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A NOTE ON STRONG RIESZ SUMMABILITY

BY
B. THORPE

ABSTRACT. This note proves that if 1=p<ew and 1-1/p<k<
2—-1/p then the space of sequences strongly Riesz summable
[R, A, k], to 0 has AK. Using general results of Jakimovski and
Russell it is then possible to deduce a best possible limitation
condition and a convergence factor result for [R, A, k],

1. In a recent paper Jakimovski and Tzimbalario obtained a mean value
theorem for absolute Riesz summability (Theorem 8 of [6]) that played an
analogous role to the Riesz mean value theorem in ordinary Riesz summability.
That is to say, just as Peyerimhoff was able to use the Riesz mean value
theorem to deduce that the space (R, A, k), of sequences that are summable to
O(R, A, k), has AK in the case 0<k =<1 (see Satz 8.2 of [9]), Jakimovski and
Tzimbalario were able to use their absolute Riesz mean value theorem to prove
the corresponding result for |R, A, k|,, the space of sequences absolutely Riesz
summable to O (see the case p=0 of Theorem 5 in [6]). Kratz and Shawyer
have recently proved a strong Riesz mean value theorem (see [7], [10]) and
used it to obtain summability factor results for strong Riesz summability
[R, A, k],. However it does not appear to be possible to investigate the AK
property of [R, A, k], from their inequality. It is the purpose of this note to give
a direct proof of the AK property of strong Riesz summability. The main result
extends Theorem 5 of [8] from strong Cesaro summability to strong Riesz
summability and as applications a limitation condition and a convergence factor
result are given. Using the ideas of this paper it is possible to obtain an
alternative strong Riesz mean value theorem to that given in [7] and this will
be investigated elsewhere.

2. In this section we give the notation and some basic properties. Let A
denote an unbounded, monotonic, strictly increasing positive sequence {A,, },~o.
Suppose 1=p<wand k>1-1/p. Wesay Yn_o a, =1 [R, A, k], if and only if

J'XIR“““(W)— I[P dw = o(X)

0
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as X — o, where

A(k~1)(w) ( A )k—l
=Dy )22 W) _ 1—"2n
R (w) Wk Z W ar

A <w

(see [3], [11]). If s={s,}.~0 Where s, =Y"_, a, let

o[R, A\, k], = {s : ,20 a, =0[R, A, k]p}

and for se o[R, A, k], define

1 X 1/p
M o= sup (& [ 1RG0 )
X>\o o

It is not hard to prove, using Fatou’s lemma, that with this definition of a
norm, o[R, A, k], is a Banach space with continuous coordinate mappings i.e.
s — s, is continuous for each n =0. (c.f. the proof for ordinary Riesz summabil-
ity in P. 46 of [9]).

Also using integration by parts and the fact that k >1—(1/p), an equivalent
norm to (1) is

X 1/p
@ Ish = sup (x0=0=1 [*a¢ ) aw)
X>No Ao
We say o[R, A, k], has AK if {§™},,~0 is a Schauder basis, where ™ denotes
the sequence with 1 in the mth coordinate and 0’s elsewhere i.e. for every
s€o[R, A, k],

n

s— Z 8, 0™

m=0

(3) -0
as n — oo, This concept was introduced into summability by Zeller in [12] for
more general sequence spaces.

As in page 47 of [9] we see, if A(t)=), < an, that

n—1 X d w p 1/p
s— Y 5.0™| =sup (X“‘""’_lj \— (I (w—t)"“A(t)dt)‘ dw)
m=0 1 x>, e ldw \Jy

= sup (X(l—k)p—ljx A®=D(y)
A

X >\,

d A, p 1/p
_W(L (w-—t)k_lA(t)dt> dw) .
:Sup<X(1—k)p—1J‘x A(kgl)(w)
x>, A,

n

—(k— I)L)\R(W —)*2A(1) dtlp dw)l/p.
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Now se o[R, A, k], implies that ¥ |A®"P(w)]P dw = o(X~79?) and so

X 1/p

(4) lim sup (X(l_k)"“lj |A&D(w)P dw) =0
n—w X>\, A

If k =1, this proves that o[R, A, k], has AK for p=1. If k# 1, an application

of Minkowski’s inequality in the case p>1 and trivially if p =1 shows, using
(4), that (3) holds if and only if

(5) lim sup XH‘_(”")(

n—o X>A,

J;x LA"(W — 1) 2A(r) dtlp dw)llp =0.

3. We now state and prove the main result.
THEOREM 1. Let 1=p<. If 1-1/p<k<2-1/p then o[R, A, k], has AK.

Proof. The case k =1 was pointed out in Section 2 above and so in what
follows we assume k# 1. If 1<k <2 then we replace the inner integral in (5)
by '

w=A )

NN (w=—u)*\, —u)' *A*D(y) du.

(6) '[:"(w -t A dt=

This is an identity due to M. Riesz and a proof is given on page 89 of [2]. If
0 <k <1 we can obtain the same identity as (6) by using Lemma 6 of [4] with
k=p=k ie.

LA"(W —O*2A(f) dt = [:"(w —p)k2 (m L (t—u) A% D(w) du) 'dt

mL Ak~ 1)(u)(J‘ w=—0*2(t—u)" dt) du

(6) now follows by either using the same techniques used by Bosanquet in [2]
or, as Professor D. Borwein showed me, by writing the inner integrand as

(W —=_ 1>_k(w -1

w—t

and evaluating the integral directly. Thus, if 1—(1/p) <k <2—(1/p), k# 1, then
a necessary and sufficient condition for o[R, A, k], to have AK is that

lim sup Xl—k—“/v)(r(w — A, )k
A,

n—ow X>\, n

)

A, p 1/p
A — W) (w—u)TA% V(W) du dw) =0.
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We first prove that

X
lim sup X“"““"”(L (w—A, )P
n—oo X>2\, An "
(8)

A, > 1p
X J; A, — ) (w—u)TA% V() du dw) =0

To do this, notice that (w—u)"'<(w—2A,)"! and so

X A, p 1/p
sup Xlﬁ'“(””)<L (w—A,)kbp J; WA, =)' (w—u)TA® () du dw)
X>2\, An
x Up/ A,
= sup X“"_(“”)(J (w—2A, ) k2P dw> (I A, —u)F JAC D ()| du)
X>2\, 2N 0

A

(9) SQ_/IJ‘ "()\" _ u)l—k |A<k—1)(u)| du

n Y0

where M denotes a constant (independent of n) that may be different at each
appearance. If p>1, apply Holder’s inequality to (9) (where 1/q+1/p=1) to

get
2 J; A, — ) A ()| du =< == (J‘ ko du)l/q
(j A% PGP du> ’
(10) S,I\\_:II/\}‘_km/m(J:']A(k’”(u)ip dl,l)l/p

since 1-1/p<k<2-1/p. Also se o[R, A, k], so that
A, 1/p
(11) J A D)l du) = oA
o
and putting this in (10) gives (8) in the case p>1. If p=1, then since 0 <k <1

a trivial estimate in (9) gives (8) (using (11).)
To complete the proof it is sufficient to show that, with the same integrand as

in (7),
min(X, 2)\n) A, P 1/p
(12) lim sup (J J’ (..)du dw> =0.
A 0
By an application of Minkowski’s inequality if p > 1 and the triangle inequal-

n—o X>\,
ity if p =1, it is sufficient for (12) that

min(X, 2X,) 2N, —w
(13) lim sup (I J. (..)du
0

n—oo X>\, \J)

] 1/p
dw) =0
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LX" (.)du

To prove (13), since u <A, =<w we have

(15) A, - w—uw'r=,—u)*

and
min(X, 2/\")
(14) lim sup (I
A,

n—o X>\,

p 1/p
dw> =0.

and putting this in the inner integral in (13) gives

(16)

LZAFW()\,, —w)' M (w—u) A% O(u) du|=< LZM_W(M —w) AP (u)| du.

Now, if p>1, choose >0 so that (n—k)<—(1/q) i.e. 0<m<k—(1—-(1/p))
and apply Holder’s inequality to (16) to get

1/p

P 20, -w
j (A —w) A D) du < (L (A, —u)"™ |ACD(w)P du)
0
2N, —w 1/q
X (I (A, —u)ka du) <M(w— ), )"k
0

2N, —w B 1/p
([ dnmw A aw)
0
Hence the LHS of (13) becomes

min(X, 2X))
=M lim sup Xl"‘“(“")(j (w=A,)""
An

n—0o X>A,
1/p

X {LZ)\"VW()\,l —u) ™ |A®TI ()P du} dw)

Arl
=M lim sup XH‘_‘“"’(L A —u) ™ |AC D ()P

n—0 X>\,

min(X, 2X, —u) 1/p
X {j (w—A,)™ ! dw} du)
An

A, 1/p
<M lim sup XH‘_(”")(L A, —uw) ™ J[A®P@)P{(A, —uw)™} du)

n—o X >\,

n—w

A, 1/p
=M lim )\rk-“/v)(j |A® D)l du)
0

and so (13) holds by using (11). If p =1 then we take 1/q to mean 0 and use
the inequality

A —w 2)\"~w
r (A, —w) ™ |[AC ()] duS(w—)\n)"”‘L A= u) ™ [A“TP(w)] du
0

instead of Holder’s inequality in the above.
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To prove (14), since A, =w =min(X, 2),,) and 2\, —w=u =\, we have
(w—u)'=(w—2,)"

and putting this in the inner integral in (14) gives

=M(w-2A,)"!

An
L A, — ) *w—u)TA* V() du
(17) o R
% L ()\n _ u)l—k \A(k»l)(u)l du.
A, —w
If p>1, choose n>0 so that (1—k—m)> —(1/q) i.e. 0<n<(2-(1/p))—k and
apply Holder’s inequality to (17) to get

A

A, n 1/p
[ owas a7 aumum ia v du)

A, —w A —w
A, 1/q
X (L (A, —u)tkmma du)
A —w
A, 1/p
=M(w —)\n)’“"""”(l/“)(jZ A, —u)™ |A% ()P du)
Ap—w

Hence the LHS of (14) becomes

min(X, 2X)
=M lim sup XH‘#‘”")(J (w—A,) ™!
A

n—o X>\,

x {LA A, —u)™ |ACD)P du} dw>1/p

Ap—w
by
=M lim sup Xl_k_(”‘”“:" A, —uw)™ AR D)
n—w X>\, ax(0, 2A, —X)
min(X, 2X,) 1/p
X {L (w=A,) 1! dw} du)
A—u
" A, 1/p
=M lim sup X“"“”’”([ A —w)™ JASD@)P{A, —u) ™} du)
n—w X>\, 'max(0, 2\, —X)

A, 1/p
=M lim A},”““"”(I |A® D) du)
n—soo 0
and so (14) holds by using (1)). If p =1 then simple modifications to the above
(similar to those given in the proof of (13)) give the result in this case also.
Thus the theorem is completely proved.

In contrast to Theorem 1 we have the following

ProrosiTioN. (i) If k>1 then 3\ such that o[R, A, k], does not have AK.
(i) If 1<p <o and k=2—(1/p) then A\ such that o[R, X, k], does not have
AK.
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Proof. If A, =(n+1) then strong Riesz summability is equivalent to strong
Cesaro summability and so (i) and (ii) follow from Theorems 9 and 10 of [8].

I can add in this connection that Professor B. Kuttner has recently shown me
a proof that, under the ‘high indices’ condition on A i.e. for n=1, A\,,.;=cA,
where ¢ is a fixed constant strictly greater than 1, then o[R, A, k], =c, if
k>1-(1/p), where ¢, is the space of convergent to zero sequences. Thus
o[R, A, k], has AK in this case for all k>1~—(1/p).

4. As a first application we have the following limitation condition.

THEOREM 2. Let 1=p<« and 1-(1/p)<k<2-(1/p). If s,—I[R, A k],
then

(18) s, — | = o(Ak~1+(/P)
where
A, :_)\'11__
An+1—/\n

and this result is best possible in the sense that given any unbounded sequence
{6,},3s€[R, A, k], such that ,(s, — 1) # o(Ak /).

Proof. If s, — 1 [R, A, k], then s—18€0[R, A, k], where § is the constant
sequence of all 1’s. Thus by Theorem 1 above and Corollary 1(b) to Theorem 3
of [5] the best possible limitation condition (in the sense described above) is
s, —l=0(8"""). Using the equivalnt norm given by (2),

X 1/p
HS"“l:maX( sup X"k_(”")(j (w—)\n)(k_”"dw> ,

A=X=A,11 A

sup Xl—k~(1/p)

X=Nyo1
A X 1/p
x{j (w—A,)kbe dw+j (w=A) T =(w— A )P dw} )
An An+1
Now
X 1/p A k—1+(1/p)
sup X“""”"’(I (w—A,)kbr dw) =M su <1——">
A=X=\ 41 A A=X=A.11 X
)\ N “A k—1+(1/p)
=M n+1 n) )
)\n+1

and similarly

Ao 1/p A +1__)\ k—1-+(1/p)
sup Xl_k_(ll")(j (w—)\n)(k_l)"dw> =M<—"———"> .

X=hr e A1
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Thus if k=1, ||5"||, = MAL", which gives (18). If k# 1 then

x 1/p
sup Xl*k*(l/D)(J ‘(w-—An)kil“‘(W_Anﬁ—l)k_l‘p dW>

X=Nn A1
X A p 1/p
=M sup X“'““"”(j j (w—u)"2du dw)
X=Ap+1 An+1 An
L X 1/p
=M sup X“"“”‘”J. (J (w—u)“"”"dw) du
X=An1 An A1

by Minkowski’s inequality (if p>1),

AH*‘
<M sup Xl“k“l’p)j Ay — w20 qy
A

X=Np41

n

=M A;(k71+(1/p))'

Hence, another use of Minkowski’s inequality (if p>1) shows that ||8"||; lies
between two positive constant multiples of A, * '*/?) and so (18) follows.
As a final application we give the following convergence factor result.

THEOREM 3. Let 1=p<w and 1—(1/p)<k<2—(1/p). Then Y;_g &, is
convergent for all se o[R, A, k], if and only if

(19) en = f <1~%>Ha(t) di— J;m (1 —)‘—"tﬂ)kﬂa(t) di

n+1

where « satisfies Y n_o M,(a, p) <> and

esssup |ta(t)| if p=1
2n<g<2nt!

(20) Mn (a7 p) = 2nt 1/q
(2“"[, |ta ()| dt) if p>1

Proof. If sc o[R, A, k], then by Theorem 1 s=),_,s,8" and so for every
continuous linear functional fe o[R, A, kI%, f(s)=Yr_o s.f(8").

Conversely, if ), _,s,e, is convergent for every s€o[R, A, k], then s—
Ym0 S»€, defines a continuous linear functional on o[R, A, k],. Moreover, from
the definition of o[R, A, k], there is an isometry from o[R, A, k], on to a closed
subspace of W,, where W, is defined as in [1]. Using the representation of W"
obtained in [1] and the Hahn-Banach theorem, we see that fe o[R, A, k[§ if
and only if

fls) = rRM(t)am dt
0

where a satisfies Y,,_q M, (a, p)<® for M, (a, p) defined as in (20).
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Thus

f&") = [ (1—%)"1@) d+ j °° {(1-%)“- (1—%—1)"_1}0((:) at

and (9) will follow if we show

I: (1 —%)kﬁla(t) dt

exists. Now convergence at infinity of this integral follows since the con-
vergence of Yo_o M, (a, p) implies that [ |a(t)| df < and convergence at A, (in
the case k <1) follows by an application of Holder’s inequality if p>1 and an
easy estimate if p =1 (using (20)). Hence the result.

COROLLARY. Let 1=p<ow and 1-(1/p)<k<2-(1/p). Then (19) is a
necessary and sufficient condition for Y. S.€, to be convergent for all sequences
s summable [R, A, k],

Proof. If s, » I'[R, A, k], then (s—1'8)eo[R, A, k], and so the result will
follow immediately from Theorem 3 provided we show

(21) lim Iw (1—%)'“1(1(0 di=0

—o0
n n

(since then Y5 _o &, will converge). If k=1 then (21) is clear. If k>1 then
Lebesgue’s dominated convergence theorem proves (21). If 1-(1/p)<k<1,
p>1, A, €[2™,2™*") then for [>m+1

L (1 —%)k—la(t) atl < (L (12" a) llp(fmia(t)lq ar) "

21+1 1/q
st”p(L la(t)]? dt)
and so

IJ;:2 <1 —%)k_la(t) dt, <M i 2""<Emla(t)|q dt)”“ N

l=m+2

as n — o, Similarly

2m+2 k-1
j (1—5-') al(t) dt
A“ \ t

as n —, If p=1 then an easier estimate gives the same result, and so (21) is
proved and hence the result.

2m+2 1/q
sM2"‘“’<L |a(t)|“dt> -0

m
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