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PERIODIC SOLUTIONS OF A SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATION

BAHMAN MEHRI

We consider the following non-linear nonautonomous second order differential equation

x"(K + h(x))xl+f(t,x) = p{t)

where h(x) is continuous, /, p are continuous and periodic with respect to t of period
w. Using the Leray-Schauder fixed point technique we prove that the above equation
possesses at least one non-trivial periodic solution of period w.

It is obvious that the linear differential equation

fw

(1) x"kx' = p(t), p{t + w)=p{t), / p(t)dt = O
Jo

possesses a w-periodic solution. It is interesting to note that the following non-linear
differential equation

(2) x" + (K + h(x))x' + f(t,x) = p{t)

where h is a continuous function, / , p are continuous and periodic with respect to t
of period w, also possesses a iv-periodic solution. The existence of periodic solutions
is proved on the basis of the Leray-Schauder fixed point technique. The conditions
imposed upon the non-linear terms are not very restrictive. Therefore equation (2)
with those conditions has many applications.

THEOREM 1. Differential equation (2) admits at least one w-periodic solution if

(i) JJ" p{t)dt = 0 [that is, P{t) = /„' p(a)ds is w-periodic],
(ii) \H(y)\ < M [H(y) = ft h(s)ds],
(iii) (|/(f,x)|)/(|a;|) —» 0 as |x| —• oo, uniformly in t,
(iv) f{t,x)sSnx>0 (\x\>b).
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PROOF: The proof by means of the Leray-Schauder method is simple. We consider
a differential equation containing the parameter fj., 0 ^ fi ^ 1,

(3) x" + kx' + Cx= p{p(t) - f(t, x) + Cx- x'h(x)}

where C is an arbitrary positive constant. For fi = 0 we obtain a homogeneous linear
equation the only to-periodic solution of which is the trivial one; for fi = 1 equation
(2) is identical with the original one (1). It is a well-known fact (see [1, 2, 3]) that
equation (3) adimits at least one periodic solution for each parameter value fi £ [0,1],
if for 0 < fi < 1 all periodic solutions as well as their first derivatives are uniformly
bounded. Consequently the stated theorem can be proved with the aid of an a priori
estimate.

Let x(t) — x(t + w) be a solution of equation (3) and let 0 < /* < 1. We write

R= max \x(t)\, F = F(R) = max \f(t,x)\.

The derivative y = x' satisfies the equation

y' + ky = M{e(<) - /(«,*(<)) - h{x(t))x'(t)} - (1 - ?)Cx{t).

Introducing the Green's function

[G{t + 0,<) - G{t - 0,t) = 1] of the boundary value problem

y' + ky = q(t)

y(0) = y(w)

where

q(t) = /i{e(0 - / ( i , *(«)) - M*(0) • *'(0> - (1 - /i) • e • «(<)

is periodic and g(< + w;) = q(t), we obtain the following representation of the solution

of y(t)

(4) 3/(<)= [ G(t;s)q(s)ds.
Jo
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Replacing q(t) by the term h(x(t)) • x'{t) which occurs in the expression for q(t) we

obtain

y(t)= I™ G{t;s)h(x(s))-x'(a)dS
Jo

= H(x(t))G{t;s) ]J-° + H(x(t))G(t;s) ]»+0 - / " Gt(t,s)H(x(S))ds
Jo

= H(x(t))- I™ Gt(t;s)H(x(s))ds.
Jo

Inserting the explicit expression for q(t) in equation (4) we derive estimates of the type

p{m + F{R) + 2M + CR)

where p = max{l , l / fc}, m = max |p(<)|-

Now a term by term integration of differential equation (2) (for the periodic solu-
tion) yields

fw

[x'(t) + Kx(t) + nH(x(t)) - P{t))l" + {(1 - n)Cx(t) = nf(t,x(t))}dt = 0,

./o

or

Jo

Since 1 — /J, > 0 and we have

{(1 - n) • c • x{t)+iJif{t,x{t))}Ssnx = (1 - p)C\x\ + nf{t,x)s%nx > 0

for |a;| > 6, t € [0,w], it follows that \x{t)\ ^ b for 0 < t ^ to is excluded. Therefore
there exists T , 0 < T < w, such that | S ( T ) | < b. Applying the mean-value thorem to
an arbitrary interval [r, t] C [r, r + w], we have

\x(t)-x(T)\ = \t-r\\y(r + 0(t-r))\

< w • P • (m + F{R) + 2M + CR),

or

|a;(<)| <b + wp-(m+ F{R) + 2M + CR).

Hence

max \x(t) = R<b+wp(m + F(R) + 2M + CR).
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Choosing 0 < C < l / ( w • p), we obtain

b + w-p-(m + m)l wp F(R)
{ ) 1-w-p-C R 1-wp-C R '

An immediate consequence of assumption (iii) is

M -> 0 as R -> co.
R

Therefore we conclude from (5)

R = max |x(<)| ^ RQ (independently of /z),

F{R) = i% max |/(<,x) < Fo = , ^ m a x ^ |/(<,u;)|.

The resulting a priori estimates

\x{t)\ ^ R o , \x'(t)\ ^p.(m + F<) + 2M + CR0)

ensure the existence of a periodic solution of equation (2) as we stated in our theorem, u

Remark. In the case

(iv1) f(t,x)Sgnx<0, (\x\>b)

we introduce a new independent variable

T = - t

and obtain a differential equation of the previous type. Thus Theorem 1 remains valid
if assumption (1) is replaced by (iv)'.

As an application of our theorem consider the following differential equation

x" + (1 +sina:)a:' + x1/3 sin2 t = sin*

which occurs in electric circuit theory. Obviously

p(t) = sin t, I sintdt = 0, h(x) = sinx, H(x) = — cosx + 1
Jo

\H{x)\^2, f(t,x) = x1'3sm2t, xf(t,x)>0 (6 = 0),

and

that is, all assumptions of our theorem are satisfied. Hence there exists at least one
27r-periodic solution of equation (6).
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