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Abstract

This paper investigates complete space-like submanifold with parallel mean curvature vector in the de
Sitter space. Some pinching theorems on square of the norm of the second fundamental form are given.
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1. Introduction

A de Sitter space Sp+P(l) is an (n + p)-dimensional connected complete pseudo-
Riemannian manifold of index p with constant curvature 1. Goddard [3] conjectured
that complete space-like hypersurface in 5"+1(l) with constant mean curvature H
must be totally umbilical. In 1987, Akutagawa [1] and Ramanathan [6] proved
independently the conjecture is true if H2 < 1 when n = 2 and n2H2 < 4(« — 1)
when n > 3. This statement has been generalized by Cheng [2] to complete space-like
submanifolds in S"+P(l) with parallel mean curvature vector. In [5], we proved that
complete space-like hypersurface M in S"+' (1) with constant mean curvature is totally
umbilical if 5 < 2*Jn — 1, where S is the square of the second fundamental form.
Moreover, S = lyjn — 1 only if n = 2 and M is flat.

In the present paper we shall prove the following

THEOREM 1. Let M be a complete space-like n-dimensional submanifold in the de
Sitter space 5"+p(l) with parallel mean curvature vector r). Denote by S the square
of norm of second fundamental form.
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(i) IfS < ((2ny/n - \/{n+2*Jn - 1))(1 + |MI2), then M is totally umbilical and
lies in a totally geodesic submanifold 5"+1(l) of S"+P(l). Moreover, M is isometric
to a sphere S" (^/n/(n — 5)) of radius \/n/{n — 5) or a plane K2 in case S = n — 2.

(ii) IfS< ((2nVn~^l/(n - 2))(1 - |M|2) (n > 2), then M lies in a totally
geodesic submanifold 5f+1(l) ofSn

p
+p(l).

2. Preliminaries

Let M be an n-dimensional space-like submanifold of Sn+P (1). Locally we choose a
pseudo-Riemannian orthonormal frame {elt... , en+p] in S^+P(l) such that, restricted
to M, e\,... , en is tangent to M. Throughout this paper the following convention on
the ranges of indices is used unless otherwise stated

1 < A,B, C, D,... < n+p, 1 < i,j,k, I,... < n, n + 1 < a, fi,... < n +p.

Let [co\,... , con+p} be the dual coframe of [eA}. The pseudo-Riemannian metric
on5;+ p(l) is

(2.1) rfs2 = ]TeAa>2

where £[ = ••• = sn = 1, en +i = • • • = en+p = — 1. The structure equations are

(2.2) da)A = -^2(oAB AeoB, sA(oAB + sBa)BA =0,
B

(2.3) dct)AB = - y~] coAC A a)CB +eB ct)A AcoB.
c

Restricted to M we have

(2.4) ds2 =

(2.5) coai =
j

(2.6) R u u = SikSj, - SuSJk -

(2-7) RaHk =

where RiiU are the components of the curvature tensor of M, Ra^k the components of
the curvature tensor of the normal bundle TLM, and hfj the components of the second
fundamental form a = ~Y_a tj h^coi 0 a>j <8> ea. We define h"Jk by

>« - E h>*+E <•***•
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Then we have the Codazzi equation

(2.9) *;, = * v
The square S of the norm of a is

(2.10) S=| |<r | | 2

and the mean curvature vector r\ of M is given by

(2.11) r)=l-^o=l-
ct.i

We need the following lemmas.

LEMMA 1 ([7]). Let A, B be symmetric n x n matrices satisfying AB = BA and
\xA = t rS = 0. Then

LEMMA 2 ([4, 9]). Let M be a complete Riemannian manifold whose Ricci curva-
ture is bounded from below. If F is a C2-function bounded from above on M, then for
any s > 0, there is a point x e M such that

supF-e < F(x), ||VF||(JC) <£, AF(x) < e.

3. Proof of Theorem 1

Set ||?j|| = y/\(r), r))\. Since ||^||2 < S/n and the equality holds only on set of
umbilical points, the condition S < ((2«V« - l)/(« + 1-Jn - 1)) (1 +1|??||2) implies
that S < 2-Jn — 1 and the equality holds only on the set of umbilical points. Therefore
the theorem follows from [5] if p = 1 and [2] if r? = 0.

We now suppose that p > 2 and rj ^ 0. Thus we can choose the frame ex,... , en+p

as in Section 2 with en+i = 7?/||7?||. Then

(3.D n»?ji = -
n

Since r) is parallel in T-'-M, we know ||??|| is constant and coa n+i = 0. Consequently,
Ra »+i yt = 0. From (2.7) we have
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Denote by Ha the matrix (ftp for a = n + 1 , . . . ,n+ p. (3.2) means

(3.3) HaHn+i = Hn+\Ha.

We define hfjkl by

(3.4) J2 h"u»°» = d h h ~

[4]

E
i i

The Laplacian of h"j is defined by

(3-5) AA«

From (2.9), (3.1), and (3.4) we obtain

(3.6) AA" = E ^ « ^ *
k.l

Then by (2.6), (2.7), and (3.6) we have

~ E ̂ .̂ *-
p,k

^Aft; =ntr / / 2 -« |M| t r ( t f 2 / / n + 1 ) -

\ {a>n + \).

(3.8)

Setfi = //„+, - | |JJ||/. By means of (3.1) and (3.3) we get

(3.9) trfi = 0, MHa = 0, HaB = BHa, (a > n + 1).

By virtue of Lemma 1,

n-2
(3.10)

Since

(3.11) tr(#2B) = HH2
ttHn+x) - |M| MH2

a, (a > n + 1)

trfl2 = t r # 2
+ 1 - n | M | 2 ,

from (3.10) we get

(3.12) HH2
aHn+x) <

v«(« -
tr//a

2
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Taking A = B in Lemma 1 we obtain

(3.13) | t rB 3 |<

and therefore,

ln(n - 1

(3.14) tr / / 3
+ 1 < 31|>? || t r / / 2

+ l - 2n||r?||
3 + "~2 (trA

Let r = tr # 2
+ 1 and {/ = £ a > n + 1 tr //a

2. Then 5 = T + U and

\n T-

(3.15) - A 7 =

(3.16) -

- 1 )

where we have used (3.7), (3.8), (3.12), and (3.14).
Since

y/n(n - 1)

- n\\r,f - (V^T -

we have

(3.17)

(3.18)

2y/n- 1

l-AU > nU 11 + Nl2 - n-^jEZ±T

By means of (2.6), we have

"iknjk ~ / nij / '

k,a a k

where Ry are the components of the Ricci tensor of M. Thus

n2

(3.19) u > » - l + W ; 1 ) 2 > ( « - ! ) - n

-n\\ri\\*
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Taking F = —([/ + 1)~1/2 in Lemma 2, we know for any e > 0 there is x € M
such that

(3.20) sup F - s < F(x), || VF||(JC) < e, AFQt) < e.

Since AF = - i F 3 A t / +3F-MIVFH2, we have

(3.21) ^F\x)AU(x) = 3||VF||2(x) - F(*)AF(;c) < 3e2 -eF(x).

m = 0, there is
F(xm) — Fo =

Thus, for any convergent sequence {sm} with em > 0 and lim
a point sequence {jcm} such that {F(xm)} satisfies (3.20) and li
sup F, and therefore limm_oo U(xm) = Uo = sup U.

On the other hand, from (3.21) we have

3e2 - smF(xm)

and the right hand side converges to 0 because — 1 < F < 0. Accordingly for any
e e (0, 2), there is me such that for m > mE,

(3.22)

(3.18) and (3.22) yield

F4Qcm)AC/(;tm)<e.

(3.23) e[U(xm) + \]2 > 2nU(xm) n + - 1

2nJn —

Under the hypothesis of (i) in Theorem 1, we have (1 + ||rj||2) > ((n + 2V« - 1)/
(2ns/n - 1))(7 + f/). Hence, from (3.23) we get

e[U(xm)

which implies {U(xm)} is bounded and Uo = 0. Thus U = 0. Using the method of
Yau [8] we know M lies in a totally geodesic submanifold S"+1(l) of S;+P(l). Since
{/ = 0, we know S = T. The inequality (3.17) becomes

(3.24)

Since 5 > n|h||2 and S <

2Jn^-\
= 5 .

rT)/(« + +
2) <

(3.24) shows A5 > 0. Taking F = - ( S - n||r/||2 + 1)~1/2, in the same way as above
we can prove S - n\\r\f = 0. (Noting that S = 2 V n - i implies s = «||r)||2.)

https://doi.org/10.1017/S1446788700001798 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001798


P] Submanifolds in de Sitter spaces 7

So M is totally umbilical. From (2.6) we know M has constant sectional curvature
K = 1 - S/n. If n > 3, then 5 < n by 5 > 2V« - 1, and K > 0, M is isometric
to the sphere S"(r) of radius r = yw/(n - 5). If n = 2, then either M is flat (when
S = 2) or is isometric to S2(,/2/(2 - 5)) (when 5 < 2).

Under the hypothesis of (ii) in Theorem 1 we have

Noting 2y«|h | | v / r-7i | | j? | | 2 < T, from (3.16) we have

-AU>nu\i- N I 2 - "ZiLri > -^J=f/2 >0.

Applying Lemma 2 to U we can get U = 0 and therefore Ha = 0 for all a > n + 1.
Using the method of Yau [8] we know M lies in a totally geodesic submanifold 5"+1 (1)
of S;+p (1). We then complete the proof of Theorem 1. •
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