | | 2 | | ^ | | 2 ) . 

Iterating this estimate, and recalling that fe0 = h, we see that 

\\K\U ^ \\k\\2c
na + \\k\u\\z-N\\2y. 

The definitions of h and hi imply that 

zNh = h(0) + zzNhi. 

Iterating this equation shows that 

zNh = h(0) + h1(0)z + h2(0)z2 + . . . + hn-i(0)zn-1 + znzNhn. 

To estimate the last term of the above equation, let 

« = *[c(l + \\k\\t Hz-^ll,)]-1 , 

and for z £ G let cz denote the norm of the linear functional on La
2(G) 

which takes h to h(z). For fixed z Ç B(0; <5) C\ G, we have 

\znzNhn{z)\ g 6Ndn\\hn\\2cz; 

the choice of 5 and the estimate on \\hn\\2 show that this quantity goes to 
0 as n —» 00 . Thus 

00 

z
Nh = X) hn(0)zn for each z Ç B (0; 6) C\ G. 

0 

The estimate on \\hn\\2 shows that 

| 4 (0 ) | ^ p | | 2 \\h\\2c"(l + ||*||2 l l^lh)"; 

combining this estimate with the choice of <5 shows that So00^n(0)sn con­
verges pointwise for s G B(0; ô). Thus each function h £ La

2(G) has an 
analytic extension to -5(0; <5) ^ {0} ; the extended function (also denoted 
h) is defined by 

00 

*(*) = *~* E ^(0) 2 " for z e B(0; S) ~ {0}. 
0 

Thus 

i J ( 0 ; 5 ) ~ { 0 | CGU d2_rG. 

So if heLa*(G), then A|(B(0;«) ~ {0}) is in Z-a
2(5(0, 8) ~ {0}), 
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because d2-rG has area zero (by Proposition 2). However, Proposition 1 
shows that a function in La

2(B(0;8) ~ {0}) extends to B(0;5). Thus 
each function in La

2(G) extends to be analytic on B(0;o). This shows 
that 0 # d2-eG (and also that N = 0) and the proof of Theorem 5 is 
complete. 

The following corollary will be used in the proof of Theorem 7. To 
prove it, we need to make use of the notion of a left Fredholm operator. 
An operator T G Se (La

2(G)) is called left Fredholm if the kernel of T is 
finite dimensional and the range of T is closed. (It turns out that T is 
left Fredholm if and only if T + J f (G) is left invertible in &(La

2(G))/ 
Ctf (G). ) If T is left Fredholm, the index of T is defined to be the dimension 
of the kernel of T minus the codimension of the range of T. It is clear 
that if T is left Fredholm and the index of T is not equal to — oo , then T 
is Fredholm. In the proof of the next corollary we use the following fact: 
The index mapping from {X G C: T — X is left Fredholm} t o Z U { — oo } 
is continuous. A clean statement of this result is in [22, Proposition 
1.17]; a proof can be found in [15, Theorem V. 1.6]. 

COROLLARY 6. / / X G d<>-eG, then Tz_\ does not have closed range. 

Proof. Let X G d2-eG. Clearly Tz_\ has a trivial kernel. If 7Vx had 
closed range, then T2_\ would be left invertible, and hence left Fredholm. 
Thus the index of Tz-\ would be well defined. Since the index mapping 
is continuous and X G d2-eG, Theorem 5 would show that the index of 
7%_\ equals — 1. In partciular, T2_x would be a Fredholm operator and 
so X ̂  <re(Tz). However, this contradicts the hard part of Theorem 5. 
Thus we can conclude that Tz_\ does not have closed range. 

Remark. We can now give a strengthened version of Lemma 4, as 
promised. If 0 Ç dG and T2 has closed range, then, by Corollary 6, 
0 G d2-rG. The function 1/z clearly does not extend to be analytic at 0, 
and so 1/z & La

2(G). Robert Olin has given an independent proof of this 
remark, using the Cauchy transform (private communication). 

We can now precisely characterize the functions in C(G) for which the 
corresponding Toeplitz operator is compact. 

THEOREM 7. Letf G C(G). Then T f is compact if and only if f \d2~eG = 0. 

Proof. First suppose t h a t / \d2-eG = 0. Let e > 0 and pick g Ç C(G) 
such that || / — g\\œ < e and g is 0 on a neighborhood of d2-eG. We will 
show that Tg takes every weakly convergent sequence to a norm con­
vergent sequence, and thus Tg is compact. So suppose hn —> 0 weakly in 
L2{G) = La

2{G\J d2_rG). Let 

K = {z G G: g(z) ^ 0 } . 

Then K is a compact subset of G \J d2^rG and so hn —» 0 uniformly on K 
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(this follows from the Cauchy integral formula and the fact that the 
point evaluation functions are uniformly bounded on K [8, p. 5]). Now 

\\T.Kh = \\P(gK)h ^ UKh ^ Uh IIWL-*o, 
and so T0 is compact. Since || Tf — Tg\\ < e and e can be made arbitrarily 
small, we can conclude that Tf is compact. 

To prove the other direction of this theorem suppose that Tf is a com­
pact operator. Let X £ di-eG. We need to show that f(\) = 0. 

By Corollary 6, Tz_\ does not have closed range, and so it is not 
bounded below. Thus there exists a sequence {hn} C La

2(G) such that 

||fcn||2 = 1 and | |7Y-xM2->0. 

Passing to a subsequence, we can assume that hn-^h weakly in La
2(G) 

for some h G La
2(G). Thus Tz_\hn —» Tz_\h weakly. However, 

\\Tz^hn\\2^0, 

so we must have ||7Vx^||2 = 0. Thus h = 0 and so hn —» 0 weakly. 
Let e > 0, and let U be neighborhood of X such that 

| | ( / - / (x)) |cn u\\m < e. 
Then 

ll(/-/(X))A»||s*= f . l/-/(A)|2W2 + ( l/-/(X)|2|»»|2 

^ on u d G~U 

= e + / ~~l T" I2 ~ Xl 1**1 
•J G~U I Z — A I 

2 

||7VxAn||22. 
en 

For w sufficiently large, the right hand side of the above inequality is 
less than 2e2; we conclude that 

W(f-fW)h\U-*0 asn-*œ. 

Now 

1/001 = WfWKh 
g | | rA-/(x)M* + li^Alh 
= \\P(JK-fMK)h+ \\TAh 
^ \\(f-fW)Kh+\\Tfhn\U-

We just saw that | | ( / — /(X))/tB||2 —> 0 as « —> co . Since Tf is compact 
and hn—*0 weakly, we also know that || Tfhn\\ 2 —> 0 as n —> co . The above 
inequality thus shows that/(A) = 0, completing the proof. 

£<? + 
/ - / ( X ) 

[/ 
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The work of Berger and Shaw on selfcommutators of hyponormal 
operators is the key ingredient in the proof of the following proposition. 

PROPOSITION 8. Letf and g be functions in C(G). Then Tfg — TfTg and 
TfTg — TgTf are compact operators. 

Proof. F o r / £ C(G), define operators 

Hf: La*(G) -»L2(G) 0 La
2(G) and 

Sf: L2(G) 0 Lfl
2(G) ->L2(G) 0 L(?{G) 

by 

Hfh = (1 - P){fh) and Sfh = (1 - P){fh). 

The operator Hf is called the Hankel operator with symbol / ; clearly 
\\Hf\\ ^ || / ||œ. It is easy to verify that the adjoint operator 

H,*: tf{G) 0 L(?(G)-+La
2(G) 

is defined by Hf*h = P(fh). Straightforward calculations now show that 

Tfg - TfTQ = HfHg, 
Hfg = SfHg + HfTg. 

Let 

B = { f 6 C(G): Hf is compact}. 

Clearly B is a closed subspace of C(G) ; the above equation for Hfg shows 
that B is, in fact, a closed subalgebra of C(G). Berger and Shaw [7, 
Theorem 5.1] (also see [5, Theorem 7] and [6, Corollary 1]) have proved 
that TjTz — T2Tj is a trace class operator. Since every trace class 
operator is compact, and since 

1 ~Z± Z ^ 2 ^ Z : = ^ 2 2 J- Z * ~Z = - ^ 2 H-H,} 

we can conclude that Hj is compact. Thus z £ B. 
It is obvious from the definition of a Hankel operator that Hi = 

Hz = 0. So B is a closed subalgebra of C(G) which contains 1, z, and z. 
The Stone-Weierstrass Theorem now implies that B = C(G), so Hf is 
compact for every / £ C(C7). If / , g G C(£), then our formula for 
r/ff — 7^7^ in terms of Hankel operators now shows that it is compact. 
Since 

T0Tf - T,T, = (T,Tf - Tlf) + (T„ - TfTç), 

the proof is complete. 

L e t ^ ( G ) denote the norm closed subalgebra of £ë(La
2(G)) generated 

by {Tf:f £ C(G)}. The commutator ideal ol$~(G) is defined to be the 
smallest norm closed two sided ideal oi37~(G) containing {TS — ST: T, 
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S(z<^{G)). The following theorem gives an essentially complete 
description of the C*-algebrac5r(G). 

THEOREM 9. The commutator ideal of ^~{G) is Jf(G). Furthermore 
3T{G) ffl{G) and C(d2-eG) are isometrically isomorphic C*-algebras with 
an isomorphism that maps Tf + ^(G) to f \d2-eG for each f £ C(G). 

Proof. Suppose that Q £ &(La
2(G)) is a projection which commutes 

with Tz. By [23, Lemma 6] (actually, [23] assumes that G is the open 
unit disk, but this assumption is never used), there is an analytic 
function h defined on G such that Q is multiplication by fc. The equation 
Q2 = Q implies that h2 = h; since h is analytic this implies that Q = 0 
or Q = 1. In particular, the C*-algebra^~(G) is irreducible. 

By Proposition 8, TZT-Z — T-ZT z is compact, and it is easy to see that 
TZT-Z — T-ZTz ^ 0. T h u s ^ ( G ) is an irreducible C*-algebra which con­
tains a non-zero compact operator. By [4, p. 18, Corollary 2], we can 
conclude that j f (G) C^~{G). 

Let J (G) denote the commutator ideal of ^ ( G ) . Proposition 8 
implies that J(G) C ^ ( G ) . Since J (G) is a two-sided ideal o f ^ ( G ) 
and J f (G) C^~(G), it is clear tha t</ (G) is a two-sided ideal of j f ( G ) . 
Furthermore </(G) is not equal to {0} because 0 ^ TZT-Z — T-ZTz £ 
J? (G), and so by [4, p. 18, Corollary 1], we can conclude tha t^ / (G) = 
X(G). 

Consider the map a of C{G) into $~(G)/X(G) defined by a(f) = 
Tf + J^(G). By Proposition 8, a is a homomorphism, and hence its range 
is a subalgebra of ^7"(G)/J^(G). The definition of $~(G) now implies 
that a(C(G)) is dense in^"(G) /J f (G). 

Let 

Z(G) = { / € C(G):/ |a2_ eG = 0}. 

By Theorem 7, the kernel of a is precisely Z{G). Thus there is a homo­
morphism à from C(G)/Z(G) i n t o ^ ( G ) / j f (G) defined by 

Hf + z(G)) = r,+jf(G). 

Now â is an injective G*-homomorphism, and so it must be an isometry 
[11, Proposition 4.67]. In particular, the range of â must be closed. We 
already noted that a(C(G)) is dense in^"(G)/y^(G), and since a and â 
have the same range, we see that â is a G*-isomorphism of C{G)/Z{G) 
ontoJ^~(G)/J^(G). The proof of the theorem is now completed by noting 
that there is an obvious C*-isomorphism of C(G)/Z(G) onto G(d2-eG), 
namely 

f+Z(G)^f\d2-eG. 

We can now determine the essential spectrum of an arbitrary Toeplitz 
operator whose symbol is in C(G). 
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COROLLARY 10. Let f £ C(G). Then ae(Tf) = f(d2-eG). 

Proof. The spectrum of f \d2-eG in C(d2-eG) is /(d2-eG). Thus by 
Theorem 9, the spectrum of Tf+X{G) in 3T (G))^(G) is f(d2-eG). 
However, the spectrum of an element of a C*-algebra does not change 
when the C*-algebra is enlarged [11, Theorem 4.28], and so the spectrum 
of r , + j f ( G ) m38{L2{G))/X{G) is/(d2_eG). 

Corollary 10 might lead one to suspect that if / £ C(G), then 
d{Tf) = / (G); here a(Tf) denotes the spectrum of Tf. By analogy with 
the theory of Toeplitz operators on the classical Hardy space H2 (see 
[11, Corollary 7.7]) one might expect to have at least a spectral inclusion 
theorem: /(G) C <r{Tf). However, Keough [19, Theorem 2.1] proves 
that there is always a function/ £ C(G) such that / (G) (£ <r(Tf). Here 
we give an explicit example for the case when G is the open unit disk. 

EXAMPLE 11. Suppose that G is the open unit disk. Then there exists a 
function f Ç C{G) such that neither the inclusion f(G) C <r{Tf) nor the 
inclusion cr(Tf) C / (G) holds. 

Proof. Define / on the closed unit disk G by 

f(reid) = exp (2-n-ir2). 

Clearly/ \dG = 1, and so Tf — 1 is compact by Theorem 7. In particular, 
the spectrum of Tf must be countable. Since /(G) is uncountable, we 
cannot have/(G) C v(Tf). 

To show that the opposite inclusion also does not hold, note that if n 
is a non-negative integer, then 

< r / i , z » > = (f,z»)=Jfzn 

= (j l rn+1exp (2irir2)dr) yj2\indddj . 

The d6 integral above equals zero except when n = 0. When n = 0, the 
dr integral above equals zero. Thus 

(Tfl,z
n) = 0 for all n ^ 0. 

Since for this particular choice of G the linear span of {zn: n ^ 0} is dense 
in La

2(G), we can conclude that Tf\ = 0. Thus Tf is not invertible and 
so 0 e <r(Tf). Clearly 0 g /(G), and thus we do not have a(Tf) C / ( G ) . 

The essential norm of an operator is its distance from the compact 
operators. More precisely, if T Ç 38(La

2(G)), then the essential norm of 
r , denoted \\T\\e, is defined to be the norm of T + JT(G) in 
38{La

2(G))ffl(G). The following corollary gives a formula for the 
essential norm of a Toeplitz operator on a Bergman space. 
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COROLLARY 12. Letf£ C(G). Then \\Tf\\e = \\f\d2-eG\\œ. 

Proof. By Proposition 8, Tf-\~ J^(G) is a normal element of 
^ ( L a

2 ( G ) ) / j f (G). Thus the norm of Tf + J f (G) is equal to its spectral 
radius. The result now follows from Corollary 10. 

Corollary 12 and analogy with the theory of Toeplitz operators on the 
classical Hardy space H2 (see [11, Corollary 7.8]) might lead one to 
suspect that if / (E C(G), then \\Tf\\ = | | / | | œ . However, Keough [19, 
Theorem 2.1] proves that there is always a function/ G C(G) such that 
P^/ll < II / lloo- We will give an explicit example which shows, in the case 
where G is the open unit disk, that \\Tf\\ and \\f\\œ are not even 
equivalent norms. 

Suppose (temporarily) that G is the open unit disk. Consider the map 

P:C(G)->@(La*(G)) 

defined by /3(/ ) = Tf. If/ £ C(G) and Tf = 0, then for all non-negative 
integers m and n 

0 = <7>m, zn) = (fzm, zn) = I fzmt. 
J G 

The linear span of [zmzn: tn, n ^ 0} is dense in C(G). Thus the above 
equation shows that if Tf = 0, then / = 0. Thus the map 13 is injective. 
The following example shows that 13 does not have closed range. Note 
that {Tf\ f G C(G)\ + J ^ ( G ) is a closed subspace of Së{L^{G)) (because 
by Theorem 9 it is equal to^~(G)) , and so it is somewhat curious that 
[Tf: f £ C(G)\ is not closed. 

EXAMPLE 13. Suppose that G is the open unit disk. Then there does not 
exist a constant c such that || / ||œ ^ c\\Tf\\ for every f 6 C(G). 

Proof. Suppose that c > 1. Let b = 1/V^and define a function/ on 
the closed unit disk G by 

f(re«\ _h~r/b iff Sb 
J{re ) " 10 if r > &. 

Clearly/ G C(G) a n d / |6G = 0, so by Theorem 7 7"/ is compact. Since/ 
is real-valued, Tf is self-adjoint (it is always true that Tf* = 7/), so to 
determine the norm of the compact self-ad joint operator Tf we need 
only find the largest eigenvalue. 

So suppose that X is an eigenvalue of Tf. Let h G La
2(G) be such that 

h 9e 0 and Tfh — \h. In the unit disk G, h has a power series expansion: 

oo 

h (z) = X arc2n. 
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If n ^ 0 then 

0 = <7VxM*>= ((f-X)h,zn) 

= f1
or

n+1(f(r) - X) [ / % ( w V 

* rr*+1(f(r)-\)dr 
J 0 

w f / j r ^ l - r / i ^ r - X ^ 1 : 

dr 

= 27ra, 

= 27ra, 2w+l LJr 

27raw 

2rc + 2 

L2n+2 

2n + 3 

Since & ^ 0, there is some w ^ 0 such that an ^ 0. The above equation 
then shows that X = b2n+2/(2n + 3). Since 0 < b < 1, this shows that 
|X| ^ b2/3. Thus ||77|l ^ 62/3 and so c||77|| ^ 1/3. Since | | / |L = 1, we 
cannot have | | / |L ^ c|l^/|l-

3. The Bergman essential boundary. The main result of this section 
is Theorem 16, which gives a local necessary and sufficient condition for 
a boundary point of G to be removable. 

The following proposition shows that d2-rG is totally disconnected. 

PROPOSITION 14. Let X £ dG. If the connected component of dG containing 
X contains more than one point, then X Ç d2-eG. 

Proof. Suppose that the connected component of dG containing X 
contains more than one point but that X £ d2-rG. Since d2-rG is a 
relatively open subset of dG, there is a positive number 8 such that 

B(\;8) r\ dG C d<i-rG. 

Let K denote the connected component of B(\; 8) C\ dG that contains X. 
Then K contains more than one point and so there is a conformai map h 
of C U {oo } ~ K onto the open unit disk. Clearly h\G € La

2(G), and 
since K C d2-rG, we see that h extends to a non-constant bounded 
analytic function defined on all of C. This contradicts Liouville's 
Theorem, and proves that X £ d2-eG. 

A compact set K C C is said to have zero logarithmic capacity if 

sup2€G \ J
 K F — w\ 

•du(w) ( = oo 

for every probability measure u supported on K. There are many 
equivalent definitions scattered throughout the literature. 
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We will need to use the following lemma. It is just a special case of 
Theorem 1.4 of [16] and also of Theorem B of [1], where the differential 
operator in those theorems is taken to be d/dz. To see that the sets of 
zero logarithmic capacity, as defined above, are the same as the sets of 
zero capacity defined by the two theorems just referred to, see [1, 
Theorem A], [16, Theorem 2.1], and [17, Lemma 1 and Lemma 2]. How­
ever, an independent proof based on [9, page 73] is also possible. This 
proof is presented for completeness. 

LEMMA 15. Let K be a compact subset of C and let U be an open subset 
of C such that K C U. Then K has zero logarithmic capacity if and only if 
every function in La

2(U ^ K) has an analytic extension to U. 

Proof. According to [9, page 73], K has logarithmic capacity 0 if and 
only if La\C~K) = {0}. 

So suppose that every function in La
2(U ~ K) has an analytic exten­

sion to U. If / G La
2(C ~ K), then this implies/ has an analytic exten­

sion to C; that is, / is entire and in La
2(C). A power series argument 

shows that La
2(C) = {0}. Hence La

2(C ~ K) = {0} and, by [9, page 73], 
K has zero logarithmic capacity. 

For the converse, suppose that La
2(C ~ K) = {0} and let h £ 

La
2(U ^ K). By standard arguments, h = h\ + h2 where hi is analytic 

on U, h2 is analytic in the complement of K in the extended plane, and 
h2(co) = 0. The proof will be accomplished by showing that h is analytic 
on U. 

Let R > 0, B = {z:\z\ > R], and let g be analytic on B VJ {oo }. By 
examining the power series development of g at oo, g(z) = a0 + 
3w==i

œ an/z
n, it is easy to show that g G La

2(B) if and only if 

g(oo) = a0 = 0 and ax = g'(oo) = 0. 

With this in mind, note that for w in C ^ K, 

h2{z) — h2(w) 
z — w 

= —h2(w). 

If h2 5* 0, choose distinct points a and b from C ~ K such that 
h2{a) ^ 0 ^ h2(b). Put 

*(*) = 
1 h2(z) — h2(a) 

z — a 
1 

h2(p) 
h2(z) — h2(b) 

z-b h2{a) 

It is easy to see that 

g(oo) = \\mz^g(z) = 0 and g'(oo) = \\mz^œzg(z) = 0. 

From the preceding paragraph, 

g d La
2({z:\z\ > R}) ÏÎKQ {z:\z\ < R}. 
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Also, if V is an open set containing K such that V C U, then 

)u_ = h - hi e LJ(V~ K). 

Hence g <E L„2(F ~ # ) . It follows that g £ -L„2(C ~ X) . By hypothesis, 
« = 0. 

This implies 

1 
h2{a) 

h2(z) — h2(a) 
z — a 

h2(z) — h2(b) 
h2{b) 

Solving for h2(z), we see that h2 is a rational function with precisely 
1 pole, call it c. If c (? U, then & is analytic on U as desired. If c £ [/, 
then h is analytic on [/ ~ {cj with a pole at £. But A G La

2(U ~ K) (this 
forces c ^ K) and i£ has zero area, so h G La

2(U ~ {c}). But by Proposi­
tion 1, A extends to be analytic on U. 

The reader may wish to compare Lemma 15 with [3, Theorem 3], 
which shows that every bounded analytic function defined on U ~ K 
can be analytically extended to U if and only if K has zero analytic 
capacity. A set may have zero analytic capacity without having zero 
logarithmic capacity; an example is provided by the usual Cantor set 
(see [9, page 31]). 

Lemma 15 can be used to give an example of an open set G such that 
d2-rG is uncountable. To do this, let K be an uncountable set with zero 
logarithmic capacity (for examples, see [9, page 31]), let U be an open 
disk containing K, and let G = U ~ K. Then Lemma 15 (and Prop­
osition 14) show that d2-rG = K. 

A set with zero logarithmic capacity is very small. It must have zero 
area; in fact, it must meet every line and every circle in a set of linear 
Lebesgue measure zero (see [2, p. 29 and Theorem 2.7]). The following 
theorem says that a boundary point of G is removable if and only if 
almost every point (in the sense of logarithmic capacity) near it is in G: 
compare to Proposition 1. Theorem 16 is essentially a local version of 
Lemma 15. 

THEOREM 16. Suppose X £ dG. Then X Ç d2-rG if and only if there 
exists a positive number 8 such that B(\;8)~G has zero logarithmic 
capacity. 

Proof. First suppose that X G d2-rG. Then by Proposition 3 there is a 
positive number ô such that B(X\ 8) is contained in G. Since d2-rG is a 
relatively open subset of dG, we can choose 8 also to satisfy 

B(X;8) H dGC d2-rG. 

Thus B(X;8) ÇGU 32_rG and so 5(X; 8) — G C d2-rG. Let U = 
G U d2-rG and let K — B(X; 8) ~ G. Then U is open and K is a compact 
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set contained in U. Since K C d2-rG, every function in La
2(U ~ K) has 

an analytic extension to U. Lemma 15 now allows us to conclude that 
B(\; ô) ~ G has zero logarithmic capacity. 

To prove the other direction of this theorem, suppose that ô is a 
positive number such that B(\;ô) ~ G has zero logarithmic capacity. 
Thus B(X\ 8) ^ G is totally disconnected. (One way to show this is to 
use [3, Theorem 3] and Lemma 15 to conclude that every set with zero 
logarithmic capacity is a Painlevé null set and hence must be totally 
disconnected [13, p. 198].) Thus there is an open set F C C such that 
X G V C B(\; 5) and V C\ (B(\;8) ~ G) is compact. Let U = G^J V 
and let 

K = VC\ (B(\;d) ~ G ) . 

Then K is a compact set contained in the open set U. Furthermore 
U ~ K = G. Since K has zero logarithmic capacity, by Lemma 15 we 
see that every function in La

2(U ~ K) — La
2(G) has an analytic 

extension to U = G VJ V. Thus X 6 d2-rG and the proof is complete. 
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