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REGULAR BISIMPLE RINGS

by JOHN HANNAH
(Received 15th March 1989)

We characterize regular bisimple rings in terms of some perspectivity conditions on their lattices of principal
right ideals. We also show that, if S is the multiplicative subsemigroup generated by all the idempotents of a
regular bisimple ring R, then

(i) if R does not have an identity, then S=R and has depth 2;

(i) if R does have an identity but is not a division ring, then S={acR:a is neither left nor right
invertible} U {1} and has depth 3.

1980 Mathematics subject classification (1985 Revision): 16A30, 20M17.

Introduction

A ring R is said to be bisimple if it has more than one element, and satisfies the
following conditions:

(B1) for any ae R we have aeaR n Ra, and
(B2) for any nonzero a,be R there is some ce R such that aR=cR and Rc=Rb.

These rings were introduced by Munn [9] in 1981, and are precisely those rings whose
multiplicative semigroups are O-bisimple [9, Appendix]. Bisimple rings are always
simple and are (von Neumann) regular as long as they contain a nonzero idempotent
[9, Lemmas 1.2 and 1.3].

Let R be a regular ring and L(R) its lattice of principal right ideals. Thus L(R) is a
relatively complemented modular lattice. Munn showed that if R is bisimple, then any
two intervals in L(R) are lattice-isomorphic [9, Theorem 2.1], and he went on to ask
whether every relatively complemented, modular lattice L with this property can be
viewed as L(R) for some regular bisimple ring R. In Section 1 of this paper we give an
example (Example 1.1) of such a lattice L which is not isomorphic to L(R) for any
regular bisimple ring R, thus answering Munn’s question in the negative. We then find
two lattice-theoretic characterizations of regular bisimple rings (Theorem 1.3), and use
these to identify the complemented modular lattices which can arise as L(R) for some
regular bisimple ring R with identity (Corollary 1.6).

Munn’s paper essentially discusses the ring-theoretic consequences of imposing the
semigroup condition, O-bisimplicity, on the multiplicative semigroup of a ring. In
Section 2 we take another point of view and consider some semigroup-theoretic
consequences. Specifically, we study the multiplicative subsemigroup S generated by all
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the idempotents of a regular bisimple ring R. We show, in Proposition 2.2, that if R
does not have an identity element, then every element of R is a product of two
idempotents (so that S=R and has depth 2). On the other hand, if R does have an
identity but is not a division ring, then (Proposition 2.3) every element of R which is
neither left nor right invertible is a product of three idempotents (so that S has depth
exactly 3). These results may be compared with the situation where R is an arbitrary
regular 0-bisimple semigroup: in that setting it is possible for S to have arbitrarily large
depth.

Preliminaries

All rings in this paper are associative, but they need not have an identity element. If a
is an element of a ring R, then we write r(a) for its right annihilator {se R:as=0}.
Similarly I(a) denotes the left annihilator of a in R.

A ring R is (von Neumann) regular if for any ae R there is some xe R with a=axa.
Notice that if a=axa in a ring R then e=ax and f=xa are idempotents such that
aR=eR and Ra=Rf. Furthermore, l{(a)=R(1 —e) and r(a)=(1 — f)R, (if R does not have
an identity, we interpret R(1 —e) as {s—se:se R}, and similarly for (1— f)R). Thus if a,b
are elements of a regular ring R, we have Ra=Rb if and only if H{a@)=r(b). In particular,
if R is a regular ring with an identity element and ae R, then a is left invertible if and
only if (@) =0. Similarly, a is right invertible if and only if /(a) =0.

A regular ring R is abelian if all its idempotents are central in R. For basic results
about regular rings and for any unexplained notation we refer the reader to Goodearl’s
book [1].

We say that a modular lattice L is relatively complemented if, for any A,Be L with
A £ B, there is some Ce L with A+ C=B and A n C=0 (that is, C is a complement of 4
in B). If L has a greatest element, then L is relatively complemented if and only if it is
complemented. If L is a relatively complemented modular lattice, we say that A,BeL
are perspective in L if A and B have a common complement in A+ B; that is, if there is
some C € L such that

A+C=B+C=A+B
and
AnC=0=BnC.

If L has a greatest element (and so is complemented), this definition agrees with that in
[11] because of [11, Theorem 3.1, p. 17]. If L is in fact the lattice L(R) of principal right
ideals of a regular ring R, then any pair of perspective elements A,B in L(R) are
isomorphic as right R-modules, since if C is as above, then

A+C_B+C

B.
C C

A

I
R
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For other basic facts about lattices we refer the reader to [11]. Notice however that,
because we shall always have in mind the lattices L(R), we shall use + and n to
indicate the lattice operations. Furthermore, if 4 and B are independent elements of a
lattice (that is, if 4 n B=0), we shall write their supremum in the lattice as 4 @ B rather
than simply A + B, (this agrees with the usage for L(R) in [1]).

Finally for any unexplained terminology or basic results about semigroups, see
Howie’s book [5].

1. Lattice characterizations of regular bisimple rings

We begin this section with the example mentioned in the introduction.

Example 1.1. There is a complemented modular lattice L in which any two intervals
are lattice-isomorphic, but for which there is no regular bisimple ring R such that
L=~ L(R).

Proof. We construct L as the lattice of principal right ideals of a suitable regular
ring T. Choose any field F, and for each positive integer n, set F,=F. Consider the
direct product S=][],F,. The direct sum I=@,F, is an ideal of the ring S, and so the
ring T=3S§/I is a commutative regular ring with an identity element. Let L be the lattice
L{T) so that L is complemented and modular.

To see that any two intervals in L are lattice-isomorphic, it is enough (as in [9,
Theorem 2.1]) to show that all intervals of the form [0, 4] are isomorphic, where
0#AeL. So let A be a nonzero principal ideal of T. Then A is of the form (§'+1)/I,
where §'=[][, F, and J is an infinite subset of N. Thus A=~5"/(S'nI) and so A and T
are isomorphic as rings. Since A is a ring-direct-summand of 7, it follows that the
intervals [0, A] and [0, T] in L are lattice-isomorphic. Hence any two intervals in L are
lattice-isomorphic.

Now suppose that R is a regular bisimple ring such that L(R)=L. Since T is a
commutative (and so abelian) regular ring, [1, Theorem 3.4] shows that L=L(T) is a
distributive lattice. Conversely, since L(R)~L is distributive, [1, Theorem 3.4] shows
that the ring R is abelian. Inasmuch as R is also a simple ring (by [9, Lemma 1.2]), we
see that R must be a division ring (by [1, Theorem 3.2]). But then L(R)={0, R} which is
a contradiction, since L(R)~L and |L|>2. O

The construction of the above example shows that regular bisimple rings R are not
characterized by the property that any two intervals in L(R) are lattice-isomorphic. The
following lemma pinpoints the property of regular bisimple rings which was missing in
the ring T in the example.

Lemma 1.2. Let R be a regular ring. Then R is bisimple if and only if any two
nonzero principal right ideals of R are isomorphic as right R-modules.

Proof. Munn showed that bisimple rings have this property in [9, Lemma 1.2]. For
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the converse, suppose that any two nonzero principal right ideals of R are isomorphic.
Let a,b be nonzero elements of R. By hypothesis, there is an isomorphism 6:bR—aR.
Then ¢=0(b) satisfies aR =cR and r{c)=r(b). Since R is regular, it follows that Rc=Rb,
and so R is bisimple. O

This characterization shows that regular bisimple rings are closely related to the
strongly prime rings used by Goodearl and Handelman in [2]. A ring R with identity is
said to be (right) strongly prime with bound 1 (or SP(1) for short) if for each nonzero
acR there is some xe R with r(ax)=0. Goodear] and Handelman show that R is an
SP(1) ring if and only if Rz<aR for each nonzero ae R. Thus by Lemma 1.2, a regular
bisimple ring is always an SP(1) ring. It is not known whether a regular SP(1) ring R
need be bisimple (see [1, Open Problem 51]), but [2, Theorem 2.1] shows that R is
bisimple in the special case where R is also right self-injective.

Viewed in terms of Lemma 1.2, Example 1.1 shows that a lattice isomorphism
between the intervals [0,4] and [0,B] (in L(R)) need not force an R-module
isomorphism between the principal right ideals A and B. This problem can be overcome
if, instead, we insist that A and B be perspective in L(R). However, we cannot expect all
nonzero pairs in L{R) to be perspective since, if 4 < B, then clearly 4 and B cannot have
a common complement. Condition (b) in the following theorem shows that, if we just
insist that all independent nonzero pairs 4 and B be perspective, then we capture all

- regular bisimple rings, but that rings of 2 x 2 matrices over division rings also get caught
in the net. On the other hand, condition (c) gives a perspectivity condition that can be
imposed on all nonzero pairs in L(R), and no extra rings are caught this time.

Theorem 1.3. Let R be a regular ring and L(R) its lattice of principal right ideals. The
Jfollowing conditions are equivalent:

(a) R is bisimple;

(b) (i) if L(R) has a largest element, then this element is not of the form A, ® A,
where A,, A, are distinct atoms in L(R), and

(ii) any two nonzero independent elements of L(R) are perspective in L(R),

(c) for any nonzero A,BeL(R) there are decompositions A=A, ® A, and B=
B, ® B, such that, for i=1,2, the elements A; and B, are perspective in L(R).

Proof. (a)=(b). Assume that R is bisimple. Suppose first that L(R) has a largest
element which has the form A, @ A, where A,, A, are distinct atoms in L(R). Then
R=A,® A, and so R is Artinian. Since R is bisimple, it follows from [9, Theorem 1.4]
that R must be a division ring. Thus R is itself an atom in L(R). This contradiction
shows that (b)(i) holds.

Now let 4, B be nonzero principal right ideals of R such that A » B=0. Since R is
bisimple, there are elements a,be R such that A=aR and B=bR while Ra=Rb. We
shall show that C=(a+b)R is a common complement for 4 and B in A+ B. Clearly
A+C=B+C=A+B. To see that A C=0 suppose x,yeR with ax=(a+b)y. Then
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a(x—y)=bye An B=0 and so by=0. As Ra=Rb, we get ay=0 too. Hence AnC=0.
Similarly B~ C=0, and so A and B are perspective in L(R).

(b)=(c). Assume that (b) holds. Let A, B be nonzero principal right ideals of R, and
consider first the case where A< B.

We begin by showing that A cannot be an atom in L(R). Suppose, on the contrary,
that A is an atom and let C be its complement in B. By hypothesis, A and C are
perspective (since 4 n C=0), and so C is also an atom. Thus B is the join of two
distinct atoms, and so cannot be the largest element of L(R). Since L(R) is relatively
complemented and modular, it follows that there is some nonzero DeL(R) with
Bn D=0. But now D is perspective to both 4 and B. Since A is an atom and B is the
join of two distinct atoms, we have the desired contradiction.

Hence there is a decomposition A=A4; @ A, where A, and A4, are nonzero elements
of L(R). Let B, be a complement of A, in B and let B,=A, so that B=B, @ B,. Since
A;nB;=0 and 4,n B,=0, both pairs of elements A4, B; (i=1,2) are perspective in
L(R) as required.

A similar decomposition works if B< 4, so suppose finally that A¢B and B¢ A4.
Then there are decompositions

A=(AnB)® A,
B=(AnB)® B,

where A4,,B, are nonzero elements of L(R). Notice that AnBn(A4,+ B,)=0. Since
Ay n B, =0 our hypothesis implies that A, and B, are perspective in L{R). We claim
that A and B are also perspective in L(R). Indeed, let C be a common complement of
A, and B, in A, + B,. Then clearly A+ C=B+C=A+B. Also

ANnC=AnCn(A,;+B,)
=Cn[A,+(AnB)]n(A,+B,)
=Cn{4;+[(AnB)n(4,+B)]}
=CnA,

=0

and similarly BN C=0. Thus A and B are indeed perspective, and so in this case we
can use the decompositions 4=4A@0 and B=B® 0 to complete the proof that (c)
holds.

(c)=(a). This follows from Lemma 1.2 since perspective modules are isomorphic. [

Remark 1.4. We cannot omit condition (i) in (b) of the above theorem. Indeed if R is
the ring of 2 x 2 matrices over a division ring, then L(R) satisfies (b)(ii), but R is not a
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bisimple ring (because of Lemma 1.2). It is easy to see that this is the only extra class of
regular rings which satisfy (b)(ii). O

Remark 1.5. Let R be a regular bisimple ring. Then the proof of (b)==(c) in Theorem
1.3 shows that a sort of trichotomy law holds in L(R): for any A, Be L(R) we have either
Ac B or Bc A or A and B are perspective in L(R). O

Conditions (b) and (c) are essentially lattice-theoretic conditions on the lattice L(R),
and indeed the proof that (b)=>(c) would carry over for any relatively complemented
modular lattice L. Conversely, we could use [11, Theorem 3.6, p. 21] to show that
(c)=>(b) for such an L. If L has a greatest element, then the following result shows how
von Neumann’s co-ordinatization theorem can be used to find a regular bisimple ring R
such that L(R)=L. If you like, this gives a partial affirmative answer to the obvious
modification of Munn’s question [9, p. 185].

Corollary 1.6. Let L be a complemented modular lattice such that

(i) the largest element of L is not the join of two distinct atoms, and
(ii) any two nonzero independent elements of L are perspective in L.

Then there is a regular bisimple ring R (with identity) such that L(R)= L. Conversely, if R
is a regular bisimple ring with identity, then L(R) is a complemented modular lattice
satisfying (i) and (ii).

Proof. If L has just two elements 0,1 then any division ring R will give L(R)=~L. So
suppose L has more than two elements. To use von Neumann’s co-ordinatization
theorem [11, Theorem 14.1, p. 208] we need to show that L has order (at least) 4. That
is, we need to find 4 independent, pairwise perspective elements A, 4,,A;,A, in L such
that A, @ A, ® A; @ A,=1, the largest element of L.

Let AeL with A#0,1 and let A’ be a complement of 4. As in the proof of Theorem
1.3(b)=(c), we see that A1 implies that A is not an atom in L. Similarly A’ cannot be
an atom. Hence there are decompositions A=A4; @ A, and A'=A,® A, where all the
A; are nonzero. Since the A; are independent, condition (ii) ensures that L has order 4.
By the co-ordinatization theorem there is a (unique) regular ring R such that L(R)x~L.
By Theorem 1.3 this ring must be bisimple. The converse result is contained in Theorem
1.3. |

I do not know whether this result is also true for relatively complemented modular
lattices.

2. Products of idempotents

Let R be a regular bisimple ring. In this section we consider the multiplicative
subsemigroup S of R generated by all the idempotents of R. We obtain a simple
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characterization of the elements of S, and calculate the depth of S. This continues a
theme studied in [10], [3] and [4], where corresponding results were obtained in the
cases where R is a unit-regular ring, or where R is regular and right self-injective. For
regular bisimple rings R, we get an interesting dichotomy depending on whether or not
R has an identity element.

For the case where R does not have an identity element, we need the following well-
known lemma.

Lemma 2.1. Let R be a regular ring. For any aeR there is an idempotent ge R such
that aesgRg.

Proof. There is some x€ R such that a=axa. Then e=ax is idempotent and ea=a.
Again there is some ye R such that a—ae=(a—ae) y(a—ae), and f=(y—ey)(a—ae) is an
idempotent. As e and f are orthogonal, g=e+ f is idempotent and it is easy to see that
acgRg. O

Proposition 2.2. Let R be a regular bisimple ring which does not have an identity
element. Then every element of R is a product of two idempotents, and so R is a semiband
of depth 2.

Proof. Let aeR. By Lemma 2.1, there is an idempotent ge R such that aegRg.
Since g is not an identity element for R, there is a nonzero idempotent he R such that
gh=hg=0 (for example, if zeR with zs#gz then there is some xeR with
(z—gz)x(z—gz)=z—gz+#0 and so h=(z—gz)(x—xg) is such an idempotent). By Lemma
1.2 we have hR=gR and so (by [7, Proposition 4, p. 51]) there are elements u€ gRh and
ve hRg such that g=uv. Then

a=[g+ullg+v(a—g)]

is a product of two idempotents. (See [4, Example 2.15] for a matrix picture of this
factorization.)

If every element of R were idempotent, then R would be commutative and so, by [9,
Lemma 1.2(i)], would be a field. As this is impossible, R must have depth exactly 2. [

There is no direct parallel for this result in [10], [3] or [4] because the rings
considered there all have identity elements. Munn gives some examples of regular
bisimple rings without an identity in [9, 1.1].

On the other hand, if R is a regular bisimple ring with an identity element,
Proposition 2.3 below gives a cha:acterization and depth for the semigroup S which is
similar to those found in [3, Theorem 2.8] (or [10, Corollary 11]) and [4, Remark 1.7]
for the case where R is a regular right self-injective ring of type III. There is some
overlap in these results: a simple, right self-injective ring of type III is always bisimple
(this follows from Lemma 1.2 because of [2, Theorem 2.1] and [1, Corollary 10.17]).
But there are many regular bisimple rings with identity which are not right self-injective.
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For example, most of the countable bisimple rings constructed by Munn in [9, Theorem
3.4] are not right self-injective, since a countable right self-injective ring is Artinian [8],
and so a bisimple one must be a division ring by [9, Theorem 1.4].

Proposition 2.3. Let R be a regular bisimple ring with identity and suppose that R is
not a division ring. Let S be the subsemigroup of R generated by all the idempotents of R.
Then

S={aeR:a is neither left nor right invertible} u {1}
and S has depth 3.

Proof. Clearly a product of proper (#1) idempotents cannot be left or right
invertible. Suppose conversely that a is a nonzero element of R which is neither left nor
right invertible. As R is regular, we have l(a) 0 and r(a) #0. Also there are idempotents
e,feR such that aR=eR and Ra=Rf. Thus aeceRf while l(a)=R(1—e) and
rl@=(1—f)R. We shall use [3, Lemma 2.6] to show that a is a product of three
idempotents in R. Hence we just have to find some geR such that eRngR=0 and
JRNgR=0, yet fRSgR.

By Remark 1.5 we have either eRcfR, or fRceR, or else eR and fR are
perspective. Suppose firstly that eR< fR, and consider g=1— f. Since r(a) #0, Lemma
1.2 shows that fR>~gR. Also eRNngR< fRngR=0 and so we are finished in this case.
Similarly, if fRceR then g=1—e will do the trick. Finally suppose that eR and fR are
perspective, and let gR be their common complement in R. Then gR is nonzero and so
Lemma 2.1 again gives an isomorphism fR=gR. Thus in all three cases [3, Lemma 2.6]
shows that a is a product of three idempotents. Hence ae S and S has depth at most 3.

Now since R is not a division ring, there is a decomposition R=4, ® 4, with 4,,4,
both nonzero principal right ideals. By Lemma 2.1 we have A,~A4,~R, and so
R=R® R as right R-modules. Hence [3, Example 2.2] shows that R contains an
element which is a product of three idempotents but no fewer. Thus S has depth exactly
3 a

Remark 2.4. In terms of the depth of the semigroup generated by all the idempo-
tents of R, Propositions 2.2 and 2.3 both represent much “better” behaviour than is
observed in arbitrary regular O-bisimple semigroups. For example, let X be the finite set
{1,2,...,n} and consider the semigroup Z (X) of all transformations on X. Let

J={ae T (X): rank a<n—1}
and

I={aeJ (X): rank a<n—1}

which are both ideals of Z (X). Then the Rees quotient semigroup R=J/I is regular
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and O-bisimple. By Howie's results in [6] it follows that R is itself idempotent-generated
and has depth [3(n—1)].

REFERENCES

1. K. R. GoopearL, Von Neumann Regular Rings (Pitman, 1979).

2. K. R. GoopbearL and D. HanpeLMman, Simple self-injective rings, Comm. Algebra 3 (1975),
797-834.

3. J. Hannal and K. C. O’MEara, Products of idempotents in regular rings II, J. Algebra 123
(1989), 223-239.

4. J. Hannas and K. C. O’MEara, Depth of idempotent-generated subsemigroups of a regular
ring, Proc. London Math. Soc. 59 (1989), 464482,

5. J. M. Howig, An Introduction to Semigroup Theory (Academic Press, 1976).

6. J. M. Howig, Products of idempotents in finite full transformation semigroups, Proc. Roy.
Soc. Edinburgh Sect. A 86 (1980), 243-254.

7. N. Jacosson, Structure of Rings (American Mathematical Society, 1964).

8. J. LAwrENCE, A countable self-injective ring is quasi-Frobenius, Proc. Amer. Math. Soc. 65
(1977), 217-220.

9. W. D. Munn, Bisimple rings, Quart. J. Math. Oxford 32 (1981), 181-191.

10. K. C. O’MEara, Products of idempotents in regular rings, Glasgow Math. J. 28 (1986),
143-152.

11. J. voN NeumMann, Continuous Geometry (Princeton University Press, 1960).

MATHEMATICS DEPARTMENT
UNIVERSITY OF CANTERBURY
CHRISTCHURCH
New ZEALAND

E
https://doi.org/10.1017/50013091500005022 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005022

