A DECOMPOSITION OF INTEGER VECTORS. IV

A. SCHINZEL

(Received 10 May 1989)

Communicated by J. H. Loxton

In memory of Kurt Mahler

Abstract

Given m linearly independent vectors $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbf{Z}^k$ and an integer $l \in [m, k]$ one proves the existence of l linearly independent vectors $\mathbf{p}_1, \ldots, \mathbf{p}_l \in \mathbf{Z}^k$ or $\mathbf{q}_1, \ldots, \mathbf{q}_l \in \mathbf{Z}^k$ of small size (suitably measured) such that the \mathbf{n}_i 's are linear combinations of \mathbf{p}_j 's with rational coefficients or of \mathbf{q}_i 's with integer coefficients.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 11 H 41.

In order to generalize the results of [10] (Part III of this series) let us introduce the following notation. Given m linearly independent vectors $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$ let $H(\mathbf{n}_1, \mathbf{n}_2, \ldots, \mathbf{n}_m)$ denote the maximum of the absolute values of all minors of order m of the matrix

$$\begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_m \end{pmatrix}$$

and $D(\mathbf{n}_1, \dots, \mathbf{n}_m)$ the greatest common divisor of these minors. Furthermore, let

$$h(\mathbf{n}) = H(\mathbf{n})$$
 for $\mathbf{n} \neq \mathbf{0}$, $h(\mathbf{0}) = 0$.

^{© 1991} Australian Mathematical Society 0263-6115/91 \$A2.00 + 0.00

Definition 1. For $k \ge l \ge m$, k > m, let

$$c_0(k, l, m) = \operatorname{sup}\inf\left(\frac{D(\mathbf{n}_1, \ldots, \mathbf{n}_m)}{H(\mathbf{n}_1, \ldots, \mathbf{n}_m)}\right)^{\frac{k-l}{k-m}} \prod_{i=1}^{l} h(\mathbf{p}_i),$$

$$c_1(k, l, m) = \operatorname{supinf}\left(\frac{D(\mathbf{n}_1, \dots, \mathbf{n}_m)}{H(\mathbf{n}_1, \dots, \mathbf{n}_m)}\right)^{\frac{k-l}{k-m}} \prod_{i=1}^{l} h(\mathbf{q}_i),$$

where the supremum is taken over all sets of linearly independent vectors $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$ and the infimum is taken over all sets of linearly independent vectors $\mathbf{p}_1, \ldots, \mathbf{p}_l \in \mathbb{Z}^k$ or $\mathbf{q}_1, \ldots, \mathbf{q}_l \in \mathbb{Z}^k$ such that for all $i \leq m$,

$$\mathbf{n}_i = \sum_{j=1}^l u_{ij} \mathbf{p}_j, \qquad u_{ij} \in \mathbb{Q}, \qquad \mathbf{n}_i = \sum_{j=1}^l u_{ij} \mathbf{q}_j, \qquad u_{ij} \in \mathbb{Z}.$$

The Bombieri-Vaaler refinement [1] of the Siegel lemma easily leads (on the lines of the proof of (8) in [10]) to the conclusion that $c_0(k, l, m)$ is finite, first obtained by Yu. Teterin. The aim of this paper is to give bounds for $c_0(k, l, m)$ and $c_1(k, l, m)$ which are independent of k. First however we shall introduce three further series of constants, this time of geometric character.

DEFINITION 2. For a given positive integer m, let κ_m be the volume of the unit ball in \mathbb{R}^m ,

$$g_0(m) = \sup \inf \frac{\operatorname{vol} \mathbb{P}}{\operatorname{vol} \mathbb{K}}, \qquad g_1(m) = \sup \inf \frac{\operatorname{vol} \mathbb{P}}{\operatorname{vol} \mathscr{E}(\mathbb{K})} \cdot \frac{\kappa_m}{2^m},$$

where the suprema are taken over all m-dimensional convex bodies \mathbb{K} situated in \mathbb{R}^m , symmetric with respect to the origin, the infima are taken over all parallelopipeds containing \mathbb{K} symmetric with respect to the origin and $\mathscr{E}(\mathbb{K})$ denotes the ellipsoid of the maximum volume contained in \mathbb{K} . (It is unique; see [7].) Clearly

$$\frac{2^m}{\kappa_m} \le g_0(m) \le \frac{2^m}{\kappa_m} g_1(m).$$

The best published result pertaining to $g_0(m)$, $g_1(m)$ seems to be the following inequality due to Dvoretzky and Rogers [4, Theorem 5A]:

$$g_1(m) \leq \left(\frac{m^m}{m!}\right)^{1/2}.$$

Professor A. Pełczyński who indicated to me the paper [4] has improved the above inequality by showing together with S. J. Szarek that (see [9, Proposition 2.1])

$$g_1(m)^2 \le \left(\frac{m(m+1)}{2}\right) \left(\frac{2}{m+1}\right)^m$$

and, on the other hand, they have proved that (ibid., Section 6)

$$g_1(m)^2 \geq \frac{2m}{m+1}.$$

For $m \le 2$ the two bounds coincide and give

$$g_1(1) = 1$$
, $g_1(2) = \sqrt{\frac{4}{3}}$.

According to [9, Theorem 5.1], for every $\varepsilon > 0$,

$$\log g_1(m) = \frac{m}{2} + o(m^{\frac{2}{3} + \varepsilon}).$$

I am indebted to Professor Pełczyński also for the paradigm (for l=2) of the proof of Lemma 1 below, which he has since proved in another way (see [9], Corollary 3.1).

We shall prove

THEOREM 1. For all integers k, l, m satisfying $k \ge l \ge m, k > m > 0$,

$$(1) \quad c_0(k, l, m) \le \min \left\{ (l - m + 1)^{l/2} g_1(m) \gamma_l^{l/2}, \frac{l!}{m!} g_0(m), \\ \left(\frac{l}{m} \right)^{l/2} l^{(l-m)/2} g_1(l) \gamma_l^{l/2} \right\},$$

where γ_l is the Hermite constant. For $l = m \le 2$ we have here equality.

THEOREM 2. For all integers k, k, m satisfying $k \ge l \ge m$, k > m > 0 we have

$$\frac{c_1(k, l, m)}{c_0(k, l, m)} \le f(l) = \sup_{\mathbf{A}} \inf_{\mathbf{U}} \left(\sum_{j=1}^{l} |\delta_{ij}| \right) ,$$

where $[\delta_{ij}] = \mathbb{U} \mathbb{A}^{-1}$, \mathbb{A} and \mathbb{U} run through all lower triangular non-singular integral matrices and all lower triangular unimodular integral matrices of order l, respectively. Moreover

$$f(l) \le \frac{(l+\lambda+1)!}{4^{l-\lambda}(2\lambda+1)!}$$
 where $\lambda = \left[\frac{1+\sqrt{16l+17}}{4}\right]$.

S. Chaładus and Yu. Teterin prove in the forthcoming paper [2] that the exponent (k-l)/(k-m) in the definition of $c_0(k, l, m)$ is the correct one, that is, for any smaller exponent the corresponding supremum is infinite. Moreover they give an estimate for $c_0(k, l, m)$ that depends on k and is better than (1) for $k = o(l^2)$.

Let us note that for large l the minimum on the right-hand side of (1) is equal to the first term for $m < c_1 l / \log l$, to the last term for $m > c_2 l$, where c_1 , c_2 are suitable constants, $c_1 > 0$, $c_2 < 1$, provided in the latter case that γ_l , $\log(g_0(l)\kappa_l/2^l)$ are regularly growing functions and

$$\liminf_{l\to\infty}\frac{\log g_0(l)-\frac{l}{2}\log \gamma_l}{l}>\frac{1}{2}.$$

For m=1, (1) constitutes an improvement over [8, Theorem 1] already for l>50. The problem of existence of a bound for $c_0(k,l,m)$ depending only on m remains open also for m=1.

LEMMA 1. If A is a parallelohedron given by the inequalities

$$|\mathbf{a}_i \mathbf{x}| \le 1$$
, $\mathbf{a}_i \in \mathbb{R}^l$ $(1 \le i \le k)$

then for every parallelopiped \mathbb{P} containing A, symmetric with respect to 0 and for a suitable subset S of $\{1, 2, ..., k\}$ of cardinality l we have

$$\operatorname{vol} \mathbb{P} \geq \operatorname{vol} \mathbb{P}_0(S)$$
,

where $\mathbb{P}_0(S)$ is the parallelopiped

$$|\mathbf{a}_i\mathbf{x}| \leq 1 \quad (i \in S).$$

PROOF. We shall proceed by induction on the number n of pairs of parallel (l-1) dimensional faces of $\mathbb P$ that do not contain (l-1) dimensional faces of $\mathbb A$ (in the sequel, briefly, faces). If n=0 the assertion is true. Suppose it is true for the case of n-1 pairs of parallel faces and consider a parallelopiped $\mathbb P$ symmetric with respect to $\mathbb O$ with exactly n pairs of parallel faces not containing faces of $\mathbb A$. Let $\mathbb P$ be given by the inequalities

$$|\mathbf{b}_i \mathbf{x}| \le 1$$
, $\mathbf{b}_i \in \mathbb{R}^l$ $(1 \le i \le l)$

and let $\mathbf{b}_i \mathbf{x} = \pm 1$ be the pair of hyperplanes corresponding to one of the *n* pairs in question. Replacing \mathbb{P} if necessary by a smaller parallelopiped we may assume that there is $\mathbf{x}_0 \in \mathbf{A}$ such that

$$\mathbf{b}_1 \mathbf{x}_0 = 1.$$

Let $I = \{i \le k : |\mathbf{a}_i \mathbf{x}_0| = 1\}$ and let

(3)
$$\mathbf{a}_{i}\mathbf{x}_{0}=\boldsymbol{\varepsilon}_{i} \qquad (i\in I).$$

From the fact that the hyperplane $\mathbf{b}_l \mathbf{x} = 1$ is supporting A at \mathbf{x}_0 it follows that

(4)
$$\varepsilon_i \mathbf{a}_i \mathbf{t} \leq 0$$
 $(i \in I)$ implies $\mathbf{b}_i \mathbf{t} \leq 0$ for $\mathbf{t} \in \mathbb{R}^l$.

Indeed, suppose for some $\mathbf{t}_0 \in \mathbb{R}^l$ that $\varepsilon_i \mathbf{a}_i \mathbf{t}_0 \le 0$ and $\mathbf{b}_1 \mathbf{t}_0 > 0$. Then for

$$\mathbf{t}_1 = \frac{\mathbf{t}_0}{lh(\mathbf{t}_0)} \min \left\{ \min_{i \notin I} \frac{1 - |\mathbf{a}_i \mathbf{x}_0|}{h(\mathbf{a}_i)}, \min_{i \in I} \frac{2}{h(\mathbf{a}_i)} \right\}$$

we have $\pm(\mathbf{x}_0 + \mathbf{t}_1) \in A$, $\mathbf{b}_1(\mathbf{x}_0 + \mathbf{t}_1) > 1$, $\mathbf{b}_1(-\mathbf{x} - \mathbf{t}_1) < -1 < 1$, and thus the hyperplane $\mathbf{b}_1 \mathbf{x} = 1$ divides A. This contradiction proves (4). Hence by a theorem of Farkas [5, page 5] (I owe this reference to Professor S. Rolewicz. There is a related earlier statement in [8, page 45]) we have

$$\mathbf{b}_1 = \sum_{i \in I} \varepsilon_i \mathbf{a}_i \lambda_i \,,$$

where

$$\lambda_i \ge 0 \qquad (i \in I)$$

and by (2) and (3)

$$\sum_{i \in I} \lambda_i = 1.$$

Therefore,

(7)
$$(\operatorname{vol} \mathbb{P})^{-1} = 2^{-l} \left| \det \left(\sum_{i \in I} \varepsilon_i \mathbf{a}_i \lambda_i, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_l \right) \right|$$

$$= 2^{-l} \left| \sum_{i \in I} \lambda_i \det(\varepsilon_i \mathbf{a}_i, \, \mathbf{b}_2, \, \dots, \, \mathbf{b}_l) \right|.$$

Regarding λ_i as variables restricted by the conditions (5) and (6), we easily see that the right-hand side of (7) takes the maximum for $\lambda_i = 1$ if $i = i_0$, $\lambda_i = 0$ otherwise. Hence

(8)
$$\operatorname{vol} \mathbb{P} \ge \operatorname{vol} \mathbb{P}_1,$$

where \mathbb{P}_1 is the parallelopiped

$$|\mathbf{a}_{i} \mathbf{x}| \leq 1$$
, $|\mathbf{b}_{i} \mathbf{x}| \leq 1$ $(2 \leq i \leq l)$.

However \mathbb{P}_1 contains A and it has only n-1 pairs of parallel faces that do not contain faces of A. Thus by the inductive assumption there exists a set $S \subset \{1, 2, ..., k\}$ of cardinality l and with the property

$$\operatorname{vol} \mathbb{P}_1 \geq \operatorname{vol} \mathbb{P}_0(S)$$
.

In view of (8) this gives

$$\operatorname{vol} \mathbb{P} \ge \operatorname{vol} \mathbb{P}_0(S)$$

and concludes the inductive argument.

LEMMA 2. For all linearly independent vectors \mathbf{c}_1 , ..., $\mathbf{c}_l \in \mathbb{R}^k$ the domain $\mathbb{C}: h(\mathbf{c}_1x_1 + \cdots + \mathbf{c}_lx_l) \leq 1$

satisfies

$$\operatorname{vol} \mathbb{C} \geq \frac{2^{l}}{g_{0}(l)H(\mathbf{c}_{1},\ldots,\mathbf{c}_{l})}, \qquad \operatorname{vol} \mathscr{E}(\mathbb{C}) \geq \frac{\kappa_{l}}{g_{1}(l)H(\mathbf{c}_{1},\ldots,\mathbf{c}_{l})}.$$

PROOF. Put

(9)
$$\mathbf{a}_i = [c_{1i}, c_{2i}, \dots, c_{li}] \quad (1 \le i \le k).$$

Then

$$\mathbb{C} = \{x \in \mathbb{R}^l : |\mathbf{a}_i \mathbf{x}| \le 1 \text{ for all } i \le k\}$$

and clearly $\mathbb C$ is a convex body symmetric with respect to $\mathbf 0$. By Definition 2

$$\operatorname{vol} \mathbb{C} \ge g_0(l)^{-1} \inf \operatorname{vol} \mathbb{P}, \qquad \operatorname{vol} \mathscr{E}(\mathbb{C}) \ge g_1(l)^{-1} 2^{-l} \kappa_l \inf \operatorname{vol} \mathbb{P},$$

where the infimum is taken over all parallelopipeds \mathbb{P} symmetric with respect to $\mathbf{0}$ and containing \mathbb{C} . However by Lemma 1 the infimum can be replaced by the minimum taken over the finite set of all parallelopipeds

$$\mathbb{P}_0(S)$$
, $|\mathbf{a}_i \mathbf{x}| \le 1$ $(i \in S)$,

where S runs through all subsets of $\{1, \ldots, k\}$ of cardinality l. Since

$$\operatorname{vol} \mathbb{P}_0(S) = 2^l |\det\{\mathbf{a}_i : i \in S\}|^{-1}$$

we have by (9) that

$$\min \operatorname{vol} \mathbb{P}_0(S) = 2^l H(\mathbf{c}_1, \ldots, \mathbf{c}_l)^{-1}$$

and the lemma follows.

LEMMA 3. If for all linearly independent vectors $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$ such that $D(\mathbf{n}_1, \ldots, \mathbf{n}_m) = 1$ there exist linearly independent vectors $\mathbf{p}_1, \ldots, \mathbf{p}_l \in \mathbb{Z}^k$ such that

$$\mathbf{n}_i = \sum_{j=1}^l u_{ij} \mathbf{p}_j \,, \qquad u_{ij} \in \mathbb{Q}$$

and

$$\prod_{j=1}^{l} h(\mathbf{p}_j) \le cH(\mathbf{n}_1, \ldots, \mathbf{n}_m)^{(k-l)/(k-m)}$$

then $c_0(k, l, m) \leq c$.

PROOF. Consider m linearly independent vectors $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$ and let \mathcal{N} be the linear space spanned by them over \mathbb{R} . Further, let $\mathbf{b}_1, \ldots, \mathbf{b}_m$

be a basis of the lattice $\mathcal{N} \cap \mathbb{Z}^k$ and $\mathbf{c}_1, \ldots, \mathbf{c}_{k-m} \in \mathbb{Z}^k$ linearly independent vectors perpendicular to \mathcal{N} . Since $\mathcal{N} \cap \mathbb{Z}^k$ is the lattice of all solutions $\mathbf{x} \in \mathbb{Z}^k$ of the system $\mathbf{c}_i \mathbf{x} = 0$ $(1 \le i \le k - m)$, we have by the known theorem [3, page 53] that

$$D(\mathbf{b}_1, \ldots, \mathbf{b}_m) = 1.$$

On the other hand clearly

(11)
$$\begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_m \end{pmatrix} = \mathbf{A} \begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_m \end{pmatrix},$$

where A is an integral square matrix of order m. It follows from (11) that

$$D(\mathbf{n}_1, \ldots, \mathbf{n}_m) = |\det \mathbf{A}| D(\mathbf{b}_1, \ldots, \mathbf{b}_m),$$

$$H(\mathbf{n}_1, \ldots, \mathbf{n}_m) = |\det \mathbf{A}| H(\mathbf{b}_1, \ldots, \mathbf{b}_m)$$

and by (10)

(12)
$$H(\mathbf{b}_1, \dots, \mathbf{b}_m) = \frac{H(\mathbf{n}_1, \dots, \mathbf{n}_m)}{D(\mathbf{n}_1, \dots, \mathbf{n}_m)}.$$

By the assumption of the lemma there exist linearly independent vectors $\mathbf{p}_1, \ldots, \mathbf{p}_l \in \mathbb{Z}^k$ and a matrix $\mathbb{U} \in \mathscr{M}_{m,l}(\mathbb{Q})$ such that

(13)
$$\begin{pmatrix} \mathbf{b}_1 \\ \vdots \\ \mathbf{b}_m \end{pmatrix} = \mathbb{U} \begin{pmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_l \end{pmatrix},$$

and

(14)
$$\prod_{j=1}^{l} h(\mathbf{p}_{j}) \leq cH(\mathbf{b}_{1}, \dots, \mathbf{b}_{m})^{(k-l)/(k-m)}.$$

It follows from (11) and (13) that

$$\begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_m \end{pmatrix} = \mathbb{A}\mathbb{U} \begin{pmatrix} \mathbf{p}_1 \\ \vdots \\ \mathbf{p}_l \end{pmatrix},$$

while from (12) and (14) that

$$\prod_{j=1}^{l} h(\mathbf{p}_j) \leq \left(\frac{H(\mathbf{n}_1, \ldots, \mathbf{n}_m)}{D(\mathbf{n}_1, \ldots, \mathbf{n}_m)}\right)^{(k-l)/(k-m)}.$$

Thus by Definition 1, $c_0(k, l, m) \le c$.

LEMMA 4. Let \mathbb{K} be a convex domain symmetric with respect to $\mathbf{0}$ in the linear subspace $\mathscr{L}: x_1 = \cdots = x_m = 0$ of \mathbb{R}^k , not containing in its interior any point of the lattice $\mathscr{L} \cap \mathbb{Z}^k$ except $\mathbf{0}$ and let $\| \ \|_{\mathbb{K}}$ be the corresponding distance function. Let $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$ and \mathscr{N} be the linear space spanned by $\mathbf{n}_1, \ldots, \mathbf{n}_m$ over \mathbb{R} . If $\Delta = \det(n_{ij})_{i,j \leq m} \neq 0$ and $D(\mathbf{n}_1, \ldots, \mathbf{n}_m) = 1$ there exist vectors $\mathbf{n}_{m+1}, \ldots, \mathbf{n}_k \in \mathbb{Z}^k$ such that $\mathbf{n}_1, \ldots, \mathbf{n}_k$ are linearly independent and

$$\prod_{i=m+1}^{k} \left\| (\mathbf{n}_i + \mathcal{N}) \cap \mathcal{L} \right\|_{\mathbf{K}} \le 2^{k-m} (\operatorname{vol} \mathbf{K})^{-1} |\Delta|^{-1}.$$

REMARK. Since $\Delta \neq 0$ we have $\mathcal{N} \cap \mathcal{L} = \{\mathbf{0}\}$, and hence $(\mathbf{n}_i + \mathcal{N}) \cap \mathcal{L}$ consists of one point and $\|(\mathbf{n}_i + \mathcal{N}) \cap \mathcal{L}\|_{\mathbf{K}}$ means the distance from this point to $\mathbf{0}$ measured through \mathbf{K} .

PROOF. If $|\Delta| = 1$ the desired conclusion follows directly from Minkowski's second theorem. Indeed by that theorem applied to the domain \mathbb{K} there exist linearly independent vectors $\mathbf{n}_{m+1}, \ldots, \mathbf{n}_k \in \mathcal{L} \cap \mathbb{K}$ such that

$$\prod_{i=m+1}^{k} \left\| \mathbf{n}_{i} \right\|_{\mathbb{K}} \leq 2^{k-m} (\operatorname{vol} \mathbb{K})^{-1}.$$

Since $\mathcal{N} \cap \mathcal{L} = \{\mathbf{0}\}$ we have $(\mathbf{n}_i + \mathcal{N}) \cap \mathcal{L} = \{\mathbf{n}_i\}$ $(m < i \le k)$ and $\mathbf{n}_1, \ldots, \mathbf{n}_k$ are linearly independent. Therefore assume that $|\Delta| > 1$. Let $\Delta_i(\mathbf{x})$ be the determinant of the matrix obtained from $(n_{ij})_{i,j \le m}$ by replacing the *i*th row by the first m coordinates of the vector \mathbf{x} .

Let us take a real number r > 1 and consider in \mathbb{R}^k the domain

$$\mathbb{D}_r(\mathbb{K}): \max_{1 \leq \mu \leq m} \left| \Delta_{\mu}(\mathbf{x}) \right| + \left| \Delta \right|^r \| \mathbf{x} \Delta - \sum_{\mu=1}^m \mathbf{n}_{\mu} \Delta_{\mu}(\mathbf{x}) \right\|_{\mathbb{K}}^{(k-m)r} \leq \left| \Delta \right|^{(k-m)r}.$$

Then $\mathbb{D}_r(\mathbb{K})$ is convex and symmetric with respect to 0. In order to compute its volume we make the affine transformation

$$\frac{\Delta_{\mu}(\mathbf{x})}{\Delta^{(k-m)r}} = y_{\mu} \qquad (\mu = 1, ..., m), \qquad x_{\mu} = y_{\mu} \qquad (\mu = m+1, ..., k).$$

This transformation has Jacobian equal to $\Delta^{(k-m)rm-m+1}$ and it transforms $\mathbb{D}_r(\mathbb{K})$ into

$$\mathbb{D}_r'(\mathbb{K}): \max_{1 \leq \mu \leq m} |y_{\mu}| + |\Delta|^r ||[\mathbf{0}, y_{m+1}, \ldots, y_k] - \sum_{\mu=1}^m \mathbf{n}_{\mu}' y_{\mu} \Delta^{(k-m)r-1}||_{\mathbb{K}}^{(k-m)r} \leq 1,$$

where \mathbf{n}_{μ}' is the projection of \mathbf{n}_{μ} on \mathscr{L} . Clearly

$$\begin{aligned} \operatorname{vol} \mathbb{D}_{r}(\mathbb{K}) &= |\Delta|^{(k-m)rm-m+1} \operatorname{vol} \mathbb{D}'_{r}(\mathbb{K}) \\ &= |\Delta|^{(k-m)rm-m+1} \operatorname{vol} \mathbb{K} \int_{\max_{1 \leq \mu \leq m} |y_{\mu}| \leq 1} dy_{1} dy_{2} \cdots dy_{m} \left(\frac{1 - \max |y_{\mu}|}{|\Delta|^{r}} \right)^{1/r} \\ &= 2^{m} |\Delta|^{((k-m)r-1)m} \operatorname{vol} \mathbb{K} \int_{0}^{1} mt^{m-1} (1-t)^{1/r} dt \,. \end{aligned}$$

Put $\int_0^1 mt^{m-1} (1-t)^{1/r} dt = I_{r,m}$.

Let $\lambda_i = \inf\{\lambda : \dim \lambda \mathbb{D}_r(\mathbb{K}) \cap \mathbb{Z}^k \geq i\}$ $(1 \leq i \leq k)$. By Minkowski's second theorem there exist linearly independent points $\mathbf{m}_1, \ldots, \mathbf{m}_k$ such that

(15)
$$\mathbf{m}_i \in \lambda_i \mathbb{D}_r(\mathbb{K}) \cap \mathbb{Z}^k$$

and

(16)
$$\prod_{i=1}^{k} \lambda_{i} \leq 2^{k} \operatorname{vol} \mathbb{D}_{r}(\mathbb{K})^{-1} = 2^{k-m} I_{r,m}^{-1} (\operatorname{vol} \mathbb{K})^{-1} |\Delta|^{(1-(k-m)r)m}.$$

We shall show that

(17)
$$\lambda_i = |\Delta|^{1 - (k - m)r} \qquad (1 \le i \le m)$$

and

(18)
$$\mathbf{m}_i \in \mathcal{N} \qquad (1 \le i \le m).$$

Indeed, for $i \le m$, $\mu \le m$ we have

$$\Delta_{\mu}(\mathbf{n}_i) = \Delta$$
 if $\mu = i$, 0 otherwise;
$$\Delta \mathbf{n}_i = \sum_{\mu=1}^m \mathbf{n}_{\mu} \Delta_{\mu}(\mathbf{n}_i)$$
,

and hence

(19)
$$\mathbf{n}_i \in |\Delta|^{1-(k-m)r} \mathbb{D}_r(\mathbb{K}) \qquad (1 \le i \le m).$$

On the other hand, if $\mathbf{x} \in \lambda \mathbb{D}_r(\mathbb{K}) \cap \mathbb{Z}^k$ and $\mathbf{x} \notin \mathcal{N}$ we have $\Delta \mathbf{x} \neq \sum_{\mu=1}^m \mathbf{n}_{\mu} \Delta_{\mu}(\mathbf{x})$, and thus by the assumption about \mathbb{K} , $\|\Delta \mathbf{x} - \sum_{\mu=1}^{n_{\mu}} \mathbf{n}_{\mu} \Delta_{\mu}(\mathbf{x})\|_{\mathbf{K}} \geq 1$ and by the definition of $\mathbb{D}_r(\mathbb{K})$,

(20)
$$\lambda^{(k-m)r} |\Delta|^{(k-m)r} \ge |\Delta|^r; \qquad \lambda \ge |\Delta|^{-1+\frac{1}{k-m}} > |\Delta|^{1-(k-m)r}.$$

If $\mathbf{x} \in \lambda \mathbb{D}_r(\mathbb{K}) \cap \mathbb{Z}^k$ and $\mathbf{x} \in \mathscr{N}$ we have $\Delta \mathbf{x} = \sum_{\mu=1}^m \mathbf{n}_\mu \Delta_\mu(\mathbf{x})$ and thus by the assumption that $D(\mathbf{n}_1, \ldots, \mathbf{n}_m) = 1$ we have $\Delta_\mu(\mathbf{x}) \equiv 0 \pmod{\Delta}$, and

hence either $\mathbf{x} = \mathbf{0}$ or $\max_{1 \le \mu \le m} |\Delta_{\mu}(\mathbf{x})| \ge |\Delta|$, which by the definition of $\mathbb{D}_r(\mathbb{K})$ implies

$$(21) \lambda \ge |\Delta|^{1-(k-m)r}.$$

The claims (17) and (18) follow from (19), (20) and (21).

From (16) and (17) we infer that

$$\prod_{i=m+1}^{k} \lambda_i \le 2^{k-m} (\operatorname{vol} \mathbb{K})^{-1} I_{r,m}^{-1}$$

and since by (15)

$$\left|\Delta\right|^{r}\left\|\Delta\mathbf{m}_{i}-\sum_{\mu=1}^{x}\mathbf{n}_{\mu}\Delta_{\mu}(\mathbf{m}_{i})\right\|_{\mathbf{K}}^{(k-m)r}\leq\left|\Delta\right|^{(k-m)r}\lambda_{i}^{(k-m)r}$$

we obtain

(22)
$$\prod_{i=m+1}^{k} \left\| \mathbf{m}_{i} - \Delta^{-1} \sum_{\mu=1}^{m} \mathbf{n}_{\mu} \Delta_{\mu}(\mathbf{m}_{i}) \right\|_{\mathbf{F}} \leq 2^{k-m} (\operatorname{vol} \mathbb{K})^{-1} |\Delta|^{-1} I_{r,m}^{-1}.$$

Moreover, by (18), $\mathbf{n}_1,\ldots,\mathbf{n}_m,\mathbf{m}_{m+1},\ldots,\mathbf{m}_k$ are linearly independent. For every r>1 there corresponds a certain choice of vectors $\mathbf{m}_i\in\mathbb{Z}^k$, however the set of values which we can obtain on the left-hand side of (22) is discrete. Therefore there exist vectors \mathbf{n}_i $(m< i\leq k)$ such that \mathbf{n}_i $(1\leq i\leq k)$ are linearly independent and

$$\prod_{i=m+1}^{k} \left\| \mathbf{n}_{i} - \Delta^{-1} \sum_{\mu=1}^{m} \mathbf{n}_{\mu} \Delta_{\mu}(\mathbf{n}_{i}) \right\|_{\mathbf{r}} \leq 2^{k-m} (\operatorname{vol} \mathbb{K})^{-1} |\Delta|^{-1} \lim_{r \to \infty} I_{r,m}^{-1}.$$

However

$$\left\{\mathbf{n}_i - \boldsymbol{\Delta}^{-1} \sum_{\mu=1}^m \mathbf{n}_{\mu} \boldsymbol{\Delta}_{\mu}(\mathbf{n}_i) \right\} = (\mathbf{n}_i + \mathcal{N}) \cap \mathcal{L}$$

and

$$\lim_{r \to \infty} I_{r,m} = \int_0^1 m t^{m-1} dt = 1,$$

which proves the lemma.

LEMMA 5. If m < k, $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$, $D(\mathbf{n}_1, \mathbf{n}_2, \ldots, \mathbf{n}_m) = 1$ there exist vectors $\mathbf{n}_{m+1}, \ldots, \mathbf{n}_k \in \mathbb{Z}^k$ such that $\mathbf{n}_1, \ldots, \mathbf{n}_k$ are linearly independent and for each $l \in [m, k]$ the domain $\mathbb{D} \subset \mathbb{R}^l : h(\sum_{i=1}^l x_i \mathbf{n}_i) \leq 1$ satisfies

(23)
$$\operatorname{vol} \mathbb{D} \ge \frac{2^{l} m!}{g_0(m) l!} H(\mathbf{n}_1, \dots, \mathbf{n}_m)^{-(k-l)/(k-m)}$$

and

$$(24) \quad \operatorname{vol} \mathscr{E}(\mathbb{D}) \ge \max \left\{ \frac{\kappa_{l}}{g_{1}(m)(l-m+1)^{l/2}}, \frac{\kappa_{l}}{g_{1}(l)} \binom{l}{m}^{-1/2} l^{(m-l)/2} \right\} \times H(\mathbf{n}_{1}, \dots, \mathbf{n}_{m})^{(k-l)/(k-m)}.$$

PROOF. Without loss of generality we may assume that $H(\mathbf{n}_1, \mathbf{n}_2, \dots, \mathbf{n}_m) = |\Delta|$, where $\Delta = \det(n_{ij})_{i,j \leq m}$. By Lemma 4 applied with $\mathbb{K} = \{\mathbf{x} \in \mathcal{L} : h(\mathbf{x}) \leq 1\}$ there exists vectors $\mathbf{n}_{m+1}, \dots, \mathbf{n}_k \in \mathbb{Z}^k$ such that $\mathbf{n}_1, \dots, \mathbf{n}_l$ are linearly independent and

(25)
$$\prod_{i=m+1}^{k} h(\mathbf{n}_{i}') \leq |\Delta|^{-1}, \quad \text{where } \{\mathbf{n}_{i}'\} = (\mathbf{n}_{i} + \mathcal{N}) \cap \mathcal{L} \quad (m < i \leq k).$$

Permuting the vectors \mathbf{n}_i if necessary we may assume that the sequence $h(\mathbf{n}_i')$ is nondecreasing. Then (25) implies

(26)
$$\prod_{i=m+1}^{l} h(\mathbf{n}'_i) \le H(\mathbf{n}_1, \dots, \mathbf{n}_m)^{-(l-m)/(k-m)}.$$

In order to prove (23) let us write explicitly

$$\mathbf{n}'_i = \mathbf{n}_i - \sum_{\mu=1}^m a_{i\mu} \mathbf{n}_{\mu} \qquad (m < i \le l).$$

Then

$$\sum_{i=1}^{l} x_i \mathbf{n}_i = \sum_{\mu=1}^{m} \mathbf{n}_{\mu} \left(x_{\mu} + \sum_{i=m+1}^{l} a_{i\mu} x_i \right) + \sum_{i=m+1}^{l} x_i \mathbf{n}_i'$$

and

$$h\left(\sum_{i=1}^{l} x_{i} \mathbf{n}_{i}\right) \leq h\left(\sum_{\mu=1}^{m} \mathbf{n}_{\mu} \left(x_{\mu} + \sum_{i=m+1}^{l} a_{i\mu} x_{i}\right)\right) + \sum_{i=m+1}^{l} |x_{i}| h(\mathbf{n}_{i}').$$

It follows by a change of variables that

$$\operatorname{vol} \mathbb{D} \ge \int_{\mathbb{D}_0} dx_{m+1} \cdots dx_l \operatorname{vol} \left\{ \mathbf{x} \in \mathbb{R}^m : h\left(\sum_{\mu=1}^m x_{\mu} \mathbf{n}_{\mu}\right) \right. \\ \\ \le 1 - \sum_{i=m+1}^l |x_i| h(\mathbf{n}_i') \right\},$$

where \mathbb{D}_0 is the domain $\sum_{i=m+1}^{l} |x_i| h(\mathbf{n}_i') \le 1$. However by Lemma 2,

$$\operatorname{vol}\left\{\mathbf{x}\in\mathbb{R}^m: h\left(\sum_{\mu=1}^m x_{\mu}\mathbf{n}_{\mu}\right) \leq c\right\} \geq \frac{2^m c^m}{g_0(m)H(\mathbf{n}_1,\ldots,\mathbf{n}_m)},$$

and hence

$$\operatorname{vol} \mathbb{D} = \frac{2^m}{g_0(m)H(\mathbf{n}_1, \dots, \mathbf{n}_m)} \int_{\mathbb{D}_0} \left(1 - \sum_{i=m+1}^l |x_i| h(\mathbf{n}_i') \right)^m dx_{m+1} \cdots dx_l$$
$$= \frac{2^l m!}{g_0(m)l! H(\mathbf{n}_1, \dots, \mathbf{n}_m)} \prod_{i=m+1}^l h(\mathbf{n}_i')^{-1}$$

and (23) follows from (26).

In order to prove the part of (24) corresponding to the first term of the maximum on the right-hand side, let \mathbb{D}_1 be the domain $h(\sum_{i=1}^m x_i \mathbf{n}_i) \leq 1$. The ellipsoid $\mathscr{E}(\mathbb{D}_1)$ is given by the inequality $F_1(x_1,\ldots,x_m) \leq 1$, where F_1 is a positive definite quadratic form.

Since $\mathscr{E}(\mathbb{D}_1) \subset \mathbb{D}_1$ we have for all $\mathbf{x} \in \mathbb{R}^m$,

(28)
$$\sqrt{F_1(x_1, \dots, x_m)} = \|\mathbf{x}\|_{\mathscr{E}(\mathbf{D}_1)} \ge \|\mathbf{x}\|_{\mathbf{D}_1} = h\left(\sum_{i=1}^m x_i \mathbf{n}_i\right).$$

By virtue of Lemma 2, we have

$$\operatorname{vol} \mathscr{E}(\mathbb{D}_1) \ge \kappa_m g_1(m)^{-1} H(\mathbf{n}_1, \ldots, \mathbf{n}_m)^{-1}.$$

However

$$\operatorname{vol} \mathscr{E}(\mathbb{D}_1) = \frac{\kappa_m}{\sqrt{d(F_1)}},$$

and thus

(29)
$$\sqrt{d(F_1)} \leq g_1(m)H(\mathbf{n}_1,\ldots,\mathbf{n}_m).$$

Consider now the quadratic form

$$F(x_1, ..., x_l) = (l - m + 1)F_1\left(..., x_{\mu} + \sum_{i=m+1}^{l} a_{i\mu}x_i, ...\right) + (l - m + 1)\sum_{i=m+1}^{l} x_i^2 h^2(\mathbf{n}_i').$$

For all $x \in \mathbb{R}^l$ we have by the Cauchy inequality, by (28) and (27), that

$$\begin{split} \sqrt{F(x_1, \dots, x_l)} &\geq \sqrt{F_1\left(\dots, x_{\mu} + \sum_{i=m+1}^{l} a_{i\mu}x_i, \dots\right)} \\ &+ \sum_{i=m+1}^{l} |x_i| h(\mathbf{n}_i') \geq h\left(\sum_{\mu=1}^{m} \mathbf{n}_{\mu} \left(x_{\mu} + \sum_{i=m+1}^{l} a_{i\mu}x_i\right)\right) \\ &+ \sum_{i=m+1}^{l} |x_i| h(\mathbf{n}_i') \geq h\left(\sum_{i=1}^{l} x_i \mathbf{n}_i\right), \end{split}$$

and thus the ellipsoid

$$E: F(x_1, \ldots, x_l) \leq 1$$

is contained in $\mathbb D$ and by the definition of $\mathscr E(\mathbb D)$,

(30)
$$\operatorname{vol} \mathscr{E}(\mathbb{D}) \ge \operatorname{vol} \mathbb{E} = \frac{\kappa_l}{\sqrt{d(F)}}.$$

Since F is obtained from the quadratic form

$$(l-m+1)\left(F_1 + \sum_{i=m+1}^{l} x_i^2 h^2(\mathbf{n}_i')\right)$$

by a unimodular substitution, we have

$$\sqrt{d(F)} = (l - m + 1)^{l/2} \sqrt{d(F_1)} \prod_{i=m+1}^{l} h(\mathbf{n}'_i)$$

and by (26), (29) and (30),

$$\operatorname{vol}\mathscr{E}(\mathbb{D}) \geq \kappa_l(l-m+1)^{-l/2} H(\mathbf{n}_1, \ldots, \mathbf{n}_m)^{-(k-l)/(k-m)}.$$

In order to prove the remaining part of (24) note that

$$H(\mathbf{n}_1, \ldots, \mathbf{n}_l) = H(\mathbf{n}_1, \ldots, \mathbf{n}_m, \mathbf{n}'_{m+1}, \ldots, \mathbf{n}'_l).$$

Let M be a minor of order of l of the matrix

$$\begin{pmatrix} \mathbf{n}_1 \\ \vdots \\ \mathbf{n}_m \\ \mathbf{n}'_{m+1} \\ \vdots \\ \mathbf{n}'_I \end{pmatrix}$$

and S the set of indices of the columns of M. Developing M according to the first m rows we obtain from the Laplace theorem

(31)
$$|M| \leq H(\mathbf{n}_1, \ldots, \mathbf{n}_m) \sum |M_{j_1, \ldots, j_{l-m}}|,$$

where $M_{j_1,\ldots,j_{l-m}}$ is the minor of

$$\begin{pmatrix} \mathbf{n}'_{m+1} \\ \vdots \\ \mathbf{n}'_{I} \end{pmatrix}$$

consisting of the columns j_1, \ldots, j_{l-m} , while $\{j_1, \ldots, j_{l-m}\}$ runs through all subsets of S of cardinality l-m.

By the generalized Hadamard inequality [1, formula (2.6)]

$$\sum M_{j_1,\ldots,j_{l-m}}^2 \leq \prod_{i=m+1}^l \sum_{i \in S} n_{ij}^{\prime 2} \leq l^{l-m} \prod_{i=m+1}^l h(\mathbf{n}_i^{\prime})^2,$$

and hence, by the Cauchy inequality,

(32)
$$\sum |M_{j_1,\ldots,j_{l-m}}| \le {l \choose m}^{1/2} l^{(l-m)/2} \prod_{i=m+1}^{l} h(\mathbf{n}'_i).$$

The inequalities (26), (31) and (32) give

$$|M| \le {l \choose m}^{1/2} l^{(l-m)/2} H(\mathbf{n}_1, \ldots, \mathbf{n}_m)^{(k-l)/(k-m)},$$

and hence by the arbitrary choice of M

$$H(\mathbf{n}_1, \ldots, \mathbf{n}_l) \le {l \choose m}^{1/2} l^{(l-m)/2} H(\mathbf{n}_1, \ldots, \mathbf{n}_m)^{(k-l)/(k-m)}$$
.

Now Lemma 2 applied with $\mathbb{C} = \mathbb{D}$ implies

$$\operatorname{vol}\mathscr{E}(\mathbb{D}) \geq \frac{\kappa_l}{g_1(l)} \binom{l}{m}^{-1/2} l^{(m-l)/2} H(\mathbf{n}_1, \dots, \mathbf{n}_m)^{-(k-l)/(k-m)}.$$

PROOF OF THEOREM 1. Let $\mathbf{n}_1, \ldots, \mathbf{n}_m \in \mathbb{Z}^k$ be linearly independent and $D(\mathbf{n}_1, \ldots, \mathbf{n}_m) = 1$. Let $\mathbf{n}_{m+1}, \ldots, \mathbf{n}_l$ be vectors the existence of which is asserted in Lemma 5 and consider the domain $\mathbb{D}: h(\sum_{j=1}^l x_j \mathbf{n}_j) \leq 1$. Let

$$\mu_i = \min\{\mu : \dim \mu \mathbb{D} \cap \mathbb{Z}^l \ge i\} \qquad (1 \le i \le l).$$

By Minkowski's second theorem there exist linearly independent vectors $\mathbf{y}_i = [y_{i1}, \dots, y_{il}]$ $(1 \le i \le l)$ such that

$$\mathbf{y}_i \in \mu_i \mathbb{D} \cap \mathbb{Z}^l$$

and

(34)
$$\prod_{i=1}^{l} \mu_i \le 2^l (\operatorname{vol} \mathbb{D})^{-1}.$$

By another theorem of Minkowski (see [8, §51] or [6, §18, Theorem 3]),

(35)
$$\prod_{i=1}^{l} \mu_i \le \Delta(\mathscr{E}(\mathbb{D}))^{-1},$$

where $\Delta(\mathscr{E}(\mathbb{D}))$ is the critical determinant of $\mathscr{E}(\mathbb{D})$ and by the definition of the Hermite constant

(35)
$$\Delta(\mathscr{E}(\mathbb{D}))^{-1} = \gamma_l^{l/2} \frac{\kappa_l}{\operatorname{vol} \mathscr{E}(\mathbb{D})}$$

(see [6, formula (37.6)]). Let us put

(37)
$$\mathbf{p}_i = \sum_{i=1}^l y_{ij} \mathbf{n}_j \qquad (1 \le i \le l).$$

It follows from the definition of $\mathbb D$ and from (34)–(37) that $h(\mathbf p_i)=\mu_i$, hence by (34)–(37)

$$\prod_{i=1}^{l} h(\mathbf{p}_i) \leq \min\{2^{l} (\operatorname{vol} \mathbb{D})^{-1}, \, \gamma_l^{l/2} \kappa_l (\operatorname{vol} \mathscr{E}(\mathbb{D}))^{-1}\}$$

and by Lemma 5

$$\begin{split} \prod_{i=1}^{l} h(\mathbf{p}_{i}) &\leq \min \left\{ \frac{l!}{m!} g_{0}(m), (l-m+1)^{l/2} g_{1}(m) \gamma_{l}^{l/2}, \\ \left(\binom{l}{m} \right)^{1/2} l^{(l-m)/2} g_{1}(l) \gamma_{l}^{l/2} \right\} H(\mathbf{n}_{1}, \ldots, \mathbf{n}_{m})^{(k-l)/(k-m)}. \end{split}$$

Moreover since y_1, \ldots, y_l are linearly independent the system (37) can be solved with respect to n_1, \ldots, n_l and we obtain

$$\mathbf{n}_i = \sum_{j=1}^l u_{ij} \mathbf{p}_j, \qquad u_{ij} \in \mathbb{Q} \quad (1 \le i \le l).$$

Since \mathbf{n}_i $(1 \le i \le l)$ are linearly independent so are \mathbf{p}_j $(1 \le j \le l)$ and we obtain from (37) and Lemma 3 that

(38)
$$c_0(k, l, m) \le \min \left\{ (l - m + 1)^{l/2} g_1(m) \gamma_l^{l/2}, \frac{l!}{m!} g_0(m), \binom{l}{m}^{1/2} l^{\frac{l-m}{2}} g_1(l) \gamma_l^{l/2} \right\},$$

which proves the first part of the theorem.

In order to prove the second part let us observe that if l=m=1 the right-hand side of (38) equals 1, while it immediately follows from the definition of $c_0(k, l, m)$ that $c_0(k, 1, 1) \ge 1$. If l=m=2 the right hand side of (38) equals $\frac{4}{3}$, since

$$g_1(2) = \sqrt{\frac{4}{3}}, \qquad \gamma_2 = \sqrt{\frac{4}{3}}, \qquad g_0(2) \ge \frac{4}{3}.$$

On the other hand, consider the following vectors in \mathbb{Z}^k $(k \ge 3)$

$$\mathbf{n}_1 = [2t, 4t+1, 2t, 0, \dots, 0], \quad \mathbf{n}_2 = [4t-1, 2t, -2t, 0, \dots, 0] \quad (t \in \mathbb{N}).$$

We have here

$$H(\mathbf{n}_1, \mathbf{n}_2) = 12t^2 + 2t, \qquad D(\mathbf{n}_1, \mathbf{n}_2) = 1.$$

Hence, if

$$\mathbf{n}_i = \sum_{j=1}^2 u_{ij} \mathbf{p}_j, \quad u_{ij} \in \mathbb{Q}, \, \mathbf{p}_j \in \mathbb{Z}^k \quad (1 \le i, j \le 2)$$

we have

$$\mathbf{p}_{j} = \mathbf{n}_{1} x_{j} + \mathbf{n}_{2} y_{j}, \qquad [x_{j}, y_{j}] \in \mathbb{Z}^{2} \setminus \{\mathbf{0}\} \quad (1 \le j \le 2).$$

If $x_j = y_j$ we have $|p_{j2}| > 6t$, otherwise $|p_{j3}| \ge 2t$, and thus $h(\mathbf{p}_j) \ge 2t$ $(1 \le j \le 2)$. If for an $\varepsilon > 0$ we have

$$h(\mathbf{p}_1)h(\mathbf{p}_2) \le (\frac{4}{3} - \varepsilon)H(\mathbf{n}_1, \mathbf{n}_2) = (\frac{4}{3} - \varepsilon)(12t^2 + 2t)$$

then for $t > t_0(\varepsilon)$

$$h(\mathbf{p}_1)h(\mathbf{p}_2) < (16 - 10\varepsilon)t^2$$

and since $h(\mathbf{p}_j) \ge 2t$ we obtain $h(\mathbf{p}_j) < (8 - 5\varepsilon)t^2$ $(1 \le j \le 2)$. Hence for $t > t_1(\varepsilon)$, by consideration of the first three coordinates of \mathbf{p}_j

$$|2x_i + 4y_i| \le 7$$
, $|4x_i + 2y_i| \le 7$, $|2x_i - 2y_i| \le 7$;

 $|x_j| \le 1$, $|y_j| \le 1$ and since $[x_j, y_j] \ne [0, 0]$, $h(\mathbf{p}_j) \ge 4t - 1$ $(1 \le j \le 2)$. It follows that

$$h(\mathbf{p}_1)h(\mathbf{p}_2) \ge 16t^2 - 8t + 1$$
,

which for $t > \max\{t_0(\varepsilon), t_1(\varepsilon), \varepsilon^{-1}\}$ contradicts (39). This shows that $c_0(k, 2, 2) = \frac{4}{3}$ and completes the proof of the theorem.

PROOF OF THEOREM 2. The proof does not differ essentially from the proof of [10, Theorem 2]. In formula (14) and in the fourth displayed formula on page 701 there, one has to replace $c_0(k, l)$ by $c_0(k, l, m)$ and $h(\mathbf{n})^{(k-l)/(k-m)}$ by $(\frac{H(\mathbf{n}_1, \dots, \mathbf{n}_m)}{D(\mathbf{n}_1, \dots, \mathbf{n}_m)})^{(k-l)/(k-m)}$.

Note added in proof

Yu. Teterin has remarked that Lemma 4 holds under a weaker assumption, namely that vol $\mathbb{K} < \infty$. To see this, it suffices to apply the original formulation to the body of $\lambda \mathbb{K}$ for suitable λ .

References

- [1] E. Bombieri and J. D. Vaaler, 'On Siegel's lemma', Invent Math. 73 (1983), 11-32.
- [2] S. Chaladus and Yu. Teterin, 'Note on a decomposition of integer vectors, II', *Acta Arith.*, to appear.
- [3] A. Châtelet, Leçons sur la théorie des nombres, Paris, 1913.
- [4] A. Dvoretzky and C. A. Rogers, 'Absolute and unconditional convergence in normed linear spaces', *Proc. Nat. Acad. Sci. U.S.A.* 36 (1950), 192-197.
- [5] J. Farkas, 'Über die Theorie der einfachen Ungleichungen', J. Reine Angew. Math. 124 (1902), 1-27.
- [6] P. M. Gruber and C. G. Lekkerkerker, Geometry of numbers, Amsterdam, 1987.
- [7] F. John, 'Extremum problems with inequalities as subsidiary conditions', Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 187-204, New York, 1948.
- [8] H. Minkowski, Geometrie der Zahlen, Leipzig 1896, reprint New York, 1953.
- [9] A. Pelczyński and S. J. Szarek, 'On parallelopipeds of minimal volume containing a convex symmetric body in \mathbb{R}^n ', Math. Proc. Cambridge Philos. Soc., to appear.
- [10] A. Schinzel, 'A decomposition of integer vectors III', Bull. Polish Acad. Sci. Math. 35 (1987), 693-703.

Instytut Matematyczny Polskiej Akademii Nauk ul. Sniadeckich 8 Skrytka pocztowa Nr 137 00-950 Warszawa Poland